Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica—Study Case
Abstract
:1. Introduction
2. Materials and Methods
- -
- tidal volume (VT), respiratory rate (f), respiratory minute volume (VE), and alveolar minute volume (VA) were investigated using Spiro unit (BTL-08 Spiro Pro, Newcastle, UK). All of the lung ventilation volumes were adjusted to the standard BTPS (body temperature, pressure, water vapor saturated) conditions.
- -
- exhaled air gas composition (FEО2, FAО2) was investigated using Masspektrometr MX6202 (Kyiv, Ukraine).
3. Results
4. Discussion
5. Conclusions
6. Practical Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011; Available online: http://whqlibdoc.who.int/publications/2011/ 9789240686458_eng.pdf (accessed on 22 March 2020).
- Heitmann, B.L.; Westerterp, K.R.; Loos, R.J.; Sørensen, T.I.; O’Dea, K.; McLean, P.; Jensen, T.K.; Eisenmann, J.; Speakman, J.R.; Simpson, S.J.; et al. Westerterp-Plantenga MS Obesity: Lessons from evolution and the environment. Obes. Rev. 2012, 13, 910–922. [Google Scholar] [CrossRef] [Green Version]
- Health 2020: A European Policy Framework Supporting Action across Government and Society for Health and Well-Being; WHO Regional Office for Europe: Copenhagen, Denmark, 2012; Available online: http://www.euro who.int/__data/assets/pdf_file/0006/199536/Health2020-Short.pdf (accessed on 22 March 2020).
- Global Recommendations on Physical Activity for Health. Geneva, World Health Organization. 2010. Available online: http://whqlibdoc.who.int/ publications/2010/9789241599979_eng.pdf (accessed on 23 March 2020).
- NHLBI. 2013. Managing Overweight and Obesity in Adults. Systematic Evidence Review from the Obesity Expert Panel. 2013. Available online: http://www.nhlbi.nih.gov/guidelines (accessed on 23 March 2020).
- Review of Physical Activity Promotion Policy Development and Legislation in European Union Member States. WHO/EC project on Monitoring Progress on Improving Nutrition and Physical Activity and Preventing Obesity in the European Union. Report no. 10. Copenhagen, WHO Regional Office for Europe, 2010 (EUR/10/EUDHP1003693/8.1/10). Available online: http://www.euro.who.int/__data/assets/ pdf_file/0015/146220/e95150.pdf (accessed on 22 March 2020).
- Kolczynskaya, A.Z. Oxygen, Physical Condition, Working Capacity; Naukowa Dumka: Kyiv, Ukraine, 1991. [Google Scholar]
- Kolczynskaya, A.Z.; Cyganowa, T.N.; Ostapenko, L.A. Normobaric Hypoxic Interval Training in Medicine and Sport; Publisher House “Medicina”: Moskow, Russia, 2003. (In Russian) [Google Scholar]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129 (Suppl. 2), S102–S138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubnov Rostyslav, V.; Moiseyenko Yevhen, V.; Spivak Mykola, Y. The influence of environmental factors and stress on human health and chronic diseases: PPPM lessons from Antarctica. EPMA J. 2017, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Lutsenko, D.G.; Danylenko, K.M.; Babiychuk, G.O.; Shylo, O.V.; Moiseyenko, Y.V. Features of heart rate variability in humans during wintering in the Antarctica. J. Cryolett. 2018, 39, 87–88. [Google Scholar]
- Moiseyenko, Y.; Stefan-Arpad, M.; Olena, K.; Anna, B. Medical and Physiological Studies at the Ukrainian Antarctic Station. In Proceedings of the Open Science Conference, Davos, Switzerland, 19–23 June 2018; p. 2131. [Google Scholar]
- Moiseyenko, E.V.; Rozova, K.V. Ultrastructural features of blood cells in HIF-1α gene variations in specialists of extreme conditions. J. Educ. Health Sport 2020, 10, 218–226. [Google Scholar] [CrossRef]
- Shylo, O.; Lutsenko, D.; Lutsenko, O.; Babiychuk, G.; Moiseyenko, Y. Sleep in Antarctica: From the Sleep Disturbances Towards All the Challenges. Probl. Cryobiol. Cryomed. 2020, 30, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Pittman, R.N. Chapter 4—Oxygen Transport. In Regulation of Tissue Oxygenation; Virginia Commonwealth University: Richmond, VA, USA, 2011. [Google Scholar]
