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Abstract: In our study, we examine whether spatial spillover effects exist for greenhouse gas emission
efficiency for 38 European countries between 2005 and 2014. We find that inefficiencies of other
countries would lead to lower efficiency levels for a country. This negative inefficiency spillover
effect goes down till 2008 then goes up till 2011, then stays relatively stable after 2011. Any strategy
to reduce inefficiencies of other countries could potentially improve the efficiency levels. We find that
human development index shows significant positive impact on greenhouse gas emission efficiency
levels. In particular, one standard deviation increase in human development index would lead to a
11.12 percentage points increase in the greenhouse gas emission efficiencies on average. Different
countries show different efficiency levels and efficiency growth patterns over time. However, the
pattern of spatial spillover is quite similar among all countries over time.

Keywords: eco-efficiency; greenhouse gas; Kyoto protocol; stochastic frontier analysis; pollu-
tion; spillover

1. Introduction

Globalization has led to an increase in interactions between countries. As a conse-
quence, the dynamics of the world economy as well as air/water pollution patterns have
changed. In particular, the increased linkages between countries placed the governments
in a more competitive global market. Generally, the competition is considered to be a good
thing, as under some conditions it would increase the social welfare. Moreover, in line
with Hicks’ [1] quiet life hypothesis, one may argue that increase in competition would
force the firms to work harder in order to achieve higher technical efficiency levels. Hence,
given the same level of inputs, the firms can produce more output. The same idea may
potentially apply to country level production as well. However, this line of logic ignores the
negative externalities in the production process, such as the environmental damage caused
by air or water pollution. If some of the countries that fall behind the competition use
technologies that are not “environmentally friendly” to catch up with the other countries in
terms of their output levels, then competition may also have some negative consequences
for these countries. Although globalization can help diffusion of environmentally friendly
technologies between countries, replacing the existing technology and/or operating the
state-of-the-art technology that is environmentally friendly may be relatively more costly.
Hence, the firms and governments would likely show some resistance to adapting en-
vironmentally friendly technologies. Environmental inefficiency may also happen if the
energy is not used efficiently, as production of energy is one of the important contributors
to greenhouse gas emissions (GHG). For example, when we use heating and cooling more
than necessary, this would cause environmental inefficiency.

The extensive emission of greenhouse gas is one of the leading factors for global
warming problem. The potential future effects of global climate change include more
frequent wildfires, longer periods of drought in some regions and an increase in the number,
duration and intensity of tropical storms, shrunk glaciers, loss of sea ice, accelerated sea
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level rise, more intense heat waves, mold infestation, etc. What is more, global health
has been impacted negatively by GHG emission. As shown by Haines et al. [2], climate
change is an increasing and evolving threat to global health, particularly in low-income
countries. GHG emission is widely acknowledged to correlate with child mortality from
acute respiratory infections, ischaemic heart disease in adults, and other non-communicable
diseases. Hence, it is important to measure and monitor GHG emission efficiency and
monitor the spillover effects. The improvement of GHG emission efficiency would help
mitigate both environmental and health impacts of GHG emissions, which would help the
world to achieve sustainable growth.

International efforts to prevent global warming and reduce greenhouse gas emissions
started in the late 1980s. The Kyoto Protocol was established at the third conference of
the parties (COP3) on 11th December 1997 to extend the 1992 United Nations Framework
Convention on Climate Change (UNFCCC) that commits state parties to reduce green-
house gas emissions. There are currently 192 parties to the Protocol. The Kyoto Protocol
aims to reduce the onset of global warming by reducing greenhouse gas concentrations
in the atmosphere to an emission level that would not cause dangerous anthropogenic
interference with the global environment system (see Article 2 of the UNFCCC). The impact
of Kyoto Protocol on greenhouse gas emission has been extensively tested in many studies.
Iwata and Okada [3] find that the Kyoto Protocol has a negative impact on CO2 and CH4
emissions, no significant impact on N2O emissions, and a positive impact on other green-
house gas emissions. Besides the Kyoto Protocol, the European Union Emissions Trading
System (EU ETS) is another factor that affects the emission behavior of European countries,
which started in 2005. In 2008, EU ETS regulated the installations, which were responsible
for 40% of the European Union’s total greenhouse gas emissions. The scheme has been
divided into multiple trading periods. The first three periods are 2005–2007, 2008–2012,
and 2013–2020.

