Retrieval and Evaluation of Chlorophyll-a Concentration in Reservoirs with Main Water Supply Function in Beijing, China, Based on Landsat Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Satellite Data
2.2.2. Water Quality Data
2.3. Retrieval Method of Chlorophyll-a Concentration
2.3.1. Reservoir Boundary Extraction Method
2.3.2. Chlorophyll-a Concentration Estimation Model
2.3.3. Evaluation Indicator
2.4. Assessment of Water Nutrition Status
3. Results
3.1. Optimal Estimation Model Selection Results
3.2. Comparison of Retrieval Results Based on Two Image Sources
3.3. Chlorophyll-a Concentration Retrieval Results
3.4. Evaluation Results of Water Nutrition Status
4. Discussion
4.1. Synopsis of Temporal Variation of Chlorophyll-a Concentration
4.2. Driving Factors of Chlorophyll-a Concentration Change
4.2.1. Concentration of Chlorophyll-a in Recharge Flow
4.2.2. Flow Changes
4.2.3. Water Quantity Changes
4.2.4. Other Nutrients’ Changes
4.3. A Preliminary Attempt at Mutual Application of Chlorophyll-a Estimation Models in Adjacent Reservoirs
4.4. Description of Chlorophyll-a Concentration Retrieval Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García Nieto, P.J.; García-Gonzalo, E.; Alonso Fernández, J.R.; Alonso Fernández, C.; Díaz, M. Water eutrophication assessment relied on various machine learning techniques: A case study in the Englishmen Lake (Northern Spain). Ecol. Model. 2019, 404, 91–102. [Google Scholar] [CrossRef]
- Rocha Junior, C.A.N.D.; Costa, M.R.A.D.; Menezes, R.F.; Attayde, J.L.; Becker, V. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 2018, 30, 106. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, Y.; Wu, H.; Liu, F.; Peng, W.; Zhang, X.; Chang, F.; Xie, P.; Zhang, H. A review and perspective of eDNA application to eutrophication and HAB control in freshwater and marine ecosystems. Microorganisms 2020, 8, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havens, K.E.; Fukushima, T.; Xie, P. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ. Pollut. 2001, 111, 263–272. [Google Scholar] [CrossRef]
- Retnamma, J.; Chinnadurai, K.; Loganathan, J.; Nagarathinam, A.; Jose, A.K. Ecological responses of autotrophic microplankton to the eutrophication of the coastal upwelling along the Southwest coast of India. Environ. Sci. Pollut. Res. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Quantitative remote sensing inversion of chlorophyll-a concentration in Taihu Lake based on TM data. Geogr. Geogr. Inf. Sci. 2006, 22, 5–8. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, X.; Zhang, G.; Zhang, T.; Wang, C.; Wang, R. Nitrogen and phosphorus content of surface water in upper reaches of Guanting reservoir and Miyun Reservoir. Environ. Eng. 2020, 38, 101–105+144. [Google Scholar] [CrossRef]
- Jiang, L. Spatiotemporal Variation of Surface Suspended Sediment and Chlorophyll-a in Laizhou Bay in Recent 20 Years Based on Remote Sensing Inversion. Master’s Thesis, Ludong University, Yantai, China, 1 June 2018. [Google Scholar]
- Chen, Y.; Liu, S.; Wang, Q.; Song, S.; Liang, P.; Chen, F. Remote sensing retrieval of water quality and assessment of nutritional status in Caohai Lake based on landsat satellite images. J. Water Ecol. 2020, 41, 24–31. [Google Scholar] [CrossRef]
