Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model
Abstract
:1. Introduction
2. Environmental Co-Governance Framework and Process of BWM-mV Model
2.1. Initial Framework of Environment Co-Governance
2.2. Test of the Framework of Environmental Co-Governance
2.3. BWM-mV Model and Process of its Application
3. Empirical Analysis of Pingxiang, China
3.1. Resource-Constrained City: Pingxiang, Jiangxi Province, China
3.1.1. Atmosphere Conducive to the Proactive Provision of Information (C11)
3.1.2. Correct and Complete Information (C12)
3.1.3. High-Quality Information Communication Platform (C13)
3.1.4. Diverse Environmental Governance Mechanisms (C21)
3.1.5. Effective Environmental Protection Projects (C22)
3.1.6. Robust Co-Management and Monitoring Mechanisms (C23)
3.1.7. Smooth Joint Decision-Making by Stakeholders (C24)
3.1.8. Sufficient Funds for Environmental Governance Mechanisms (C31)
3.1.9. Allocated Funds (C32)
3.1.10. Penalty for Causing Environmental Damage (C33)
3.1.11. Satisfactory Environmental Quality Assessment Results (C34)
3.2. Data Collection and Analysis of the Results
3.3. Discussion
3.3.1. First Quadrant
3.3.2. Second Quadrant
3.3.3. Third Quadrant
3.3.4. Fourth Quadrant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Operating Steps of Best Worst Method–Modified VIKOR Model
Appendix B. Questionnaire for Best Worst Method–Modified VIKOR Model
Appendix B.1. BWM Questionnaire
- Determine the most important and least important influencing factors.
- Fill in the codes for the influencing factors.
- Determine the preference of the most important factor over all the other factors using a number between 1 and 9.
- Determine the preference of all the other factors over the least important factor using a number between 1 and 9.
Appendix B.2. Modified VIKOR Questionnaire
Criteria | Satisfaction Level (0–10) |
---|---|
Atmosphere conducive to the proactive provision of information (C11) | |
Correct and complete information (C12) | |
High-quality information communication platform (C13) | |
Diversified environmental governance mechanisms (C21) | |
Effective environmental protection projects (C22) | |
Robust co-management and monitoring mechanisms (C23) | |
Smooth joint decision-making by stakeholders (C24) | |
Sufficient funds for environmental governance mechanisms (C31) | |
Allocated funds (C32) | |
Penalty for causing environmental damage (C33) | |
Satisfactory environmental quality assessment results (C34) |
Appendix C. Best Worst Method Survey and Calculation Results
Appendix C.1. Survey Results for All Criteria in Each Dimension
Expert No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Most important | C13 | C13 | C11 | C13 | C13 | C13 | C13 | C11 | C13 | C11 |
Least important | C12 | C12 | C12 | C12 | C11 | C12 | C11 | C12 | C11 | C13 |
Expert No. 1 | C11 | C12 | Expert No. 6 | C11 | C12 |
C13 | 2 | 3 | C13 | 1 | 2 |
Expert No. 2 | C11 | C12 | Expert No. 7 | C11 | C12 |
C13 | 1 | 3 | C13 | 2 | 1 |
Expert No. 3 | C12 | C13 | Expert No. 8 | C12 | C13 |
C11 | 2 | 2 | C11 | 3 | 2 |
Expert No. 4 | C11 | C12 | Expert No. 9 | C11 | C12 |
C13 | 1 | 1 | C13 | 2 | 1 |
Expert No. 5 | C11 | C12 | Expert No. 10 | C12 | C13 |
C13 | 3 | 1 | C11 | 2 | 3 |
Expert No. 1 | C12 | Expert No. 2 | C12 | Expert No. 3 | C12 | Expert No. 4 | C12 | Expert No. 5 | C11 |
C11 | 2 | C11 | 2 | C11 | 2 | C11 | 1 | C12 | 2 |
C13 | 3 | C13 | 3 | C13 | 1 | C13 | 1 | C13 | 3 |
Expert No. 6 | C12 | Expert No. 7 | C11 | Expert No. 8 | C12 | Expert No. 9 | C11 | Expert No. 10 | C13 |
C11 | 2 | C12 | 2 | C11 | 3 | C12 | 2 | C11 | 3 |
C13 | 2 | C13 | 2 | C13 | 2 | C13 | 2 | C12 | 2 |
Expert No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Most important | C21 | C21 | C24 | C21 | C21 | C24 | C21 | C23 | C24 | C23 |
Least important | C22 | C22 | C22 | C22 | C22 | C22 | C22 | C22 | C22 | C22 |
Expert No. 1 | C22 | C23 | C24 | Expert No. 6 | C21 | C22 | C23 |
C21 | 6 | 4 | 2 | C24 | 2 | 4 | 2 |
Expert No. 2 | C22 | C23 | C24 | Expert No. 7 | C22 | C23 | C24 |
C21 | 5 | 3 | 2 | C21 | 4 | 1 | 2 |
Expert No. 3 | C21 | C22 | C23 | Expert No. 8 | C21 | C22 | C24 |
C24 | 2 | 4 | 3 | C23 | 2 | 4 | 3 |
Expert No. 4 | C22 | C23 | C24 | Expert No. 9 | C21 | C22 | C23 |
C21 | 4 | 3 | 1 | C24 | 1 | 3 | 2 |
Expert No. 5 | C22 | C23 | C24 | Expert No. 10 | C21 | C22 | C24 |
C21 | 5 | 2 | 1 | C23 | 2 | 3 | 1 |
Expert No. 1 | C22 | Expert No. 2 | C22 | Expert No. 3 | C22 | Expert No. 4 | C22 | Expert No. 5 | C22 |