- Starr, I. Clinical Tests of the Simple Method of Estimating Cardiac Stroke Volume from Blood Pressure and Age. Circulation 1954, 9, 664–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. About BMI for Adults; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012. [Google Scholar]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise Standards for Testing and Training: A Statement for Healthcare Professionals from the American Heart Association. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef] [Green Version]
- Pamenter, M.E.; Powell, F.L. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr. Physiol. 2016, 6, 1345–1385. [Google Scholar] [CrossRef] [Green Version]
- Quindry, J.; Dumke, C.L.; Slivka, D.R.; Ruby, B.C. Impact of extreme exercise at high altitude on oxidative stress in humans. J. Physiol. 2016, 594, 5093–5104. [Google Scholar] [CrossRef] [Green Version]
- Paweł, R.; Radziejowska, M.; Zukow, W. The impact of the mountain climate on the oxygen supply system in human at different altitude. JPES 2019, 108–112. [Google Scholar] [CrossRef]
- Radziievs’kiĭ, P.O.; Radziievs’ka, M.P. Hypoxic training of high qualification sportsmen. Fiziolohichnyĭ Zhurnal 2003, 49, 126–133. [Google Scholar]
- Volkov, N.I.; Kolczynska, A.Z. Hidden (latent) hypoxia of physical load. Hypoxia Med. J. 1993, 2, 23–27. [Google Scholar]
- Moiseyenko, Y.V.; Sukhorukov, V.I.; Pyshnov, G.Y.; Mankovska, I.M.; Rozova, K.V.; Miroshnychenko, O.A.; Kovalevska, O.E.; Madjar, S.-A.Y.; Bubnov, R.V.; Gorbach, A.O.; et al. Antarctica challenges the new horizons in predictive, preventive, personalized medicine: Preliminary results and attractive hypotheses for multi-disciplinary prospective studies in the Ukrainian “Akademik Vernadsky” station. EPMA J. 2016, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Castellani, J.W.; Young, A.J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure Autonomic Neuroscience. Basic Clin. 2016, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leppäluoto, J.; Hassi, J. Human Physiological Adaptations to the Arctic Climate. Arctic 1991, 44. [Google Scholar] [CrossRef] [Green Version]
- Powell, F.; Milsom, W.; Mitchell, G. Time domains of the hypoxic ventilatory response. Respir. Physiol. 1998, 112, 123–134. [Google Scholar] [CrossRef]
- Loftin, M.; Heusel, L.; Bonis, M.; Carlisle, L.; Sothern, M. Comparison of oxygen uptake kinetics and oxygen deficit in severely overweight and normal weight adolescent females. J. Sports Sci. Med. 2005, 4, 430–436. [Google Scholar]
- Panwar, B.; Judd, S.E.; Warnock, D.G.; McClellan, W.M.; Booth, J.N.; Muntner, P.; Gutiérrez, O.M. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults. Stroke 2016, 47, 2017–2024. [Google Scholar] [CrossRef] [Green Version]
- Baba, R.; Nagashima, M.; Goto, M.; Nagano, Y.; Yokota, M.; Tauchi, N.; Nishibata, K. Oxygen uptake efficiency slope: A new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J. Am. Coll. Cardiol. 1996, 28, 1567–1572. [Google Scholar] [CrossRef]
- Ba, A.; Brégeon, F.; Delliaux, S.; Cissé, F.; Samb, A.; Jammes, Y. Cardiopulmonary response to exercise in COPD and overweight patients: Relationship between unloaded cycling and maximal oxygen uptake profiles. Biomed. Res. Int. 2015, 378469. [Google Scholar] [CrossRef] [Green Version]
- Davies, L.C.; Wensel, R.; Georgiadou, P. Enhanced prognostic value from cardiopulmonary exercise testing in chronic heart failure by non-linear analysis: Oxygen uptake efficiency slope. Eur. Heart J. 2006, 27, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Drinkard, B.; Roberts, M.D.; Ranzenhofer, L.M.; Han, J.C.; Yanoff, L.B.; Merke, D.P.; Savastano, D.M.; Brady, S.; Yanovski, J.A. Oxygen-uptake efficiency slope as a determinant of fitness in overweight adolescents. Med. Sci. Sports Exerc. 2007, 39, 1811–1816. [Google Scholar] [CrossRef] [Green Version]
- Green, S.; O’Connor, E.; Kiely, C.; O’Shea, D.; Egaña, M. Effect of obesity on oxygen uptake and cardiovascular dynamics during whole-body and leg exercise in adult males and females. Physiol. Rep. 2018, 6, e13705. [Google Scholar] [CrossRef]
- Hollenberg, M.; Tager, I.B. Oxygen uptake efficiency slope: An index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J. Am. Coll. Cardiol. 2000, 36, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Onofre, T.; Oliver, N.; Carlos, R.; Felismino, A.; Corte, R.C.; Silva, E.; Bruno, S. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory fitness in morbidly obese women. PLoS ONE 2017, 12, e0172894. [Google Scholar] [CrossRef]
- Sheridan, S.; McCarren, A.; Gray, C.; Murphy, R.P.; Harrison, M.; Wong, S.H.; Moyna, N.M. Maximal oxygen consumption and oxygen uptake efficiency in adolescent males. J. Exerc. Sci. Fit. 2021, 19, 75–80. [Google Scholar] [CrossRef]
- Juonala, M.; Kelly, R.K.; Magnussen, C.G.; Sabin, M.A.; Cheung, M. Development of hypertension in overweight adolescents: A review Adolesc. Health Med. Ther. 2015, 6, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Siques, P.; Brito, J.; Ordenes, S.; Pena, E. Involvement of overweight and lipid metabolism in the development of pulmonary hypertension under conditions of chronic intermittent hypoxia. Pulm. Circ. 2020, 10 (Suppl. 1), 42–49. [Google Scholar] [CrossRef]
- Martin, R.S.; Brito, J.; Siques, P.; León-Velarde, F. Obesity as a Conditioning Factor for High-Altitude Diseases. Obes. Facts 2017, 10, 363–372. [Google Scholar] [CrossRef]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
Parameter | 70 kg | 80 kg | 90 kg | 105 kg | 120 kg |
---|---|---|---|---|---|
Oxygen uptake | 3.48 | 2.87 | 2.55 | 2.19 | 1.91 |
Rate of О2 uptake in lungs | 22.84 | 19.99 | 17.77 | 15.23 | 13.32 |
Rate of О2 uptake in alveolar surface of lungs | 17.13 | 14.99 | 13.32 | 11.42 | 9.99 |
Rate of О2 delivery in arterial blood | 12.51 | 10.94 | 9.73 | 8.34 | 7.30 |
Rate of О2 delivery in mixed venous blood | 9.23 | 8.07 | 7.18 | 6.15 | 5.38 |
Laboratory Test Results | 1 | 2 |
---|---|---|
VEO2 ATPS, L/min | 7.2 | 6.5 |
FEO2,% | 16.8 | 16.9 |
FAO2,% | 15.8 | 16 |
pIO2, mm Hg | 159 | 159 |
pAO2, mm Hg | 120 | 100 |
f, breaths/min | 16 | 14.9 |
HR, bpm | 75 | 96 |
Systolic blood pressure, mm Hg | 122 | 129 |
Diastolic blood pressure, mm Hg | 71 | 85 |
SV, mL | 63.2 | 52.6 |
Hb, g/L | 140 | 173 |
SaO2,% | 97 | 92 |
РаО2, mm Hg | 93 | 83.8 |
SṽO2,% | 71.60 | 71.57 |
Calculated Functional Indicators | Normal Body Weight | Overweight | Difference |
---|---|---|---|
VEBTPS, mL/min | 7.27 | 6.57 | −0.71 |
VESTPD, mL/min | 6.12 | 5.53 | −0.60 |
VABTPS, mL/min | 5.85 | 5.36 | −0.49 |
CO, mL/min | 4740 | 5050 | 310 |
Blood oxygen capacity, mL/L | 190.4 | 235.28 | 44.88 |
VTBTPS, mL | 450.00 | 436.24 | −13.76 |
VO2, mL/min | 250.92 | 221 | −29.92 |
Oxygen Uptake Rate | 1 | 2 | Difference |
---|---|---|---|
Oxygen uptake in tissues per 1 kg of body mass, mL/min/kg | 3.58 | 2.70 | −0.89 |
Rate of oxygen uptake in lungs, mL/min/kg | 15.60 | 14.08 | −1.52 |
Rate of oxygen uptake in alveoli, mL/min/kg | 12.54 | 11.50 | −1.04 |
Rate of oxygen delivery in arterial blood, mL/min/kg | 10.79 | 13.77 | 2.98 |
Rate of oxygen delivery in mixed venous blood, mL/min/kg | 7.73 | 11.07 | 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziejowska, M.; Moiseyenko, Y.; Radziejowski, P.; Zych, M. Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica—Study Case. Int. J. Environ. Res. Public Health 2021, 18, 4077. https://doi.org/10.3390/ijerph18084077
Radziejowska M, Moiseyenko Y, Radziejowski P, Zych M. Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica—Study Case. International Journal of Environmental Research and Public Health. 2021; 18(8):4077. https://doi.org/10.3390/ijerph18084077
Chicago/Turabian StyleRadziejowska, Maria, Yevgen Moiseyenko, Paweł Radziejowski, and Michał Zych. 2021. "Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica—Study Case" International Journal of Environmental Research and Public Health 18, no. 8: 4077. https://doi.org/10.3390/ijerph18084077
APA StyleRadziejowska, M., Moiseyenko, Y., Radziejowski, P., & Zych, M. (2021). Oxygen Supply System Management in an Overweight Adult after 12 Months in Antarctica—Study Case. International Journal of Environmental Research and Public Health, 18(8), 4077. https://doi.org/10.3390/ijerph18084077