- Lesht, B.M.; Barbiero, R.P.; Warren, G.J. A band-ratio algorithm for retrieving open-lake chlorophyll values from satellite observations of the Great Lakes. J. Great Lakes Res. 2013, 39, 138–152. [Google Scholar] [CrossRef]
- Zolfaghari, K.; Wilkes, G.; Bird, S.; Ellis, D.; Pintar, K.D.M.; Gottschall, N.; McNairn, H.; Lapen, D.R. Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada. Environ. Monit. Assess. 2020, 192, 67.1–67.16. [Google Scholar] [CrossRef]
- Abbas, M.M.; Melesse, A.M.; Scinto, L.J.; Rehage, J.S. Satellite Estimation of Chlorophyll-a Using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor in Shallow Coastal Water Bodies: Validation and Improvement. Water 2019, 11, 1621. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Digiacomo, P.M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote. Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Tyson, C.; Maycira, C.; Erika, Y.; Nicholas, K.; Jim, G.; Ruston, S. Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data. Remote Sens. 2017, 9, 1063. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, H.J.; Dekker, A.G. The sensitivity of Medium Resolution Imaging Spectrometer (MERIS) for detecting chlorophyll and seston dry weight in coastal and inland waters. In Geoscience and Remote Sensing Symposium Proceedings; IGARSS ’98. 1998 IEEE International; IEEE: Seattle, WA, USA, 1998. [Google Scholar]
- Matthews, A.M.; Duncan, A.G.; Davison, R.G. An assessment of validation techniques for estimating chlorophyll-a concentration from airborne multispectral imagery. Int. J. Remote Sens. 2001, 22, 429–447. [Google Scholar] [CrossRef]
- Jiao, H.; Zha, Y.; Gao, J.; Li, Y.; Wei, Y.; Huang, J.Z. Estimation of chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data. Int. J. Remote Sens. 2006, 27, 4267–4276. [Google Scholar] [CrossRef]
- Xu, P.; Mao, F.; Jin, P.; Chen, Q. Temporal and spatial variation of chlorophyll-a concentration in Qiandao Lake based on GF1_WFV. China Environ. Sci. 2020, 40, 4580–4588. [Google Scholar] [CrossRef]
- Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of Bathing Water Quality Using Thermal Images Landsat 8 on theWest Coast of Tangier: Preliminary Results. Remote Sens. 2019, 11, 972. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Duran-Llacer, I.; González-Rodríguez, L.; Abarca-del-Rio, R.; Cárdenas, R.; Parra, O.; Martínez-Retureta, R.; Urrutia, R. Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecol. Inform. 2020, 60, 101183. [Google Scholar] [CrossRef]
- Bramich, J.; Bolch, C.J.S.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Cherif, E.; Salmoun, F.; Yemlahi, E.A.; Magalhaes, J.M. Monitoring Tangier (Morocco) coastal waters for As, Fe and P concentrations using ESA Sentinels-2 and 3 data: An exploratory study. Reg. Stud. Mar. Sci. 2019, 32, 100882. [Google Scholar] [CrossRef]
- Cherif, E.; Vodopivec, M.; Mejjad, N.; Silva, J.C.G.E.D.; Boulaassal, H. COVID-19 Pandemic Consequences on Coastal Water Quality Using WST Sentinel-3 Data: Case of Tangier, Morocco. Water 2020, 12, 2638. [Google Scholar] [CrossRef]
- Feng, H.; Li, J.; Zhu, Y.; Han, Q.; Zhang, N.; Tian, S. Collaborative retrieval of chlorophyll-a concentration of GF-1 and Landsat-8: A case study of Taihu Lake. Remote Sens. Land Resour. 2019, 31, 182–189. [Google Scholar] [CrossRef]
- Ma, F.; Jiang, Q.; Xu, L.; Liang, Y.; Wang, R.; Su, S. Inversion of water quality parameters of Miyun Reservoir Based on BP neural network algorithm. J. Ecol. Environ. 2020, 29, 569–579. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, X.; Wang, J. Comparison of four machine learning models for retrieving chlorophyll-a concentration in Taihu Lake. J. Water Ecol. 2019, 40, 48–57. [Google Scholar] [CrossRef]
- Alizamir, M.; Heddam, S.; Kim, S.; Mehr, A.D. On the implementation of a novel data-intelligence model based on extreme learning machine optimized by bat algorithm for estimating daily chlorophyll-a concentration: Case studies of river and lake in USA. J. Clean. Prod. 2021, 285, 124868. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, H.; Lin, H.; Lei, X.; Zheng, R. Efficient estimation of chlorophyll a concentration in artificial upwelling. Math. Comput. Simul. 2021, 185, 660–675. [Google Scholar] [CrossRef]
- Ortiz, M.C.; Sarabia, L.A.; Herrero, A.; Reguera, C.; Sanllorente, S.; Arce, M.M.; Valencia, O.; Ruiz, S.; Sánchez, M.S. Partial least squares model inversion in the chromatographic determination of triazines in water. Microchem. J. 2021, 164, 105971. [Google Scholar] [CrossRef]
- Qin, L.; Zhou, J.; Li, X.; Zeng, Q. Variation trend and influencing factors of runoff in the upper reaches of Miyun Reservoir. J. Ecol. 2018, 38, 1941–1951. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, Y.; Li, Q.; Zhang, P. Multi index evaluation and evolution characteristics analysis of water quality in Guanting Reservoir. China Environ. Monit. 2020, 36, 65–74. [Google Scholar] [CrossRef]
- Yang, J.; Strokal, M.; Kroeze, C.; Wang, M.; Wang, J.F.; Wu, Y.H.; Bai, Z.H.; Ma, L. Nutrient losses to surface waters in Hai He basin: A case study of Guanting reservoir and Baiyangdian lake. Agric. Water Manag. 2019, 213, 62–75. [Google Scholar] [CrossRef]
- Su, M.; Andersen, T.; Burch, M.; Jia, Z.; An, W.; Yu, J.W.; Yang, M. Succession and interaction of surface and subsurface cyanobacterial blooms in oligotrophic/mesotrophic reservoirs: A case study in Miyun Reservoir. Sci. Total Environ. 2018, 649, 1553–1562. [Google Scholar] [CrossRef]
- Wei, A.; Tian, L.; Chen, X.; Yu, Y. Hyperspectral retrieval model of chlorophyll-a concentration in Poyang Lake based on exhaustive method and Its Application—Taking GF-5 AHSI data as an example. J. Cent. China Norm. Univ. (Nat. Sci. Ed.) 2020, 54, 447–453. [Google Scholar] [CrossRef]
- Shi, H. “Escort” of 88 monitoring stations at the peak of migratory birds entering Beijing. Green. Life 2019, 270, 26–27. [Google Scholar]
- Liu, X. Study on Eutrophication of Miyun Reservoir. Master’s Thesis, Capital Normal University, Beijing, China, 1 May 2002. [Google Scholar]
- Qin, H.; Lai, D.; Wan, W.; Sun, Z. Water demand forecast and water shortage analysis of Beijing based on system dynamics. Sci. Technol. Eng. 2018, 18, 180–187. [Google Scholar]
- Li, W.; Jiang, Y.; Duan, Y.; Bai, J.; Zhou, D.; Ke, Y. Where and how to restore wetland by utilizing storm water at the regional scale: A case study of Fangshan, China. Ecol. Indic. 2021, 122, 107246. [Google Scholar] [CrossRef]
- Ji, H.; Wu, H.; Wu, J. Analysis on the change of water quantity in and out of Taihu Lake from 1986 to 2017. Lake Sci. 2019, 31, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Wang, J.; Zhang, W.; Feng, L.; Liu, J. Analysis of water nutrition in Guanting Reservoir Analysis of water eutrophication in Guanting Reservoir. Lake Sci. 2004, 16, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, W.; Xu, W.; Luo, Y. Analysis on eutrophication status and change trend of Guanting Reservoir. Haihe Water Conserv. 2012, 0, 25–26. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595, (In Chinese with English Abstract). [Google Scholar]
- Lai, Y.; Zhang, J.; Song, Y.; Cao, Y. Comparative Analysis of Different Methods for Extracting Water Body Area of Miyun Reservoir and Driving Forces for Nearly 40 Years. J. Indian Soc. Remote Sens. 2020, 48, 451–463. [Google Scholar] [CrossRef]
- Wang, S.; Ma, A.Q.; Hu, J.; Hou, L.L.; Xu, J.Q. Comparative study on remote sensing inversion models of Chl-a concentration in semi closed Bay—A case study of Jiaozhou Bay. Mar. Environ. Sci. 2019, 174, 78–86. [Google Scholar] [CrossRef]
- Levin, N.; Heimowitz, A. Mapping spatial and temporal patterns of Mediterranean wildfires from MODIS. Remote Sens. Environ. 2012, 126, 12–26. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Alawadi, F. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI). In Proceedings of SPIE Remote Sensing; The International Society for Optical Engineering: Bellingham, WA, USA, 2010. [Google Scholar]
- Yuan, Y.; Wang, D.; Ye, Y. Retrieval Investigation of Chlorophyll-a Concentration in Taihu Lake Based on MERIS Data. J. Seed Ind. Guide 2018, 11, 22–27. [Google Scholar] [CrossRef]
- Morihiro, A.; Outoski, A.; Kawai, T.; Hosome, M.; Muraoka, K. Application of modified Carlson’s trophic state index to Japanese lakes and its relationship to other parameters related to trophic state. Res. Rep. Natl. Inst. Environ. Stud. 1981, 23, 12–30. [Google Scholar]
- Liu, C. Discussion on some problems of China’s water resources in the 21st century. Water Conserv. Hydropower Technol. 2002, 33, 15–19. [Google Scholar] [CrossRef]
- Xu, J. Quantitative Geography; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Yang, Y.; Wang, Y.; Li, X.; Zhang, Y.; Sun, M. Water quality evaluation and time-space variation characteristics of Guanting Reservoir. Prot. Water 2021, in press. Available online: http://kns.cnki.net/kcms/detail/32.1356.TV.20210201.1009.002.html (accessed on 1 February 2021).
- Du, G.; Wang, J.; Zhang, W.; Feng, L.; Liu, J. Analysis on the nutritional status of water body in Guanting Reservoir. Lake Sci. 2004, 03, 277–281. [Google Scholar]
- Chen, M.; Chen, F. Water quality evaluation and eutrophication analysis of small reservoirs in Nanjing. Environ. Prot. Sci. 2020, 46, 87–91. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, J.; Du, G. Use of satellite imagery to assess the trophic state of Miyun Reservoir, Beijing, China. Environ. Pollut. 2008, 155, 13–19. [Google Scholar] [CrossRef]