In this study, we concentrate on greenhouse gas emission efficiencies of European
countries and their spillover effects. In particular, the bad output (greenhouse gas emission)
is measured by the total greenhouse gas emissions including land use change and forestry,
which is expressed as millions of tons of CO2 equivalents. A country is greenhouse gas
emission efficient if it produces the minimal amount of greenhouse gas emissions relative
to real GDP, i.e., the ratio of GHG emissions and real GDP is minimized. This analysis helps
us to understand the different efficiency levels and different efficiency growth patterns
over time for different European countries. The spillover effect is the other focus besides
GHG emission efficiency in our study. If the countries use “non-environmentally friendly”
technologies to achieve better output level during the global competition process, negative
spillover will occur as a consequence of such competition. In our analysis, we try to identify
whether the spillover effect is positive or negative.

The data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are two
commonly used benchmarking approaches in the efficiency measurement literature. The
main difference lies in the technique used in these two approaches. To be more specific, the
DEA approach relies heavily on mathematical programming methodologies, while the SFA
approach employs econometrics techniques to obtain efficiency estimates. Among others,
Haynes et al. [4] measure technical efficiency in pollution prevention activities. Emrouzne-
jad et al. [5] examine the optimality of CO2 emissions quota in the Chinese manufacturing
firms, and Molinos-Senante et al. [6] estimate the potential of reducing GHG emissions for
Spanish wastewater treatment plants. Mukherjee [7] finds that the states in India may in-
crease output, while reducing inputs by improving technical efficiencies. Picazo-Tadeo and
Prior [8] apply directional distance functions and data envelopment analysis techniques
to Spanish ceramic tile producers. Sueyoshi and Wang [9] compare efficiencies between
integrated firms and independent firms using DEA environmental assessment. Vlontzos
et al. [10] determine efficiency with and without GHG emissions with DEA. Wegener and
Amin [11] examine GHG emission efficiency in the oil and gas sector, and Chen and Jia [12]
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introduce a slacks-based measure model considering undesirable outputs to measure the
environmental efficiency of different regions applying DEA methods.

Among others, country-specific GHG emission efficiencies are studied by Herrala
and Goel [13], Jin and Kim [14], Robaina-Alves et al. [15], Valadkhani et al. [16], and
Kutlu [17]. Except [16], all these studies use variations of stochastic frontier approaches.
All of these studies ignore spatial interactions between producers, which may lead to
flawed inefficiency estimates. In contrast to these studies, we estimate GHG emission
efficiencies of European countries using a spatial autoregressive stochastic frontier model,
which captures spatial interactions of producers. Different types of spillover effects in
environmental behavior have been summarized in Nilsson et al. [18]. Both positive and
negative behavior spillovers have been observed in different studies. Poortinga et al. [19]
observe positive spillover, while Klöckner et al. [20] show negative spillover effects from
their studies. Additionally, thus, the studies that neglect spillover effects may get biased
estimates for efficiency.

We estimate the greenhouse gas emission efficiencies of 38 European countries between
2005 and 2014. Our GHG emission efficiency definition coincides with that of Kutlu [17].
That is, we assume that the countries try to minimize the ratio of GHG emission to real
GDP ratio. Even if the objectives of countries are not aligned with this objective, the idea is
that we want to measure the extent to which the countries mimic such behavior. In our
analysis, we treat human development index (HDI) as a potential determinant for the ratio
of GHG emission to real GDP ratio. The HDI was created to emphasize that people and
their capabilities should be the ultimate criteria for assessing the development of a country,
not economic growth alone. The HDI is the geometric mean of normalized indices for each
of the three dimensions: a long and healthy life, being knowledgeable, and having a decent
standard of living. As illustrated in Gürlük [21], HDI (which was modified in his study)
impacted industrial pollution differently for different countries. Modern (endogenous)
growth theory accepts human development, technological progress, and natural resources
as the forces behind economic growth. It covers health, education, and economic growth
based on its definition and calculation. A higher development level may contribute to
the use of environmentally friendly technologies to reduce the industrial pollution and
leads to there being more environmentally sensitive individuals in the population. Kyoto
Protocol and EU ETS have a positive impact on average efficiency level during the first
stage of EU ETS period, 2005–2007, and the beginning of the second period of EU ETS till
2008. However, the efficiency level stays relatively stable during the second period of EU
ETS. During the final two years in the second period and the third period of EU ETS, the
average efficiency declines from the year 2011. The average efficiency spillover goes down
after the launch of Kyoto Protocol and EU ETS during the first period and beginning of
second period till the year 2009. However, the efficiency spillover increases throughout the
rest of the time periods.

The main difference of our study from the other studies, as we mentioned above,
is that our model captures the spatial interactions of countries in terms of their GHG
emission efficiencies. Hence, in this study, we are interested in how the European countries
interact with each other in terms of their GHG emission efficiency levels. We estimated
that the average GHG emission efficiency is 88.7%. Moreover, it turns out that there is
a negative inefficiency spatial spillover impact among the 38 European countries during
the time period from 2005 to 2014. More precisely, the inefficiencies of other countries
lead to additional inefficiency in a country. The negative inefficiency spillover impact
prevents some countries from achieving full GHG emission efficiency. By increasing the
efficiencies of other countries, it is possible to reach full efficiency levels. The negative
spillover effect (in absolute value) goes down from 2005 to 2008 then goes up till 2011, then
stays relatively stable after 2011. The CO2 trading scheme, which was introduced in 2004,
seems to have a positive impact during the initial few years, then the impact decays. HDI
turns out to be an important factor that impacts GHG emission efficiencies. In our analysis,
one standard deviation improvement for the HDI would lead to a 11.12 percentage points
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improvement in the average total efficiency. What is more, different countries have a
heterogenous efficiency growth pattern over time. However, all countries have the similar
spatial spillover pattern over time, regardless of their efficiency levels.

Finally, we briefly summarize earlier studies and their findings to compare our results
with the earlier findings. Moreover, ref. [13] finds that relative to 1997, the average CO2
emission efficiencies of 177 countries increased in 2007. However, depending on the models
they used, the averages of efficiency estimates range between 40% and 64%, which are
substantially lower than our estimates. Unlike our model, their models do not consider
heterogeneity and spillovers, which may be the reason for the discrepancy between our and
their efficiency estimates. Using a variety of different non-spatial econometric methods,
ref. [15] estimates GHG emission efficiencies of 26 countries between 2000 and 2011. While
we assume a translog functional form, which is flexible, they assume a Cobb–Douglas
functional form, which is rarely used in the stochastic frontier literature as it is not a flexible
functional form. They find that, compared to 2000–2004 time period between 2005–2011, the
efficiencies of Hungary, Slovenia, Portugal, and Ireland improved significantly. Moreover,
Sweden, Latvia, UK, Portugal, and Cyprus are the most efficient countries based on
their estimates. Using a non-spatial true fixed effects stochastic frontier model, ref. [14]
estimates the carbon emission efficiencies of 21 emerging countries between 1995 and
2016. Their efficiency measure concentrates on carbon emission, which differs from ours.
Unlike us, they use the Cobb–Douglas functional form for estimations. Their estimates for
carbon emission efficiency range between 70.9% and 91.8%. Using a non-spatial stochastic
frontier analysis, ref. [17] examined greenhouse gas emission efficiencies of world countries
between 1990–2015. In line with our findings, ref. [17] finds that the Kyoto Protocol helped
to increase emission efficiency.

The remainder of the paper has been illustrated as follows. Section 2 presents the data
and methodology used for this analysis. Section 3 details the results found in this paper.
Section 4 provides the conclusion remarks and some policy recommendations.

2. Materials and Methods

In order to estimate the GHG emission efficiency, we use a variation of the spatial
autoregressive stochastic frontier (SARSF) model suggested by Glass et al. [22]. This model
assumes that the inefficiency is an unobserved random variable, which represents the radial
distance from the frontier. The model controls for both country-specific heterogeneity and
spatial interactions between countries. Below, we provide the details of dataset, estimation
methodology, and estimation results.

2.1. Data

The production and greenhouse gas dataset is obtained from Kutlu [17]. The GDP and
capital (K) input data are collected from the International Monetary Fund (IMF) website
(https://www.imf.org/ (accessed on 30 May 2020)). The capital variable is defined as
the sum of government, private, and public–private capital stocks. The GDP and capital
variables are measured in billions of constant 2011 international dollars. The labor (L) and
energy (E) inputs and population (POP) data are collected from the World bank website
(https://data.worldbank.org (accessed on 30 May 2020)). The labor input is the total
labor force and the energy input is the energy use in billion tons of oil equivalent. The
total greenhouse gas emissions (which includes land use change and forestry measured
in million tons of CO2 equivalents) data are collected from www.climatewatchdata.org
(accessed on 30 May 2020).

The distance data is calculated using geographic shortest distance between capital
cities based on their latitude and longitude. For each country, the capitol city is used as the
base point to obtain latitude and longitude information to simplify the calculation. The
data for capital cities’ longitude and latitude come from techslide.com (http://techslides.
com/list-of-countries-and-capitals (accessed on 15 February 2021)). The geodist function
in SAS software automatically calculates the distance between a pair of cities based on
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each city’s longitude and latitude. The HDI data are collected from the WHO (World
Health Organization, Geneva, Switzerland) website (https://gateway.euro.who.int/en/
indicators/hfa_42--0500-undp-human-development-index-hdi/ (accessed on 8 March
2021)). A detailed calculation of HDI is offered by UNDP (United Nations Development
Programme) (http://hdr.undp.org (accessed on 8 March 2021)). HDI is a comprehensive
measurement of the average achievements in a country in three basic dimensions of human
development: a long and healthy life, access to knowledge, and a decent standard of living.
It relates to health, education, and economic growth based on its definition and calculation.
We consider HDI as a potential determinant of efficiency.

The final dataset includes 38 European countries for the years between 2005 and 2014.
We started with a dataset that has 44 countries. Three countries (Latvia, Montenegro and
Serbia) are dropped from the dataset due to missing data or negative GHG values during
the 2005 to 2014 time period. Three more countries (Moldova, North Macedonia, and
the United Kingdom) are further dropped because of missing HDI data. Total number
of observations used in the analysis is 380, 38 countries each with 10 years’ annual data.
We present the descriptive statistics of our dataset in Table 1. As shown in Table 1, GHG
shows wide variations (i.e., standard deviations are larger than the means); the average
GHG is 188.813, while the 5th percentile is as low as 3.905 and 95% goes up to 808.115.
We also observe large variations from GDP, POP (Population), L (Labor Input), E (Energy
Input), and K (Capital Input). HDI and DIST (Distance) show relatively smaller variations
compared to the other variables (i.e., standard deviations are smaller than the means).

Table 1. Descriptive statistics.

Variable Unit Mean Std. Dev. 5th Perc. Median 95th Perc.

GHG Million tons 188.813 408.999 3.905 60.240 808.115
GDP Billion dollars 547.138 845.318 13.607 236.158 2778.353

L Million 9.301 14.568 0.199 4.246 41.435
K Billion dollars 1198.112 1879.310 26.304 554.625 5999.062
E Million kg oil equivalent 4.785 16.393 0.002 0.196 24.862

POP Million 19.470 29.543 0.430 8.208 80.350
HDI 0.833 0.066 0.717 0.849 0.923
DIST 1000 km 1.131 0.648 0.278 1.028 2.377

Number of Observations 380

2.2. Econometric Model

Conventional stochastic frontier models do not control for heterogeneity and spa-
tial spillovers. In the panel data context, Greene [23,24], Wang and Ho [25], Kutlu and
McCarthy [26], and Kutlu et al. [27,28] criticize the models that do not disentangle hetero-
geneity and efficiency, as the heterogeneity can be confused with inefficiency. In this study,
we control heterogeneity by country-fixed effects.

Glass et al. [29,30] present distribution-free spatial SFA models. However, Kutlu [31,32]
argues that distribution-free SFA models may have robustness issues when there are out-
liers, unless these outliers are carefully handled. In line with the commonly used SFA
models, Glass et al. [22] suggest an alternative spatial SFA model, which assumes a distribu-
tion for the inefficiency term. In particular, Glass et al. [22] consider a spatial autoregressive
stochastic frontier (SARSF) model. An alternative spatial SFA model may directly model
the inefficiency term as a spatial autoregressive random variable. We would rather follow
the model of [22] (up to minor modifications). We assume the following model:

yit = αi + ρ ∑
j

wijyjt + x′itβ + vit + uit, (1)

where yit = ln(GHGit/GDPit) is the logarithm of the ratio of GHG emissions and real GDP
for country i at time t; αi is the country-specific fixed effects; xit is the vector of frontier

https://gateway.euro.who.int/en/indicators/hfa_42--0500-undp-human-development-index-hdi/
https://gateway.euro.who.int/en/indicators/hfa_42--0500-undp-human-development-index-hdi/
http://hdr.undp.org
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variables, which are exogenous, including labor input, capital input, energy input and
population; vit ∼ N

(
0, σ2

v
)

is the usual two-sided error term; uit = exp
(
z′itγ

)
u∗it, where

u∗it ∼ N+(0, 1) and zit is the vector of variables that explains GHG emission efficiency,
which is exogenous; wij ≥ 0 is the exogenous spatial weight for the effect of jth country’s
GHG emissions to real GDP ratio (i.e., yit) on the GHG emission to real GDP ratio of ith

country and wii = 0, which rules out self-spillover. Here, N
(
0, σ2

v
)

and N+(0, 1) denote
the normal and half-normal distributions, respectively. We assume that vit and u∗it are
independently and identically distributed. In this model, the SAR term, ∑j wijyjt, captures
the total spillovers on the ith country from the other countries. More precisely, wij is the
weight that represents the relative spillover effect of ith country on jth country. Following
Glass et al. [22], we assume that the exponential weighting matrix W (with elements wij)
is row-normalized so that ∑j wij = 1. Kutlu [33] proves that if ρ ∈ [0, 1) and W is a row-
normalized matrix, inefficiency, uit, cannot be negative. This would assure that efficiency
lies in the unit interval. Kutlu et al. [28] prove a similar theorem for scalar-normalized
weighting matrices. In particular, they show that if ρ ∈ [0, 1) and the normalizing constant
lies in a specific interval, the inefficiency would be non-negative. In matrix notation, our
model would be:

y.t = ρWy.t + X.tβ + u.t + v.t (2)

where y.t = (y1t, y2t, . . . , yNt)
′, u.t = (u1t, u2t, . . . , uNt)

′, v.t = (v1t, v2t, . . . , vNt)
′, and

X.t = (x1t, x2t, . . . , xNt)
′. The parameters of this model cannot be estimated using the

conventional stochastic frontier methods due to endogeneity of the SAR term, ρWy.t. Con-
sistent parameter estimates can be obtained by estimating the following transformed model:

y.t = X̃.tβ + ũ.t + ṽ.t, (3)

where X̃.t = (IN − ρW)−1X.t, ũ.t = (IN − ρW)−1u.t, and ṽ.t = (IN − ρW)−1v.t.
We estimate the inefficiency term by:

ûit = E[uit|εit], (4)

where εit = vit + uit is the composed error term. In practice, we replace εit by ε̂it =
yit − α̂i − ρ̂ ∑j wijyjt − x′it β̂, where α̂i, ρ̂, and β̂ are the corresponding parameter estimates.

Unlike the conventional stochastic frontier models, β parameters are not the marginal
effects. The total marginal effect of kth frontier variable is defined as the marginal change
in yit as a response to changes in xkjt for all j:

∑
j

∂yit
∂xkjt

= βk ∑
j
[(IN − ρW)−1]ij, (5)

where [.]ij represents ijth component of a matrix. The efficiency is estimated by:

EFFit = exp(−ũit), (6)

where ũ.t = (IN − ρ̂W)−1û.t.
Kutlu [33] defines the direct inefficiency of ith country as the part of the inefficiency that

results due to reasons other than spillovers. Similarly, the indirect inefficiency is defined as
the part of the inefficiency that is resulting only from spillovers of other countries. Direct
and indirect inefficiencies are given by:

IEdir
it =

[
(IN − ρW)−1

]
ii

uit

IEind
it = ∑i 6=j [(IN − ρW)−1]ijujt.

(7)
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The counterfactual efficiency difference between no spatial spillovers and spatial
spillovers scenarios is given by:

∆E f f = exp
(
−IEdir

it

)
− exp

(
−
(

IEdir
it + IEind

it

))
. (8)

The methodology scheme is demonstrated in Figure 1. The flow chart shows the
whole sequence of phases, tools and results at each stage. After collecting the data from
various data sources, we calculated per capita emission index by GHG/GDP and calcu-
lated the exponential weighting matrix from distance data. The model is estimated via
the maximum likelihood estimation method using the SARSF model. The unadjusted
inefficiency estimates are calculated from the data and parameter estimates. Using the
above equations, we further calculated the spillover adjusted efficiency estimates, direct
inefficiency, and indirect inefficiency.
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2.3. Empirical Model

We assume that the GHG to real GDP ratio is a function of three inputs: labor, capital,
and energy. More precisely, we model the GHG to real GDP ratio via a translog functional
form, which may be considered as a second-degree Taylor series approximation to an
unknown functional form. We also include the logarithm of population as a control
variable. The population indicates the size of the country. Country-specific heterogeneity is
controlled via country fixed effects for both the emission efficiency frontier and inefficiency.
Similarly, we controlled heterogeneity in efficiency via country-specific dummy variables.
We also model the distribution of the GHG emission inefficiency as a function of HDI. This
would enable us to examine whether more developed countries are more efficient or not.
Time trend variables are also controlled in the empirical model to allow for time trends.

3. Results

We present the estimation results for GHG emission efficiency using our spatial au-
toregressive stochastic frontier model in Table 2. All parameter estimates and heterogeneity
tests for both frontier and inefficiency terms are statistically significant at any conventional
significance levels. Statistical significance of the SAR term suggests that spatial spillovers
exist for GHG emission efficiency. The mean and median GHG emission efficiency esti-
mates for the whole sample are 88.67 and 93.98, respectively. Hence, although the average



Int. J. Environ. Res. Public Health 2021, 18, 4479 8 of 14

efficiency of the 38 European countries is reasonably high, there is still room for improve-
ment. Indeed, we predict that the mean and median of total efficiency improvements in
response to 1 standard deviation improvement for the HDI are 11.12 and 6.02 percentage
points, respectively. That is, if all the countries in the sample increase their HDI by one
standard deviation, the average and median of GHG emission efficiencies would increase
by 11.12 and 6.02 percentage points, respectively. More developed countries tend to have
higher GHG efficiency levels. On the other hand, the mean and median direct efficiency
increases in respond to 1 standard deviation increase in HDI for the relevant country are
10.07 and 5.89, respectively. Hence, the development levels of nearby countries affect the
GHG emission efficiency levels, but at a limited capacity.

Table 2. SAR Stochastic Frontier GHG Emission Efficiency Model Estimates.

ln(GHG/GDP) Coeff. S.E. p-Value

ln(L) 2.85389 0.00060 0.00000 ***
ln(K) 0.68344 0.00017 0.00000 ***
ln(E) −1.17232 0.00402 0.00000 ***

T −0.05541 0.00020 0.00000 ***
0.5 × ln(L)2 −0.54381 0.00045 0.00000 ***
0.5 × ln(K)2 −0.04605 0.00007 0.00000 ***
0.5 × ln(E)2 −0.24015 0.00146 0.00000 ***

0.5 × T2 −0.00172 0.00014 0.00000 **
ln(L) × ln(K) −0.27515 0.00030 0.00000 ***
ln(L) × ln(E) 0.43111 0.00085 0.00000 ***

ln(L) × T 0.02596 0.00099 0.00000 ***
ln(K) × ln(E) 0.10469 0.00143 0.00000 ***

ln(K) × T −0.00075 0.00004 0.00000 ***
ln(E) × T −0.01208 0.00034 0.00000 ***
ln(POP) −0.23533 0.00096 0.00000 ***

County Dummies YES

ρ 0.25058 0.00078 0.00000 ***

σv
Constant −6.95784 0.00071 0.00000 ***

σu
HDI −95.66927 0.14984 0.00000 ***

T −0.23830 0.08162 0.00350 *
0.5 × T2 0.12711 0.02021 0.00000 ***

County Dummies YES

Average Efficiency 88.67
Median Efficiency 93.98

Log-likelihood 584.08
Note: * p-value < 0.01, ** p-value < 0.001, and *** p-value < 0.0001.

In Table 3, we present the country-specific averages of efficiency estimates over the
time period 2005 to 2014. Spain has the highest average efficiency level of 97.02, followed
by Italy, France, Hungary, Austria, Malta, the Czech Republic, Germany, and Belgium,
which have efficiency levels higher than 96. Sweden has the lowest level of efficiency,
around 29. Finland, Estonia, Slovenia, Croatia, and Georgia have relatively low efficiency
levels, which are lower than 80. Different countries have different emission efficiency levels.
Future environmental policies might focus more on the countries that have lower efficiency
levels and their industry composition to make adjustments. By doing this, the overall
efficiency level could respond better to environmental policies.

The inefficiencies of the other countries would lead to higher inefficiency in a country,
which has a negative impact for the country. The magnitude of spillover effect is heteroge-
nous for different countries. Norway, Russia, and Lithuania are impacted most significantly,
which have negative spillover effects of more than 4. Country like Sweden has the minimal
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spillover effect at 0.87, compared with other countries. Therefore, the low efficiency level
for Sweden is not caused by negative spillover.

The average efficiency and average efficiency spillover effect are given by Figure 2. The
blue bar shows the average efficiency level for each country and the orange bar shows the
average spillover effect for each country. Basically, the orange bar represents the efficiency
loss due to other countries being inefficient. Stacking the blue bar and orange bar together,
we are able to visualize the potential possible efficiency level without such negative spatial
spillover impact. This can be achieved when all other countries achieve full efficiency.
From Figure 2, several countries, including Austria, the Czech Republic, Germany, Spain,
France, Hungary, Italy, and Malta could reach full efficiency level if there were no negative
spatial spillover effects. Strategies that reduce the negative spatial spillover impact would
help to improve the efficiency level for these countries. That is, strategies that improve
the efficiency levels in other countries or propagation of negative effect of inefficiency
from other countries would help to improve the efficiency in the relevant country. Hence,
agreements such as Kyoto Protocol and EU ETS would be beneficial through potential
spillover effects.

Table 3. Average Efficiency Estimates and Effects of Spillovers.

Country Efficiency Efficiency
Loss Country Efficiency Efficiency

Loss

Albania 90.11 2.89 Croatia 77.03 2.33
Armenia 93.10 3.45 Hungary 96.52 3.48
Austria 96.51 3.49 Ireland 90.63 3.22

Azerbaijan 88.10 3.16 Iceland 91.58 3.88
Belgium 96.20 3.41 Italy 96.85 3.15
Bulgaria 95.29 3.22 Kazakhstan 92.42 3.85

Bosnia and Herzegovina 94.52 3.16 Lithuania 91.18 4.00
Belarus 80.69 3.16 Luxembourg 95.29 3.29

Switzerland 94.64 3.15 Malta 96.43 3.56
Cyprus 92.21 3.05 Netherlands 93.14 2.87

Czech Republic 96.42 3.58 Norway 87.67 4.14
Germany 96.20 3.80 Poland 81.73 3.12
Denmark 89.84 3.87 Portugal 95.02 2.84

Spain 97.02 2.98 Russia 92.86 4.09
Estonia 76.32 3.57 Slovakia 92.31 3.12
Finland 74.04 3.39 Slovenia 76.80 2.47
France 96.71 3.29 Sweden 28.72 0.87

Georgia 77.56 2.48 Turkey 90.61 3.08
Greece 85.18 2.59 Ukraine 91.95 3.57

The distribution of efficiencies and spillovers are given in Figure 3. The majority
of efficiencies remain higher than 86%. However, Sweden has very low efficiency levels
in some years, which is lower than 30. We believe that Sweden may be an outlier. In
Figure 3, on the x-axis, we give the range of efficiency and efficiency spillover levels, and
on the y-axis, we give the frequency of efficiencies and efficiency spillovers that lie in the
corresponding interval.

The average efficiency and average efficiency spillover by year are given in Figure 4.
As shown in Figure 4, the average efficiency level goes up in the first few years till 2008,
then stays relatively stable, then goes down quickly, then stays stable after 2011. The
negative spillover goes down till 2008 then goes up till 2011, then stays relatively stable
after 2011. Based on this observation, we see that the average efficiency is not consistently
improving over time. At the beginning of 2005, the European Union member countries
launched EU ETS. In line with this, the GHG emission efficiencies have improved after
initial few years since EU ETS. However, the impact does not last after 2008.
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Detailed analysis shows different efficiency improvement patterns for different coun-
tries. Nine countries (Albania, Armenia, Azerbaijan, Denmark, Kazakhstan, Lithuania,
and Portugal) show a consistent improvement of efficiency level over time, as shown in
Figure 5. For these nine countries, EU ETS helps to improve the efficiency of GHG emission.
Twelve countries (in Figure 6) show improvement right after the EU ETS scheme was intro-
duced, but the efficiency level drops down to a certain level, then stays relatively stable
afterwards. For these countries, the impact of EU ETS is not persistent. Other countries
either have stable efficiency levels or do not have a strong pattern. The finding is that the
EU ETS scheme works differently for different countries. However, the EU ETS scheme
shows similar spatial spillover patterns for all 38 countries over time, as shown in Figure 7.
To be more specific, in the initial few years, we observe a decrease in negative spatial
spillover impact, but such negative spatial spillover starts to increase after 2008, then stays
relatively stable after 2011. Since there are many countries, the figures are provided to give
some idea about the general pattern, rather than presenting individual efficiency levels of
specific countries.
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4. Conclusions

In this paper, we examined the GHG emission efficiency spillover effects of 38 Euro-
pean countries between 2005 and 2014. In our analysis, we find that GHG emission ineffi-
ciency of a country would be positively related to inefficiencies of other countries. Hence,
other countries cause negative efficiency spillovers through their inefficiency. The countries
could have achieved better efficiency levels without such negative spatial spillover effects.
To be more specific, some countries such as Austria, the Czech Republic, Germany, Spain,
France, Hungary, Italy, and Malta could have reached full efficiency level if there were
no negative spatial spillover effects, which is possible when all other countries reach full
GHG emission efficiency levels. Hence, agreements related to the environment might
be beneficial through not only direct efficiency improvements but also indirect efficiency
improvements via spatial spillovers. For example, our findings are consistent with the
aims of the Kyoto Protocol and the EU ETS, in the sense that overall, these programs led to
GHG emission efficiency improvements for the European countries that we studied. In our
study, the dataset that we have did not allow us to disentangle exactly what parts of these
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programs helped efficiency improvements most. In future studies, it might be worth it to
examine the effects of specific characteristics of these programs to reveal most effective
strategies that may help to improve the GHG emission efficiencies of countries. Neverthe-
less, as mentioned above, we deduce that combining forces via agreements not only has
a direct positive effect in terms of GHG emission efficiency, but also this has an indirect
positive effect through efficiency spillovers by reducing other countries’ inefficiency.

Although the average efficiency of the 38 European countries is reasonably high,
there is still room for improvement. HDI is one of the important factors that impacts the
inefficiency level. Based on our study, if the HDI increases by 1 standard deviation for
all the countries in the sample, the average GHG emission efficiencies would increase
by 11.12 percentage points. Government policies that improve HDI could benefit GHG
emission efficiency. Since HDI is a combined index for a long and healthy life, being
knowledgeable and have a decent standard of living, any policy that improved the medical
system, physical well-being, education system and economic level would benefit HDI.
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