An Integration Method for Regional PM2.5 Pollution Control Optimization Based on Meta-Analysis and Systematic Review
Abstract
:1. Introduction
2. Literature Review
2.1. Summary of the Health Evaluation Attributed to PM2.5 Pollution
2.2. Summary of Pollution-Mitigation Optimization Aiming at Air Pollutants
3. Method
3.1. The Establishment of Health Evaluation Model Using Meta-Analysis Method
3.1.1. Literature Search
3.1.2. The Inclusion and Exclusion Criteria of Candidate Literature Studies
3.1.3. The Heterogeneity Analysis and the Determination of Exposure-Response Relationship Coefficient
3.1.4. The Calculation of Mortality Caused by PM2.5 Pollution
3.2. The Formulation of the Two-Objective Optimization Model
Objective Function
- (i) Minimization of the mortality rate attributable to PM2.5 pollution
- (ii) Minimization of total system cost over three periods
- (I) The limitations in the pollutant treatment
- (II) The regulations of the emission sources
- (III) The constraints of environmental load capacity:
- (IV) Nonnegative constraints:
4. Case Study
4.1. Introduction of the Study Area
4.2. The Utilization of System Engineering Technology
4.2.1. The Investigation and Analysis of the System Status
4.2.2. The Determination of System Boundary
4.2.3. The Identification and Analysis of System Elements
4.2.4. The Critical System Parameters
5. Results and Discussion
5.1. Result Analysis
5.2. Discussion
6. Recommendation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Gaussian Diffusion Model
Appendix A.1. The Atmospheric Diffusion Model
Appendix A.2. The Determination of Major Parameters
Appendix A.3. The Calculation of Effective Stack Height
Appendix A.4. The Estimation of Atmospheric Diffusion Parameters
Appendix A.5. The Calculation of Ground Concentration at Normal Wind Speed
References
- Xiao, Q.Y.; Liang, F.C.; Ning, M.; Zhang, Q.; Bi, J.Z.; He, K.B.; Lei, Y.; Liu, Y. The long-term trend of PM2.5-related mortality in China: The effects of source data selection. Chemosphere 2021, 263, 127894. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.; Chang, C.; Liou, S.; Yang, C. The effects of fine particulate air pollution on daily mortality: A case-crossover study in a subtropical city, Taipei, Taiwan. Int. J. Environ. Res. Public Health 2014, 11, 5081–5093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styszko, K.; Samek, L.; Szramowiat, K.; Korzeniewska, A.; Kubisty, K.; Rakoczy-Lelek, R.; Kistler, M.; Giebl, A.K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017, 10, 1123–1137. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W.; Abyu, G.Y.; Alsharif, U.; et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Qin, Y.; Zhang, L.; Zhang, R. Death effects assessment of PM2.5 pollution in China. Pol. J. Environ. Stud. 2018, 27, 1813–1821. [Google Scholar] [CrossRef]
- Puett, R.C.; Hart, J.E.; Suh, H.; Mittleman, M.; Laden, F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ. Health Perspect. 2011, 119, 1130–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crouse, D.L.; Peters, P.A.; Hystad, P.; Brook, J.R.; van Donkelaar, A.; Martin, R.V.; Villeneuve, P.J.; Jerrett, M.; Goldberg, M.S.; Pope, C.A.; et al. Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Health Perspect. 2015, 123, 1180–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, D.; Wang, Q.; Li, H.; Yu, Y.; Lu, Y.; Qian, X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of China. Sci. Total Environ. 2016, 569–570, 1545–1552. [Google Scholar] [CrossRef]
- Song, X.; Liu, Y.; Hu, Y.; Zhao, X.; Tian, J.; Ding, G.; Wang, S. Short-term exposure to air pollution and cardiac arrhythmia: A meta-analysis and systematic review. Int. J. Environ. Res. Public Health 2016, 13, 642. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, S.; Sun, Y.; Liu, Y.; Beazley, R.; Hou, X. Assessing NO2-related health effects by nonlinear and linear methods on a national level. Sci. Total Environ. 2020, 744, 140909. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Cohen, A.; Mehta, S.; Anderson, H.R. Systematic review and meta-analysis of epidemiological time-series studies on outdoor air pollution and health in Asia. Air Qual. Atmos. Health 2012, 5, 383–391. [Google Scholar] [CrossRef]
- Bell, M.L.; Zanobetti, A.; Dominici, F. Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: A systematic review and meta-analysis. Am. J. Epidemiol. 2013, 178, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Achilleos, S.; Kioumourtzoglou, M.; Wu, C.; Schwartz, J.D.; Koutrakis, P.; Papatheodorou, S.I. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 2017, 109, 89–100. [Google Scholar] [CrossRef]
- Atkinson, R.; Mills, I.; Walton, H.; Anderson, H. Fine particle components and health-A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 2014, 25, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.W.; Kang, S.; Anderson, H.R.; Mills, I.C.; Walton, H.A. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax 2014, 69, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Zhou, L.; Tang, M.; Wang, B. Association of fine particles with respiratory disease mortality: A meta-analysis. Arch. Environ. Amp. Occup. Health 2015, 70, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Huang, Y.; Han, J.; Song, F.; Chen, K. Ambient particulate matter and lung cancer incidence and mortality: A meta-analysis of prospective studies. Eur. J. Public Health 2015, 25, 324–329. [Google Scholar] [CrossRef]
- Chen, L.; Shi, M.; Gao, S.; Li, S.; Mao, J.; Zhang, H.; Sun, Y.; Bai, Z.; Wang, Z. Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. Environ. Pollut. 2017, 221, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Guo, X.; Cheung, F.M.H.; Yung, K.K.L. The association between PM2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci. Total Environ. 2019, 655, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zheng, X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhu, X.; Yao, C.; Hou, L.; Zhang, J.; Cao, J.; Wang, A. Short-term exposure to particulate air pollution and risk of myocardial infarction: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2015, 22, 14651–14662. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jin, M.; Tong, J. A meta-analysis on association between air fine particular pollution and daily mortality of residents in China. J. Environ. Occup. Med. 2015, 32, 1013–1018. [Google Scholar]
- Li, J.; Woodward, A.; Hou, X.; Zhu, T.; Zhang, J.; Brown, H.; Yang, J.; Qin, R.; Gao, J.; Gu, S.; et al. Modification of the effects of air pollutants on mortality by temperature: A systematic review and meta-analysis. Sci. Total Environ. 2017, 575, 1556–1570. [Google Scholar] [CrossRef]
- Li, M.; Fan, L.; Mao, B.; Yang, J.; Choi, A.M.K.; Cao, W.; Xu, J. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD: A Systematic Review and Meta-analysis. Chest 2016, 149, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, G. Dose-response relationship between daily PM2.5 concentration and mortality rate: A meta-analysis. Chin. J. Public Health 2017, 33, 14–17. [Google Scholar]
- Liu, T.; Cai, Y.; Feng, B.; Cao, G.; Lin, H.; Xiao, J.; Li, X.; Liu, S.; Pei, L.; Fu, L.; et al. Long-term mortality benefits of air quality improvement during the twelfth five-year-plan period in 31 provincial capital cities of China. Atmos. Environ. 2018, 173, 53–61. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Li, W.; Yin, L.; Wang, Y.; Yan, R.; Lao, X.Q.; Kan, H.; Tse, L.A. Does utilizing WHO’s interim targets further reduce the risk-meta-analysis on ambient particulate matter pollution and mortality of cardiovascular diseases? Environ. Pollut. 2018, 242, 1299–1307. [Google Scholar] [CrossRef]
- Liang, Q.; Sun, M.; Wang, F.; Ma, Y.; Lin, L.; Li, T.; Duan, J.; Sun, Z. Short-term PM2.5 exposure and circulating von Willebrand factor level: A meta-analysis. Sci. Total Environ. 2020, 737, 140180. [Google Scholar] [CrossRef]
- Karimi, B.; Shokrinezhad, B.; Samadi, S. Mortality and hospitalizations due to cardiovascular and respiratory diseases associated with air pollution in Iran: A systematic review and meta-analysis. Atmos. Environ. 2019, 198, 438–447. [Google Scholar] [CrossRef]
- Kim, H.; Shim, J.; Park, B.; Lee, Y. Long-term exposure to air pollutants and cancer mortality: A meta-analysis of cohort studies. Int. J. Environ. Res. Public Health 2018, 15, 2608. [Google Scholar] [CrossRef] [Green Version]
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Kutlar, J.M.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017, 230, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.C.; Lam, J.; Navas-Acien, A.; Chang, H.H. Ambient air pollution epidemiology systematic review and meta-analysis: A review of reporting and methods practice. Environ. Int. 2016, 92, 647–656. [Google Scholar] [CrossRef]
- Thayamballi, N.; Habiba, S.; Laribi, O.; Ebisu, K. Impact of maternal demographic and socioeconomic factors on the association between particulate matter and adverse birth outcomes: A systematic review and meta-analysis. J. Racial Ethn. Health Disparities 2021, 8, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Vodonos, A.; Awad, Y.A.; Schwartz, J. The concentration-response between long-term PM2.5 exposure and mortality; A meta-regression approach. Environ. Res. 2018, 166, 677–689. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, H.; Chen, F.; Chen, Z.; Guan, W.; Li, J. Association between air pollution and cardiovascular mortality in China: A systematic review and meta-analysis. Oncotarget 2015, 8, 66438–66448. [Google Scholar] [CrossRef] [Green Version]
- Zhong, M.; Shi, H.; Wang, H.; Yang, Z.; Zuo, N. Meta-analysis of air pollutant exposure-response relationship and its application in health impact assessment of exposure to air pollutants in Xi’an. Environ. Sci. Technol. 2017, 40, 171–178. [Google Scholar]
- Carnevale, C.; Pisoni, E.; Volta, M. A multi-objective nonlinear optimization approach to designing effective air quality control policies. Automatica 2008, 44, 1632–1641. [Google Scholar] [CrossRef]
- Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M.; Wagber, F. Defining a nonlinear control problem to reduce particulate matter population exposure. Atmos. Environ. 2012, 55, 410–416. [Google Scholar] [CrossRef]
- Pisoni, E.; Volta, M. Modeling Pareto efficient PM10 control policies in Northern Italy to reduce health effects. Atmos. Environ. 2009, 43, 3243–3248. [Google Scholar] [CrossRef]
- Zhen, J.; Huang, G.; Li, W.; Wu, C.; Liu, Z. An optimization model design for energy systems planning and management under considering air pollution control in Tangshan City, China. J. Process Control. 2016, 47, 58–77. [Google Scholar] [CrossRef]
- Relvas, H.; Miranda, A.I.; Carnevale, C.; Maffeis, G.; Turrini, E.; Volta, M. Optimal air quality policies and health: A multi-objective nonlinear approach. Environ. Sci. Pollut. Res. 2017, 24, 13687–13699. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cheng, S.; Li, J.; Wen, W. An integrated air quality model and optimization model for regional economic and environmental development: A case study of Tangshan, China. Aerosol Air Qual. Res. 2017, 17, 1592–1609. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Teng, F. The air quality co-benefit of coal control strategy in China. Resour. Conserv. Recycl. 2018, 129, 373–382. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z. Application of fuzzy optimization model based on entropy weight method in atmospheric quality evaluation: A case study of Zhejiang province, China. Sustainability 2019, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Zhang, F.; Zhou, Y.; Wang, S.; Ding, D.; Jang, C.; Zhu, Y.; Hao, J. Least-cost control strategy optimization for air quality attainment of Beijing-Tianjin-Hebei region in China. J. Environ. Manag. 2019, 245, 95–104. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Kelly, J.T.; Jang, C.; Wang, S.; Xing, J.; Chiang, P.; Fan, S.; Zhao, X.; Yu, L. Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. Sci. Total Environ. 2020, 722, 137701. [Google Scholar] [CrossRef]
- Chen, B.; Kan, H.; Chen, R.; Jiang, S.; Hong, C. Air pollution and health studies in China-policy implications. J. Air Waste Manag. Assoc. 2011, 61, 1292–1299. [Google Scholar]
- Chen, R.; Li, Y.; Ma, Y.; Pan, G.; Zeng, G.; Xu, X.; Chen, B.; Kan, H. Coarse particles and mortality in three Chinese cities: The China air pollution and health effects study (CAPES). Sci. Total Environ. 2011, 409, 4934–4938. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Meng, X.; Hua, J.; Zhou, Z.; Chen, B.; Kan, H. Communicating air pollution-related health risks to the public: An application of the air quality health index in Shanghai, China. Environ. Int. 2013, 51, 168–173. [Google Scholar] [CrossRef]
- Geng, F.; Hua, J.; Mu, Z.; Peng, L.; Xu, X.; Chen, R.; Kan, H. Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city. Environ. Res. 2013, 120, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Su, S.; Zhu, C. