Association between Internet Addiction and Application Usage among Junior High School Students: A Field Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. Instruments
2.3. Data Collection Procedure
2.4. Statistical Analyses
2.5. Procedure
3. Results
3.1. Characteristics of the Study Population
3.2. Characteristics of Students According to Accessibility of Electronic Devices and Applications Used
3.3. Formatting of Mathematical Components
3.4. Factors That Contribute to Internet Addiction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Gaming Disorder (6C51). Available online: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/1448597234 (accessed on 9 April 2021).
- Andreassen, C.S. Online Social Network Site Addiction: A Comprehensive Review. Curr. Addict. Rep. 2015, 2, 175–184. [Google Scholar] [CrossRef]
- Arslan, G. Psychological maltreatment, forgiveness, mindfulness, and internet addiction among young adults: A study of mediation effect. Comput. Hum. Behav. 2017, 72, 57–66. [Google Scholar] [CrossRef]
- Tateno, M.; Teo, A.R.; Ukai, W.; Kanazawa, J.; Katsuki, R.; Kubo, H.; Kato, T.A. Internet Addiction, Smartphone Addiction, and Hikikomori Trait in Japanese Young Adult: Social Isolation and Social Network. Front. Psychiatry 2019, 10, 455. [Google Scholar] [CrossRef]
- Fumero, A.; Marrero, R.J.; Voltes, D.; Peñate, W. Personal and social factors involved in internet addiction among adolescents: A meta-analysis. Comput. Hum. Behav. 2018, 86, 387–400. [Google Scholar] [CrossRef]
- Kraut, R.; Patterson, M.; Lundmark, V.; Kiesler, S.; Mukophadhyay, T.; Scherlis, W. Internet paradox: A social technology that reduces social involvement and psychological well-being? Am. Psychol. 1998, 53, 1017. [Google Scholar] [CrossRef]
- Kawabe, K.; Horiuchi, F.; Ochi, M.; Oka, Y.; Ueno, S.-I. Internet addiction: Prevalence and relation with mental states in adolescents. Psychiatry Clin. Neurosci. 2016, 70, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.S. Psychology of Computer Use: XL. Addictive Use of the Internet: A Case That Breaks the Stereotype. Psychol. Rep. 1996, 79, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S. Caught in the Net: How to Recognize the Signs of Internet Addiction and a Winning Strategy for Recovery; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Chang, M.K.; Law, S.P.M. Factor structure for Young’s Internet Addiction Test: A confirmatory study. Comput. Hum. Behav. 2008, 24, 2597–2619. [Google Scholar] [CrossRef]
- Poli, R. Internet addiction update: Diagnostic criteria, assessment and prevalence. Neuropsychiatry 2017, 7, 04–08. [Google Scholar] [CrossRef]
- Malak, M.Z.; Khalifeh, A.H.; Shuhaiber, A.H. Prevalence of Internet Addiction and associated risk factors in Jordanian school students. Comput. Hum. Behav. 2017, 70, 556–563. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.K.; Ma, M.Y.; Murata, M.; Sato-Fujimoto, Y.; Hitokoto, H.; Mimura, M.; Tsubota, K.; Kishimoto, T. Associations between problematic Internet use and psychiatric symptoms among university students in Japan. Psychiatry Clin. Neurosci. 2018, 72, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Tateno, M.; Teo, A.R.; Shirasaka, T.; Tayama, M.; Watabe, M.; Kato, T.A. Internet addiction and self-evaluated attention-deficit hyperactivity disorder traits among Japanese college students. Psychiatry Clin. Neurosci. 2016, 70, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Tateno, M.; Kim, D.-J.; Teo, A.R.; Skokauskas, N.; Guerrero, A.P.S.; Kato, T.A. Smartphone Addiction in Japanese College Students: Usefulness of the Japanese Version of the Smartphone Addiction Scale as a Screening Tool for a New Form of Internet Addiction. Psychiatry Investig. 2019, 16, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Zhang, C.; Liu, J.; Wang, Z. The Relationship Between Resilience and Internet Addiction: A Multiple Mediation Model Through Peer Relationship and Depression. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, E.; Parzer, P.; Brunner, R.; Fischer, G.; Durkee, T.; Carli, V.; Hoven, C.W.; Wasserman, C.; Sarchiapone, M.; Wasserman, D.; et al. A 2-year longitudinal study of prospective predictors of pathological Internet use in adolescents. Eur. Child Adolesc. Psychiatry 2015, 25, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Xing, J.; Pengfei, W.; Houru, L.; Mengcheng, W.; Hong, Z. Online activities, prevalence of Internet addiction and risk factors related to family and school among adolescents in China. Addict. Behav. Rep. 2018, 7, 14–18. [Google Scholar] [CrossRef]
- Oberst, U.; Wegmann, E.; Stodt, B.; Brand, M.; Chamarro, A. Negative consequences from heavy social networking in adolescents: The mediating role of fear of missing out. J. Adolesc. 2017, 55, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-P.; Wu, J.Y.-W.; You, J.; Chang, K.-M.; Hu, W.-H.; Xu, S. Association between online and offline social support and internet addiction in a representative sample of senior high school students in Taiwan: The mediating role of self-esteem. Comput. Hum. Behav. 2018, 84, 1–7. [Google Scholar] [CrossRef]
- Shen, C.; Williams, D. Unpacking Time Online: Connecting Internet and Massively Multiplayer Online Game Use with Psychosocial Well-Being. Commun. Res. 2010, 38, 123–149. [Google Scholar] [CrossRef] [Green Version]
- Sueki, H. The association of suicide-related Twitter use with suicidal behaviour: A cross-sectional study of young internet users in Japan. J. Affect. Disord. 2015, 170, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Dhir, A.; Yossatorn, Y.; Kaur, P.; Chen, S. Online social media fatigue and psychological wellbeing—A study of compulsive use, fear of missing out, fatigue, anxiety and depression. Int. J. Inf. Manag. 2018, 40, 141–152. [Google Scholar] [CrossRef]
- Wartberg, L.; Kriston, L.; Thomasius, R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comput. Hum. Behav. 2020, 103, 31–36. [Google Scholar] [CrossRef]
- Primack, B.A.; Shensa, A.; Sidani, J.E.; Escobar-Viera, C.G.; Fine, M.J. Temporal Associations Between Social Media Use and Depression. Am. J. Prev. Med. 2020, 60, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Jeri-Yabar, A.; Sanchez-Carbonel, A.; Tito, K.; Ramirez-Delcastillo, J.; Torres-Alcantara, A.; Denegri, D.; Carreazo, Y. Association between social media use (Twitter, Instagram, Facebook) and depressive symptoms: Are Twitter users at higher risk? Int. J. Soc. Psychiatry 2018, 65, 14–19. [Google Scholar] [CrossRef]
- Twitter Japan. Available online: https://blog.twitter.com/ja_jp.html (accessed on 9 April 2021).
- Özdemir, Y.; Kuzucu, Y.; Ak, Ş. Depression, loneliness and Internet addiction: How important is low self-control? Comput. Hum. Behav. 2014, 34, 284–290. [Google Scholar] [CrossRef]
- Ndasauka, Y.; Hou, J.; Wang, Y.; Yang, L.; Yang, Z.; Ye, Z.; Hao, Y.; Fallgatter, A.J.; Kong, Y.; Zhang, X. Excessive use of Twitter among college students in the UK: Validation of the Microblog Excessive Use Scale and relationship to social interaction and loneliness. Comput. Hum. Behav. 2016, 55, 963–971. [Google Scholar] [CrossRef]
Total | Not Addicted | Possibly Addicted | Addicted | φ | p | |
---|---|---|---|---|---|---|
N (%) | 529 (100) | 367 (69.4) | 139 (26.3) | 23 (4.3) | ||
IAT scores | 36.0 ± 15.2 | 27.8 ± 5.9 | 50.5 ± 8.7 | 79.9 ± 6.8 | ||
Gender, n (%) | 0.046 | 0.568 | ||||
Male | 283 (100) | 199 (70.3) | 70 (24.7) | 14 (4.9) | ||
Female | 246 (100) | 168 (68.3) | 69 (28.0) | 9 (3.7) | ||
Grade, n (%) | 0.196 | <0.001 | ||||
First | 175 (100) | 136 (77.7) | 35 (20.0) | 4 (2.3) | ||
Second | 179 (100) | 131 (73.2) | 39 (21.8) | 9 (5.0) | ||
Third | 175 (100) | 100 (57.1) | 65 (37.1) | 10 (5.7) | ||
F | p | |||||
Age, year | 13.7 ± 0.9 | 13.6 ± 0.9 | 13.8 ± 1.0 | 14.0 ± 0.7 | 3.9 | 0.021 |
Time spent online | ||||||
Weekday | 131.6 ± 118.8 | 112.0 ± 112.8 | 166.2 ± 110.0 | 234.8 ± 159.4 | 20.8 | <0.001 a |
Weekend | 256.6 ± 197.1 | 215.3 ± 169.5 | 324.2 ± 196.0 | 500.9 ± 302.0 | 38.5 | <0.001 a |
Electronic Devices N = 529 | All n (%) | Males n (%) | Females n (%) | χ | p Value |
---|---|---|---|---|---|
Television | 441 (83.4) | 231 (81.6) | 210 (85.4) | 1.328 | 0.249 |
Laptop computer | 187 (35.3) | 89 (31.4) | 98 (39.7) | 4.052 | 0.044 * |
Tablet computer | 241 (45.6) | 124 (43.8) | 117 (47.4) | 0.744 | 0.388 |
Smartphone | 341 (64.5) | 176 (62.2) | 165 (66.8) | 1.369 | 0.242 |
Portable game | 381 (72.0) | 220 (77.7) | 161 (65.2) | 9.867 | 0.002 ** |
Console game | 348 (65.8) | 203 (71.7) | 145 (58.7) | 9.562 | 0.002 ** |
Application | |||||
Online videos (e.g., YouTube) | 466 (88.1) | 255 (90.1) | 211 (85.8) | 2.356 | 0.125 |
Music | 353 (66.7) | 165 (58.3) | 188 (76.4) | 19.460 | <0.001 ** |
Gaming application | 331 (58.8) | 180 (63.6) | 131 (53.3) | 5.821 | 0.016 * |
Video on demand | 90 (17.0) | 43 (15.2) | 47 (19.1) | 1.426 | 0.232 |
LINE messenger | 394 (74.5) | 190 (67.1) | 204 (82.9) | 17.261 | <0.001 ** |
138 (26.1) | 57 (20.1) | 81 (32.9) | 11.157 | 0.001 ** | |
93 (17.6) | 25 (8.8) | 68 (27.6) | 32.130 | <0.001 ** | |
TikTok | 221 (41.8) | 89 (31.4) | 132 (53.6) | 26.688 | <0.001 ** |
17 (3.2) | 5 (1.8) | 12 (4.9) | 4.096 | 0.043 * | |
E-book | 64 (12.1) | 25 (8.8) | 39 (15.9) | 6.098 | 0.014 * |
Flea market applications (e.g., Mercari, Rakuma) | 73 (13.8) | 34 (12.0) | 39 (15.9) | 1.631 | 0.202 |
Web browsing | 93 (17.6) | 45 (15.9) | 48 (19.5) | 1.184 | 0.276 |
Mobile learning | 239 (45.2) | 116 (41.0) | 123 (50.0) | 4.314 | 0.038 * |
No internet use | 16 (3.0) | 9 (3.2) | 7 (2.8) | 0.050 | 0.823 |
Male Total n = 283 | Male IA n = 84 | Adjusted | Female Total n = 246 | Female IA n = 78 | Adjusted | |
---|---|---|---|---|---|---|
Electronic devices | N (%) | N (%) | OR (95%CI) | N (%) | N (%) | OR (95%CI) |
Laptop computer | 89 (31.4) | 34 (40.5) | 98 (39.7) | 35 (44.9) | ||
Tablet computer | 124 (43.8) | 40 (47.6) | 117 (47.4) | 42 (53.8) | ||
Smartphone | 176 (62.2) | 57 (67.9) | 165 (66.8) | 60 (76.9) | ||
Portable game | 220 (77.7) | 64 (76.2) | 161 (65.2) | 54 (69.2) | ||
Console game | 203 (71.7) | 64 (76.2) | 145 (58.7) | 50 (64.1) | ||
Music | 165 (58.3) | 52 (61.9) | 188 (76.4) | 59 (75.6) | ||
Gaming application | 180 (63.6) | 63 (75.0) | 131 (53.3) | 52 (66.7) | ||
Video on demand | 43 (15.2) | 19 (22.6) | 47 (19.1) | 26 (33.3) | 3.35 (1.63–6.85) ** | |
LINE messenger | 190 (67.1) | 71 (84.5) | 3.07 (1.56–6.08) ** | 204 (82.9) | 72 (92.3) | |
57 (20.1) | 27 (32.1) | 1.90 (1.01–3.56) * | 81 (32.9) | 44 (56.4) | 3.98 (2.16–7.31) ** | |
25 (8.8) | 11 (13.1) | 68 (27.6) | 27 (34.6) | |||
TikTok | 89 (31.4) | 37 (44.0) | 132 (53.6) | 44 (56.4) | ||
E-book | 25 (8.8) | 10 (11.9) | 39 (15.9) | 23 (29.5) | 3.46 (1.60–7.49) ** | |
Flea market applications | 34 (12.0) | 16 (19.0) | 39 (15.9) | 22 (28.2) | ||
Web browsing | 45 (15.9) | 16 (19.0) | 48 (19.5) | 23 (29.5) | ||
Mobile learning | 116 (41.0) | 43 (51.2) | 123 (50.0) | 44 (56.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabe, K.; Horiuchi, F.; Hosokawa, R.; Nakachi, K.; Ueno, S.-i. Association between Internet Addiction and Application Usage among Junior High School Students: A Field Survey. Int. J. Environ. Res. Public Health 2021, 18, 4844. https://doi.org/10.3390/ijerph18094844
Kawabe K, Horiuchi F, Hosokawa R, Nakachi K, Ueno S-i. Association between Internet Addiction and Application Usage among Junior High School Students: A Field Survey. International Journal of Environmental Research and Public Health. 2021; 18(9):4844. https://doi.org/10.3390/ijerph18094844
Chicago/Turabian StyleKawabe, Kentaro, Fumie Horiuchi, Rie Hosokawa, Kiwamu Nakachi, and Shu-ichi Ueno. 2021. "Association between Internet Addiction and Application Usage among Junior High School Students: A Field Survey" International Journal of Environmental Research and Public Health 18, no. 9: 4844. https://doi.org/10.3390/ijerph18094844
APA StyleKawabe, K., Horiuchi, F., Hosokawa, R., Nakachi, K., & Ueno, S. -i. (2021). Association between Internet Addiction and Application Usage among Junior High School Students: A Field Survey. International Journal of Environmental Research and Public Health, 18(9), 4844. https://doi.org/10.3390/ijerph18094844