C21 | 6 | C21 | 5 | C21 | 3 | C21 | 4 | C21 | 5 |
C23 | 3 | C23 | 2 | C23 | 2 | C23 | 2 | C23 | 4 |
C24 | 4 | C24 | 3 | C24 | 4 | C24 | 4 | C24 | 5 |
Expert No. 6 | C22 | Expert No. 7 | C22 | Expert No. 8 | C22 | Expert No. 9 | C22 | Expert No. 10 | C22 |
C21 | 2 | C21 | 4 | C21 | 3 | C21 | 3 | C21 | 2 |
C23 | 2 | C23 | 4 | C23 | 4 | C23 | 2 | C23 | 3 |
C24 | 4 | C24 | 3 | C24 | 2 | C24 | 3 | C24 | 3 |
Expert No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Most important | C32 | C32 | C32 | C33 | C33 | C32 | C32 | C34 | C32 | C34 |
Least important | C31 | C31 | C34 | C34 | C31 | C31 | C31 | C31 | C31 | C31 |
Expert No. 1 | C31 | C33 | C34 | Expert No. 6 | C31 | C33 | C34 |
C32 | 4 | 3 | 1 | C32 | 6 | 4 | 3 |
Expert No. 2 | C31 | C33 | C34 | Expert No. 7 | C31 | C33 | C34 |
C32 | 5 | 2 | 4 | C32 | 3 | 1 | 2 |
Expert No. 3 | C31 | C33 | C34 | Expert No. 8 | C31 | C32 | C33 |
C32 | 2 | 1 | 3 | C34 | 4 | 2 | 3 |
Expert No. 4 | C31 | C32 | C34 | Expert No. 9 | C31 | C33 | C34 |
C33 | 3 | 3 | 4 | C32 | 3 | 1 | 1 |
Expert No. 5 | C31 | C32 | C34 | Expert No. 10 | C31 | C32 | C33 |
C33 | 4 | 2 | 3 | C34 | 3 | 2 | 3 |
Expert No. 1 | C31 | Expert No. 2 | C31 | Expert No. 3 | C34 | Expert No. 4 | C34 | Expert No. 5 | C31 |
C32 | 4 | C32 | 5 | C31 | 2 | C31 | 3 | C32 | 3 |
C33 | 2 | C33 | 4 | C32 | 3 | C32 | 3 | C33 | 4 |
C34 | 4 | C34 | 2 | C33 | 3 | C33 | 4 | C34 | 2 |
Expert No. 6 | C31 | Expert No. 7 | C31 | Expert No. 8 | C31 | Expert No. 9 | C31 | Expert No. 10 | C31 |
C32 | 6 | C32 | 3 | C32 | 3 | C32 | 3 | C32 | 2 |
C33 | 2 | C33 | 3 | C33 | 2 | C33 | 3 | C33 | 1 |
C34 | 4 | C34 | 2 | C34 | 4 | C34 | 3 | C34 | 3 |
Appendix C.2. BWM Calculation Results
Dimensions | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|
Correctness and fluidity of public information (D1) | 0.313 | 0.385 | 0.167 | 0.412 | 0.313 | 0.292 | 0.200 | 0.400 | 0.313 | 0.333 | 0.313 |
Effectiveness of and engagement in environmental co-governance actions (D2) | 0.563 | 0.462 | 0.600 | 0.471 | 0.563 | 0.542 | 0.550 | 0.400 | 0.563 | 0.333 | 0.504 |
The effect and binding force of environmental governance mechanisms (D3) | 0.125 | 0.154 | 0.233 | 0.118 | 0.125 | 0.167 | 0.250 | 0.200 | 0.125 | 0.333 | 0.183 |
0.063 | 0.077 | 0.1 | 0.059 | 0.063 | 0.042 | 0.05 | 0 | 0.063 | 0 |
Criteria | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|
Atmosphere conducive to the proactive provision of information (C11) | 0.292 | 0.385 | 0.500 | 0.333 | 0.154 | 0.400 | 0.200 | 0.542 | 0.200 | 0.542 | 0.355 |
Correct and complete information (C12) | 0.167 | 0.154 | 0.250 | 0.333 | 0.385 | 0.200 | 0.400 | 0.167 | 0.400 | 0.292 | 0.275 |
High-quality information communication platform (C13) | 0.542 | 0.462 | 0.250 | 0.333 | 0.462 | 0.400 | 0.400 | 0.292 | 0.400 | 0.167 | 0.371 |
0.042 | 0.077 | 0 | 0 | 0.077 | 0 | 0 | 0.042 | 0 | 0.042 |
Criteria | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|
Diversified environmental governance mechanisms (C21) | 0.500 | 0.485 | 0.259 | 0.386 | 0.365 | 0.222 | 0.360 | 0.259 | 0.351 | 0.189 | 0.338 |
Effective environmental protection projects (C22) | 0.071 | 0.092 | 0.103 | 0.088 | 0.063 | 0.111 | 0.080 | 0.103 | 0.108 | 0.108 | 0.093 |
Robust co-management and monitoring mechanisms (C23) | 0.143 | 0.169 | 0.172 | 0.140 | 0.206 | 0.222 | 0.360 | 0.466 | 0.189 | 0.351 | 0.242 |
Smooth joint decision-making by stakeholders (C24) | 0.286 | 0.254 | 0.466 | 0.386 | 0.365 | 0.444 | 0.200 | 0.172 | 0.351 | 0.351 | 0.328 |
0.071 | 0.023 | 0.052 | 0.035 | 0.048 | 0.000 | 0.040 | 0.052 | 0.027 | 0.027 |
Criteria | E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | AVG |
---|---|---|---|---|---|---|---|---|---|---|---|
Sufficient funds for environmental governance mechanisms (C31) | 0.088 | 0.086 | 0.189 | 0.200 | 0.103 | 0.076 | 0.108 | 0.103 | 0.100 | 0.140 | 0.119 |
Allocated funds (C32) | 0.386 | 0.495 | 0.351 | 0.200 | 0.259 | 0.550 | 0.351 | 0.259 | 0.300 | 0.244 | 0.339 |
Penalty for causing environmental damage (C33) | 0.140 | 0.280 | 0.351 | 0.500 | 0.466 | 0.160 | 0.351 | 0.172 | 0.300 | 0.163 | 0.288 |
Satisfactory environmental quality assessment results (C34) | 0.386 | 0.140 | 0.108 | 0.100 | 0.172 | 0.214 | 0.189 | 0.466 | 0.300 | 0.453 | 0.253 |
0.035 | 0.065 | 0.027 | 0.100 | 0.052 | 0.092 | 0.027 | 0.052 | 0.000 | 0.035 |
References