- Yuan, B. Eutrophication Analysis and Countermeasures of Guanting reservoir. Beijing Water 2004, 6, 17–20. [Google Scholar] [CrossRef]
- Luan, F. Trend features of nutrients in Miyun reservoir and inflow rivers of miyun reservoir. Environ. Eng. 2018, 36, 231–235. [Google Scholar]
- Kravitza, J.; Matthewsb, M.; Bernardc, S.; Griffithd, D. Application of Sentinel 3 OLCI for Chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
ID | Path | Row | Date | Time |
---|---|---|---|---|
L71123032_03220030525 | 123 | 32 | 25/5/2003 | / |
LC08_L1TP_123032_20160707_20170323_01_T1 | 123 | 32 | 7/7/2016 | 2:53:24 |
LC08_L1TP_123032_20160621_20170323_01_T1 | 123 | 32 | 21/6/2016 | 2:53:16 |
LC08_L1TP_123032_20170710_20170725_01_T1 | 123 | 32 | 10/7/2017 | 2:53:19 |
LC08_L1TP_123032_20190918_20190926_01_T1 | 123 | 32 | 18/9/2019 | 2:53:48 |
S2A_MSIL1C_20160702T031632_N0204_R075_T50TLK_20160702T031629 | 204 | 75 | 2/7/2016 | / |
S2A_MSIL1C_20170707T031631_N0205_R075_T50TLK_20170707T031626 | 205 | 75 | 7/7/2017 | / |
Year | Date | Effective Sampling Point | Data |
---|---|---|---|
2016 | 6 and 7 July | 40 | Chl-a |
2017 | 10–12 July | 38 | Chl-a |
2019 | 6 and 7 September | 41 | Chl-a |
Year | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b5/b4 | b5/b3 | b5/b2 | b5/b1 |
2016 | 0.03 | −0.03 | −0.04 | 0.03 | 0.73 | 0.13 | 0.11 | 0.74 | 0.69 | 0.72 | 0.73 |
2017 | −0.57 | −0.67 | −0.44 | 0.27 | 0.77 | 0.64 | 0.63 | 0.79 | 0.80 | 0.82 | 0.82 |
2019 | −0.40 | −0.44 | −0.63 | −0.66 | −0.48 | 0.09 | 0.05 | 0.43 | 0.00 | −0.21 | −0.41 |
Year | b4/b3 | b4/b2 | b3/b1 | b3/b2 | b3/b1 | b2/b1 | NDVI | SABI | KIVU | Apple | 3-Band |
2016 | 0.11 | 0.12 | 0.02 | −0.03 | −0.08 | −0.16 | 0.62 | 0.74 | −0.10 | 0.84 | 0.42 |
2017 | 0.78 | 0.74 | 0.60 | 0.04 | −0.21 | −0.58 | 0.79 | 0.78 | −0.74 | 0.71 | 0.84 |
2019 | −0.61 | −0.75 | −0.73 | −0.52 | −0.70 | −0.41 | 0.43 | 0.75 | 0.74 | 0.51 | −0.32 |
Method | 2016 | R | 2017 | R | 2019 | R |
---|---|---|---|---|---|---|
Single band | y = 348.16 × (b5) + 202.5 | 0.74 | y = 1123.2 × (b5) − 260.07 | 0.77 | y = −0.0035 × (b4) + 3.24 | 0.66 |
y = 861.2ln(b5) + 350.53 | 0.71 | y = 499.43ln(b5) + 654.63 | 0.74 | y = −1.84ln(b4) + 12.93 | 0.62 | |
y = −123.74 × (b5)4 + 1163.3 × (b5)3 − 3591.1 × (b5)2 + 4857.1 × (b5) − 1780.1 | 0.74 | y = 641,228 × (b5)4 − 1 × 106 × (b5)3 + 874,476 × (b5)2 − 271,000 × (b5) + 31,067 | 0.87 | y = 2 × 10−9 × (b4)4 − 6 × 10−6 × (b4)3 + 0.0048 × (b4)2 − 1.81 × (b4) + 256.31 | 0.79 | |
y = 497.99 × (b5)0.83 | 0.66 | y = 804.02 × (b5)1.63 | 0.76 | y = 871566 × (b4)−2.13 | 0.65 | |
y = 443.88e0.32(b5) | 0.64 | y = 40.59e3.65(b5) | 0.79 | y = 12.163e−0.004×(b4) | 0.7 | |
Ratio of two bands | y = 0.46 × (b5/b4) + 0.29 | 0.74 | y = 2.92 × (b5/b1) − 0.71 | 0.82 | y = −4.32 × (b4/b2) + 5.92 | 0.75 |
y = 1.13ln(b5/b4) + 0.48 | 0.72 | y = 1.32ln(b5/b1) + 1.68 | 0.79 | y = −4.68ln(b4/b2) + 1.61 | 0.74 | |
y = −0.08 × (b5/b4)4 + 0.62 × (b5/b4)3 − 1.04 × (b5/b4)2 + 0.29 × (b5/b4) + 1.19 | 0.75 | y = 1294.3 × (b5/b1)4 − 2526.9 × (b5/b1)3 + 1822.8 × (b5/b1)2 − 572.82 × (b5/b1) + 66.47 | 0.87 | y = 4296.6 × (b4/b2)4 − 19,098 × (b4/b2)3 + 31745 × (b4/b2)2 − 23,391 × (b4/b2) + 6449.9 | 0.82 | |
y = 0.6721 × (b5/b4)0.82 | 0.65 | y = 2.35 × (b5/b1)1.86 | 0.81 | y = 1.76 × (b4/b2)−5.57 | 0.79 | |
y = 0.6e0.32(b5/b4) | 0.64 | y = 0.08e4.1(b5/b4) | 0.84 | y = 308.51e−5.17(b4/b2) | 0.81 | |
Multi-band | y = 526,130 × (Apple) − 943,213 | 0.84 | y = 1.18 × (3-band) − 0.61 | 0.84 | y = 14.29 × SABI + 5.94 | 0.75 |
y = −30,870 × 1(Apple)4 + 3 × 106 × (Apple)3 − 9 × 106 × (Apple)2 + 1 × 107 × (Apple) − 6 × 106 | 0.87 | y = 390.55 × (3-band)4 − 762.22 × (3-band)3 + 551.62 × (3-band)2 − 174.28 − (3-band) + 20.067 | 0.91 | y = 406,947 × (SABI)4 + 547,891 × (SABI)3 + 275,784 × (SABI)2 + 61,527 × (SABI) + 5135.8 | 0.85 | |
y = 1E + 06ln (Apple) − 670,142 | 0.87 | y = 0.5288ln(3-band) + 0.352 | 0.81 | y = 256.7e16.46(SABI) | 0.77 | |
Stepwise regression | y = 2.3 + 0.0000016 × Apple − 0.003 × b7 | 0.89 | y = 1.46 + 1.17 × (3-band) − 0.002 × (b1) − 0.26 × (b5/b4) | 0.95 | y = 53.01 − 51.93 × (b4/b2) − 75.23 × KIVU − 2.05 × ((1/b4 − 1/b5) × b6) | 0.92 |
Date | R | RMSE | RRMSE | Number of Samples |
---|---|---|---|---|
July 2016 | 0.66 | 0.72 | 33% | 11 |
July 2017 | 0.72 | 0.19 | 40% | 9 |
September 2019 | 0.7 | 0.25 | 15% | 12 |
Image Type | Year | Stepwise Regression Model | R | Number of Samples |
---|---|---|---|---|
Landsat-8 | 2016 | Y = 2.304 + 0.0000016 × Apple − 0.003 × b7 | 0.89 | 29 |
2017 | Y = 1.457 + 1.167 × (3-band) − 0.002 × (b1) − 0.263 × (b5/b4) | 0.95 | 29 | |
2019 | Y = 53.01 − 51.928 × (b4/b2) − 75.229 × KIVU − 2.051 × ((1/b4 − 1/b5) × b6) | 0.92 | 29 | |
Sentinel-2A | 2016 | Y = 3.01 + 0.01 × B4 − 1.88 × (B4/b2) − 0.01 × B3 | 0.85 | 29 |
2017 | Y = 0.703 − 0.837 × (NDVI) + 0.0001 × b4 | 0.84 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Zhang, J.; Song, Y.; Gong, Z. Retrieval and Evaluation of Chlorophyll-a Concentration in Reservoirs with Main Water Supply Function in Beijing, China, Based on Landsat Satellite Images. Int. J. Environ. Res. Public Health 2021, 18, 4419. https://doi.org/10.3390/ijerph18094419
Lai Y, Zhang J, Song Y, Gong Z. Retrieval and Evaluation of Chlorophyll-a Concentration in Reservoirs with Main Water Supply Function in Beijing, China, Based on Landsat Satellite Images. International Journal of Environmental Research and Public Health. 2021; 18(9):4419. https://doi.org/10.3390/ijerph18094419
Chicago/Turabian StyleLai, Yuequn, Jing Zhang, Yongyu Song, and Zhaoning Gong. 2021. "Retrieval and Evaluation of Chlorophyll-a Concentration in Reservoirs with Main Water Supply Function in Beijing, China, Based on Landsat Satellite Images" International Journal of Environmental Research and Public Health 18, no. 9: 4419. https://doi.org/10.3390/ijerph18094419
APA StyleLai, Y., Zhang, J., Song, Y., & Gong, Z. (2021). Retrieval and Evaluation of Chlorophyll-a Concentration in Reservoirs with Main Water Supply Function in Beijing, China, Based on Landsat Satellite Images. International Journal of Environmental Research and Public Health, 18(9), 4419. https://doi.org/10.3390/ijerph18094419