- Fang, Z.; Gao, X.; Sun, C. Do financial development, urbanization and trade affect environmental quality? Evidence from China. J. Clean Prod. 2020, 259, 120892. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, Y. Industrial agglomeration and environmental pollution: Evidence from China under new urbanization. Energy Environ. 2019, 30, 1010–1026. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, L.; Li, H.; Ballesteros-Pérez, P.; Skitmore, M.; Zuo, J. The impact of environmental regulations on urban Green innovation efficiency: The case of Xi’an. Sustain. Cities Soc. 2020, 57, 102123. [Google Scholar] [CrossRef]
- Du, G.; Lin, W.; Sun, C.; Zhang, D. Residential electricity consumption after the reform of tiered pricing for household electricity in China. Appl. Energy 2015, 157, 276–283. [Google Scholar] [CrossRef]
- Pata, U.K. The effect of urbanization and industrialization on carbon emissions in Turkey: Evidence from ARDL bounds testing procedure. Environ. Sci. Pollut. Res. 2018, 25, 7740–7747. [Google Scholar] [CrossRef]
- Sohag, K.; Mamun, M.A.; Uddin, G.S.; Ahmed, A.M. Sectoral output, energy use, and CO2 emission in middle-income countries. Environ. Sci. Pollut. Res. 2017, 24, 9754–9764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, G.; Zeng, X.; An, C.; Yu, L. A sustainable industry-environment model for the identification of urban environmental risk to confront air pollution in Beijing, China. Sustainability 2018, 10, 962. [Google Scholar] [CrossRef] [Green Version]
- Salgado, M.; Madureira, J.; Mendes, A.S.; Torres, A.; Teixeira, J.P.; Oliveira, M.D. Environmental determinants of population health in urban settings: A systematic review. BMC Public Health 2020, 20, 853. [Google Scholar] [CrossRef]
- Gunderson, R. Global environmental governance should be participatory: Five problems of scale. Int. Sociol. 2018, 33, 715–737. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Bennett, N.J.; Satterfield, T. Environmental governance: A practical framework to guide design, evaluation, and analysis. Conserv. Lett. 2018, 11, e12600. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Li, W. Evaluating environmental sustainability of an urban industrial plan under the three-line environmental governance policy in China. J. Environ. Manag. 2019, 251, 109545. [Google Scholar] [CrossRef] [PubMed]
- Copeland, B.R.; Taylor, M.S. Trade, growth, and the environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Governance principles for natural resource management. Soc. Nat. Resour. 2010, 23, 986–1001. [Google Scholar] [CrossRef]
- Martinelli, A. Markets, governments, communities and global governance. Int. Sociol. 2003, 18, 291–323. [Google Scholar] [CrossRef]
- Nanz, P.; Steffek, J. Global governance, participation and the public sphere. Gov. Oppos. 2004, 39, 314–335. [Google Scholar] [CrossRef]
- Bennett, N.J. Using perceptions as evidence to improve conservation and environmental management. Conserv. Biol. 2016, 30, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Plummer, R.; Armitage, D.R.; de Loë, R.C. Adaptive co-management and its relationship to environmental governance. Ecol. Soc. 2013, 18, 21. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Liu, L.; Feng, Y. Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 2018, 42, 881–896. [Google Scholar] [CrossRef]
- Armitage, D.; Berkes, F.; Doubleday, N. Adaptive Co-Management: Collaboration, Learning, and Multi-Level Governance; UBC Press: Vancouver, BC, USA, 2010. [Google Scholar]
- Gao, X.; Shi, C.; Zhai, K. An evaluation of environmental governance in urban China based on a hesitant fuzzy linguistic analytic network process. Int. J. Environ. Res. Public Health 2018, 15, 2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzarino, J.M.; Turatti, L.; Petter, S.T. Environmental governance: Media approach on the United Nations programme for the environment. Environ. Dev. 2020, 33, 100502. [Google Scholar] [CrossRef]
- Schulz, C.; Martin-Ortega, J.; Glenk, K.; Ioris, A.A.R. The value base of water governance: A multi-disciplinary perspective. Ecol. Econ. 2017, 131, 241–249. [Google Scholar] [CrossRef]
- Falaleeva, M.; Rauschmayer, F. Evaluating environmental governance in a Belarusian World Bank biodiversity project. Environ. Conserv. 2013, 40, 147–156. [Google Scholar] [CrossRef]
- Ruzzenenti, F.; Joseph, A.; Ticci, E.; Vozzella, P.; Gabbi, G. Interactions between financial and environmental networks in OECD countries. PLoS ONE 2015, 10, e0136767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amri, F. Carbon dioxide emissions, output, and energy consumption categories in Algeria. Environ. Sci. Pollut. Res. 2017, 24, 14567–14578. [Google Scholar] [CrossRef]
- Li, Z. The impact of public participation on local government’s environmental governance: An analysis of provincial data 2003–2013. Chin. Public Adm. 2017, 8, 102–108. [Google Scholar]
- Wang, R.; Wijen, F.; Heugens, P.P.M.A.R. Government’s green grip: Multifaceted state influence on corporate environmental actions in China. Strateg. Manag. J. 2018, 39, 403–428. [Google Scholar] [CrossRef]
- Wu, L.; Ma, T.; Bian, Y.; Li, S.; Yi, Z. Improvement of regional environmental quality: Government environmental governance and public participation. Sci. Total Environ. 2020, 717, 137256. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.Y.; Wang, Y.; Yu, X.; Yuan, J.; Wang, Y. Assessing the environmental impact caused by power grid projects in high altitude areas based on BWM and Vague sets techniques. Sustainability 2018, 10, 1768. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Rezaei, J.; Wang, J.; Tavasszy, L. Linking supplier development to supplier segmentation using best worst method. Expert Syst. Appl. 2015, 42, 9152–9164. [Google Scholar] [CrossRef]
- Rezaei, J.; Nispeling, T.; Sarkis, J.; Tavasszy, L. A supplier selection life cycle approach integrating traditional and environmental criteria using the best worst method. J. Clean Prod. 2016, 135, 577–588. [Google Scholar] [CrossRef]
- Lu, I.Y.; Kuo, T.; Lin, T.S.; Tzeng, G.H.; Huang, S.L. Multicriteria decision analysis to develop effective sustainable development strategies for enhancing competitive advantages: Case of the TFT-LCD industry in Taiwan. Sustainability 2016, 8, 646. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.W.; Zhang, J.R.; Tzeng, G.H.; Huang, S.L.; Xiong, L. Public open space development for elderly people by using the DANP-V model to establish continuous improvement strategies towards a sustainable and healthy aging society. Sustainability 2017, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Teng, C.L.; Zhu, B.W.; Tzeng, G.H.; Huang, S.L. Using the D-DANP-mV model to explore the continuous system improvement strategy for sustainable development of creative communities. Int. J. Environ. Res. Public Health 2017, 14, 1309. [Google Scholar] [CrossRef]
- Kumar, A.; Alora, A.; Gupta, H. Evaluating green performance of the airports using hybrid BWM and VIKOR methodology. Tour. Manag. 2020, 76, 103941. [Google Scholar] [CrossRef]
- Cheraghalipour, A.; Paydar, M.M.; Hajiaghaei-Keshteli, M. Applying a hybrid BWM-VIKOR approach to supplier selection: A case study in the Iranian agricultural implements industry. Int. J. Appl. Decis. Sci. 2018, 11, 274–301. [Google Scholar] [CrossRef]
- Garg, C.P.; Sharma, A. Sustainable outsourcing partner selection and evaluation using an integrated BWM–VIKOR framework. Environ. Dev. Sustain. 2020, 22, 1529–1557. [Google Scholar] [CrossRef]
- Parhizgarsharif, A.; Lork, A.; Telvari, A. A hybrid approach based on the BWM-VIKOR and GRA for ranking facility location in construction site layout for Mehr project in Tehran. Decis. Sci. Lett. 2019, 8, 233–248. [Google Scholar] [CrossRef]
- Lin, P.J.; Shiue, Y.C.; Tzeng, G.H.; Huang, S.L. Developing a sustainable long-term ageing health care system using the DANP-mV model: Empirical case of Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, G.B.; Zhao, T.Y.; Zhu, B.W.; Tzeng, G.H.; Huang, S.L. Use of a modified DANP-mV model to improve quality of life in rural residents: The empirical case of Xingshisi Village, China. Int. J. Environ. Res. Public Health 2019, 16, 153. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Rezaei, J. Bayesian best-worst method: A probabilistic group decision making model. Omega 2020, 96, 102075. [Google Scholar] [CrossRef]
- Duan, X.; Dai, S.; Yang, R.; Duan, Z.; Tang, Y. Environmental collaborative governance degree of government, corporation and public. Sustainability 2020, 12, 1138. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhu, X.H.; Chen, J.Y.; Jiang, F.T. Environmental regulations, environmental governance efficiency and the green transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 106397. [Google Scholar] [CrossRef]
- Mol, A.P.J.; Carter, N.T. China’s environmental governance in transition. Environ. Polit. 2006, 15, 149–170. [Google Scholar] [CrossRef]
- Du, W.; Li, M. Assessing the impact of environmental regulation on pollution abatement and collaborative emissions reduction: Micro-evidence from Chinese industrial enterprises. Environ. Impact Assess. Rev. 2020, 82, 106382. [Google Scholar] [CrossRef]
- Talen, E. Bottom-up GIS: A new tool for individual and group expression in participatory planning. J. Am. Plan. Assoc. 2000, 66, 279–294. [Google Scholar] [CrossRef]
- Rogers, D. Monitory democracy as citizen-driven participatory planning: The urban politics of Redwatch in Sydney. Urban Policy Res. 2016, 34, 225–239. [Google Scholar] [CrossRef]
- Cheyne, C. Changing urban governance in New Zealand: Public participation and democratic legitimacy in local authority planning and decision-making 1989-2014. Urban Policy Res. 2015, 33, 416–432. [Google Scholar] [CrossRef]
- Fisher, J.; Stutzman, H.; Vedoveto, M.; Delgado, D.; Rivero, R.; Dariquebe, W.Q.; Contreras, L.S.; Souto, T.; Harden, A.; Rhee, S. Collaborative governance and conflict management: Lessons learned and good practices from a case study in the Amazon Basin. Soc. Nat. Resour. 2020, 33, 538–553. [Google Scholar] [CrossRef] [Green Version]
- Newig, J.; Fritsch, O. Environmental governance: Participatory, multi-level–and effective? Environ. Policy Gov. 2009, 19, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 2017, 357, eaan1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, N.W.; Newig, J.; Challies, E.; Kochskämper, E. Pathways to implementation: Evidence on how participation in environmental governance impacts on environmental outcomes. J. Publ. Adm. Res. Theory 2020, 30, 383–399. [Google Scholar] [CrossRef]
- Koebele, E.A. Cross-coalition coordination in collaborative environmental governance processes. Policy Stud. J. 2020, 48, 727–753. [Google Scholar] [CrossRef]
- Koontz, T.M.; Jager, N.W.; Newig, J. Assessing collaborative conservation: A case survey of output, outcome, and impact measures used in the empirical literature. Soc. Nat. Resour. 2020, 33, 442–461. [Google Scholar] [CrossRef]
- Delgado-Márquez, B.L.; Aragón-Correa, J.A.; Cordón-Pozo, E.; Pedauga, L.E. Trust when financial implications are not the aim: The integration of sustainability into management education. J. Bus. Econ. Manag. 2016, 17, 1172–1188. [Google Scholar] [CrossRef] [Green Version]
- Boadi, E.A.; He, Z.; Bosompem, J.; Say, J.; Boadi, E.K. Let the talk count: Attributes of stakeholder engagement, trust, perceive environmental protection and CSR. SAGE Open 2019, 9, 1–15. [Google Scholar]
- Wynveen, C.J.; Sutton, S.G. Engaging the public in climate change-related pro-environmental behaviors to protect coral reefs: The role of public trust in the management agency. Mar. Pol. 2015, 53, 131–140. [Google Scholar] [CrossRef]
- Yeh, W.C.; Tseng, M.H.; Lee, C.C.; Yu, C. The impact of relationship trust, environmental protection awareness, and regenerative innovation on environmental performance: A case study of the industrial waste industry. Sustainability 2020, 12, 2818. [Google Scholar] [CrossRef] [Green Version]
- Euler, J.; Heldt, S. From information to participation and self-organization: Visions for European river basin management. Sci. Total Environ. 2018, 621, 905–914. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Mentis, C.; Bithas, K. The impact of a public information campaign on preferences for marine environmental protection: The case of plastic waste. Mar. Pollut. Bull. 2018, 131, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Asilsoy, B.; Oktay, D. Exploring environmental behavior as the major determinant of ecological citizenship. Sustain. Cities Soc. 2018, 39, 765–771. [Google Scholar] [CrossRef]
- Wilson, B.; Dunn, A.; Phillips, C.; DeSanti, R.; Lovenberg, J.; Parfitt, T.; Peace, J.; Rudolph, M. The corporate role in the environmental protection enterprise. Environ. Law Rep. News Anal. 2018, 48, 10103–10115. [Google Scholar]
- Gupta, A.; Boas, I.; Oosterveer, P. Transparency in global sustainability governance: To what effect? J. Environ. Pol. Plan. 2020, 22, 84–97. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Devine, L.; Zhuang, J. Perspectives on cybersecurity information sharing among multiple stakeholders using a decision-theoretic approach. Risk Anal. 2018, 38, 215–225. [Google Scholar] [CrossRef]
- Leszczyna, R.; Wallis, T.; Wróbel, M.R. Developing novel solutions to realise the European energy—Information sharing & analysis centre. Decis. Support. Syst. 2019, 122, 113067. [Google Scholar]
- Shi, C.; Guo, F.; Shi, Q. Ranking effect in air pollution governance: Evidence from Chinese cities. J. Environ. Manag. 2019, 251, 109600. [Google Scholar] [CrossRef] [PubMed]
- Surdeanu, M.; Ciaramita, M.; Zaragoza, H. Learning to rank answers on large online QA collections. In Proceedings of the ACL-08: HLT, Association for Computational Linguistics, Cambridge, MA, USA, 15–20 June 2008; pp. 719–727. [Google Scholar]
- Eysenbach, G.; Powell, J.; Kuss, O.; Sa, E.R. Empirical studies assessing the quality of health information for consumers on the world wide web: A systematic review. J. Am. Med. Assoc. 2002, 287, 2691–2700. [Google Scholar] [CrossRef]
- Brockington, D.; Igoe, J.; Schmidt-Soltau, K. Conservation, human rights, and poverty reduction. Conserv. Biol. 2006, 20, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Epstein, G.; Pittman, J.; Alexander, S.M.; Berdej, S.; Dyck, T.; Kreitmair, U.; Rathwell, K.J.; Villamayor-Tomas, S.; Vogt, J.; Armitage, D. Institutional fit and the sustainability of social-ecological systems. Curr. Opin. Environ. Sustain. 2015, 14, 34–40. [Google Scholar] [CrossRef]
- Gaymer, C.; Stadel, A.V.; Ban, N.C.; Cárcamo, P.F.; Ierna, J.; Lieberknecht, L.M. Merging top-down and bottom-up approaches in marine protected areas planning: Experiences from around the globe. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 128–144. [Google Scholar] [CrossRef]
- Manzini, F.; Islas, J.; Macías, P. Model for evaluating the environmental sustainability of energy projects. Technol. Forecast. Soc. Chang. 2011, 78, 931–944. [Google Scholar] [CrossRef]
- Tan, Y.; Geng, Y. Coupling coordination measurement of environmental governance: Case of China. Environ. Ecol. Stat. 2020, 27, 253–272. [Google Scholar] [CrossRef]
- Verma, P.; Raghubanshi, A.S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Lemos, M.C.; Agrawal, A. Environmental governance. Ann. Rev. Environ. Resour. 2006, 31, 297–325. [Google Scholar] [CrossRef]
- McGrath, S.T.; Whitty, S.J. Accountability and responsibility defined. Int. J. Manag. Proj. Bus. 2018, 11, 687–707. [Google Scholar] [CrossRef]
- Nebasifu, A.A.; Atong, N.M. Paradoxical gaps in resilient environmental governance. Environ. Rev. 2020, 28, 109–114. [Google Scholar] [CrossRef]
- Bennett, N.; Lemelin, R.H.; Koster, R.; Budke, I. A capital assets framework for appraising and building capacity for tourism development in aboriginal protected area gateway communities. Tour. Manag. 2012, 33, 752–766. [Google Scholar] [CrossRef]
- Pascual, U.; Phelps, J.; Garmendia, E.; Brown, K.; Corbera, E.; Martin, A.; Gomez-Baggethun, E.; Muradian, R. Social equity matters in payments for ecosystem services. Bioscience 2014, 64, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Calvo, N.; Pascual, U.; Brockington, D.; Coolsaet, B.; Cortes-Vazquez, J.A.; Gross-Camp, N.; Palomo, I.; Burgess, N.D. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 2017, 211, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Hajkowicz, S. Cutting the cake: Supporting environmental fund allocation decisions. J. Environ. Manag. 2009, 90, 2737–2745. [Google Scholar] [CrossRef]
- Echols, A.; Front, A.; Cummins, J. Broadening conservation funding. Wildl. Soc. Bull. 2019, 43, 372–381. [Google Scholar] [CrossRef]
- Tang, S.Y.; Li, P.H.; Fryxell, G.E.; Lo, C.W.H. Enterprise-level motivations, regulatory pressures, and corporate environmental management in Guangzhou, China. Environ. Manag. 2015, 56, 777–790. [Google Scholar] [CrossRef]
- Lapatinas, A.; Litina, A.; Sartzetakis, E.S. Environmental projects in the presence of corruption. Int. Tax Public Financ. 2019, 26, 103–144. [Google Scholar] [CrossRef] [Green Version]
- Sezer, S.; Kocasoy, G.; Aruoba, C. How vital is the “lack of funding” in effective environmental management in Turkey? Waste Manag. 2003, 23, 455–461. [Google Scholar] [CrossRef]
- Heinma, K.; Põder, T. Effectiveness of environmental impact assessment system in Estonia. Environ. Impact Assess. Rev. 2010, 30, 272–277. [Google Scholar] [CrossRef]
- Gupta, H. Evaluating service quality of airline industry using hybrid best worst method and VIKOR. J. Air Transp. Manag. 2018, 68, 35–47. [Google Scholar] [CrossRef]
- Kannan, D.; Mina, H.; Nosrati-Abarghooee, S.; Khosrojerdi, G. Sustainable circular supplier selection: A novel hybrid approach. Sci. Total Environ. 2020, 722, 137936. [Google Scholar] [CrossRef]
- Rezaei, J.; Kothadiya, O.; Tavasszy, L.; Kroesen, M. Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tour. Manag. 2018, 66, 85–93. [Google Scholar] [CrossRef]
Dimensions | Criteria | Descriptions |
---|---|---|
Correctness and fluidity of public information (D1) | Atmosphere conducive to the proactive provision of information (C11) | Atmosphere refers to the feeling generated by each stakeholder through the operation of a mechanism that must be able to encourage stakeholders to actively and willingly share their information. |
Correct and complete information (C12) | This criterion means that the information provided by stakeholders must be correct and complete in addition to being useful for environmental protection. | |
High-quality information communication platform (C13) | This criterion refers to a platform that enables stakeholders to exchange information in a timely and convenient manner. | |
Effectiveness of and engagement in environmental co-governance actions (D2) | Diversified environmental governance mechanisms (C21) | This criterion refers to related actions (e.g., policies, regulations, mechanisms, or projects) proposed by different sponsors for environmental protection or improvement. |
Effective environmental protection projects (C22) | This criterion reflects whether the implemented project can achieve the purpose of protecting or improving the ecological environment. | |
Robust co-management and monitoring mechanisms (C23) | This criterion refers to whether the management model, regulations, and related supervision mechanisms have clear specifications. | |
Smooth joint decision-making by stakeholders (C24) | This criterion represents adequate communication and coordination between stakeholders, through which a mutual decision can be reached. | |
The effect and binding force of environmental governance mechanisms (D3) | Sufficient funds for environmental governance mechanisms (C31) | This criterion refers to whether the available funds are sufficient for solving environmental governance problems. |
Allocated funds (C32) | This criterion refers to the use of funds at every stage of the project; confirming whether the expected outcome of using allocated funds has been met is crucial. | |
Penalty for causing environmental damage (C33) | A penalty system should be introduced with the goal of preventing environmental damage. In addition to fines, other penalties should be employed to act as additional deterrents. Finally, the penalties must be clearly stipulated in relevant regulations. | |
Satisfactory environmental quality assessment results (C34) | This criterion refers to whether the results of checking and verifying the current state of the environment are satisfactory from a comprehensive perspective. |
Year | Government Revenue (Million Yuan) | Government Expenditure (Million Yuan) | Balance (Million Yuan) |
---|---|---|---|
2007 | 3307.73 | 3514.64 | −206.91 |
2008 | 4133.27 | 5085.46 | −952.19 |
2009 | 4693.53 | 6963.53 | −2270.00 |
2010 | 6407.95 | 8669.77 | −2261.82 |
2011 | 8692.43 | 10,871.43 | −2179.00 |
2012 | 10,050.52 | 13,434.49 | −3383.97 |
2013 | 10,979.73 | 14,960.07 | −3980.34 |
2014 | 11,705.53 | 15,654.83 | −3949.30 |
2015 | 13,048.32 | 18,492.70 | −5444.38 |
2016 | 13,563.83 | 20,001.97 | −6438.14 |
2017 | 14,616.21 | 22,493.77 | −7877.56 |
Expert No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Most important | D2 | D2 | D2 | D2 | D2 | D2 | D2 | D2 | D2 | D2 |
Least important | D3 | D3 | D1 | D3 | D3 | D3 | D1 | D3 | D3 | D3 |
Expert No. 1 | D1 | D3 | Expert No. 6 | D1 | D3 |
D2 | 2 | 4 | D2 | 2 | 3 |
Expert No. 2 | D1 | D3 | Expert No. 7 | D1 | D3 |
D2 | 1 | 3 | D2 | 3 | 2 |
Expert No. 3 | D1 | D3 | Expert No. 8 | D1 | D3 |
D2 | 3 | 3 | D2 | 1 | 2 |
Expert No. 4 | D1 | D3 | Expert No. 9 | D1 | D3 |
D2 | 1 | 4 | D2 | 2 | 4 |
Expert No. 5 | D1 | D3 | Expert No. 10 | D1 | D3 |
D2 | 2 | 4 | D2 | 1 | 1 |
Expert No. 1 | D3 | Expert No. 2 | D3 | Expert No. 3 | D1 | Expert No. 4 | D3 | Expert No. 5 | D3 |
D2 | 4 | D2 | 3 | D2 | 3 | D2 | 4 | D2 | 4 |
D1 | 3 | D1 | 2 | D3 | 2 | D1 | 3 | D1 | 3 |
Expert No. 6 | D3 | Expert No. 7 | D1 | Expert No. 8 | D3 | Expert No. 9 | D3 | Expert No. 10 | D3 |
D2 | 3 | D2 | 3 | D2 | 2 | D2 | 4 | D2 | 1 |
D1 | 2 | D3 | 2 | D1 | 2 | D1 | 3 | D1 | 1 |
Criteria | EDM | BE | Citizen | Average |
---|---|---|---|---|
Atmosphere conducive to the proactive provision of information (C11) | 7.500 | 5.944 | 5.917 | 6.212 |
Correct and complete information (C12) | 7.583 | 5.944 | 6.000 | 6.273 |
High-quality information communication platform (C13) | 7.750 | 6.000 | 5.028 | 5.788 |
Diversified environmental governance mechanisms (C21) | 7.917 | 5.722 | 5.917 | 6.227 |
Effective environmental protection projects (C22) | 7.667 | 6.611 | 3.944 | 5.348 |
Robust co-management and monitoring mechanisms (C23) | 8.000 | 6.833 | 5.000 | 6.045 |
Smooth joint decision-making by stakeholders (C24) | 7.583 | 5.778 | 4.972 | 5.667 |
Sufficient funds for environmental governance mechanisms (C31) | 6.667 | - | - | 6.667 |
Allocated funds (C32) | 6.833 | 5.889 | - | 6.267 |
Penalty for causing environmental damage (C33) | - | 4.833 | - | 4.833 |
Satisfactory environmental quality assessment results (C34) | - | - | 5.917 | 5.917 |
Dimensions/Criteria | Local Weights | Global Weights | Performance | Gap |
---|---|---|---|---|
Correctness and fluidity of public information (D1) | 0.313 | 6.072 | 0.393 | |
Atmosphere conducive to the proactive provision of information (C11) | 0.355 | 0.111 | 6.212 | 0.379 |
Correct and complete information (C12) | 0.275 | 0.086 | 6.273 | 0.373 |
High-quality information communication platform (C13) | 0.371 | 0.116 | 5.788 | 0.421 |
Effectiveness of and engagement in environmental co-governance actions (D2) | 0.504 | 5.918 | 0.408 | |
Diversified environmental governance mechanisms (C21) | 0.338 | 0.170 | 6.227 | 0.377 |
Effective environmental protection projects (C22) | 0.093 | 0.047 | 5.348 | 0.465 |
Robust co-management and monitoring mechanisms (C23) | 0.242 | 0.122 | 6.045 | 0.396 |
Smooth joint decision-making by stakeholders (C24) | 0.328 | 0.165 | 5.667 | 0.433 |
The effect and binding force of environmental governance mechanisms (D3) | 0.183 | 5.813 | 0.419 | |
Sufficient funds for environmental governance mechanisms (C31) | 0.119 | 0.022 | 6.667 | 0.333 |
Allocated funds (C32) | 0.339 | 0.062 | 6.267 | 0.373 |
Penalty for causing environmental damage (C33) | 0.288 | 0.053 | 4.833 | 0.517 |
Satisfactory environmental quality assessment results (C34) | 0.253 | 0.046 | 5.917 | 0.408 |
Total performance | 5.947 | |||
Total gap | 0.405 |
Dimensions/Criteria | Gap | Global Weights | Position | Quadrant |
---|---|---|---|---|
Atmosphere conducive to the proactive provision of information (C11) | 0.379 | 0.111 | (−, +) | Ⅱ |
Correct and complete information (C12) | 0.373 | 0.086 | (−, −) | Ⅲ |
High-quality information Communication platform (C13) | 0.421 | 0.116 | (+, +) | Ⅰ |
Diversified environmental governance mechanisms (C21) | 0.377 | 0.170 | (−, +) | Ⅱ |
Effective environmental protection projects (C22) | 0.465 | 0.047 | (+, −) | Ⅳ |
Robust co-management and monitoring mechanisms (C23) | 0.396 | 0.122 | (−, +) | Ⅱ |
Smooth joint decision-making by stakeholders (C24) | 0.433 | 0.165 | (+, +) | Ⅰ |
Sufficient funds for environmental governance mechanisms (C31) | 0.333 | 0.022 | (−, −) | Ⅲ |
Allocated funds (C32) | 0.373 | 0.062 | (−, −) | Ⅲ |
Penalty for causing environmental damage (C33) | 0.517 | 0.053 | (+, −) | Ⅳ |
Satisfactory environmental quality assessment results (C34) | 0.408 | 0.046 | (+, −) | Ⅳ |
Average of criteria gap | 0.407 | |||
Average of criteria global weights | 0.091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, J.-C.; Huang, S.-L.; Tzeng, G.-H.; Zhu, T. Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model. Int. J. Environ. Res. Public Health 2021, 18, 4969. https://doi.org/10.3390/ijerph18094969
Wang J, Huang J-C, Huang S-L, Tzeng G-H, Zhu T. Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model. International Journal of Environmental Research and Public Health. 2021; 18(9):4969. https://doi.org/10.3390/ijerph18094969
Chicago/Turabian StyleWang, Jian, Jin-Chun Huang, Shan-Lin Huang, Gwo-Hshiung Tzeng, and Ting Zhu. 2021. "Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model" International Journal of Environmental Research and Public Health 18, no. 9: 4969. https://doi.org/10.3390/ijerph18094969
APA StyleWang, J., Huang, J. -C., Huang, S. -L., Tzeng, G. -H., & Zhu, T. (2021). Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model. International Journal of Environmental Research and Public Health, 18(9), 4969. https://doi.org/10.3390/ijerph18094969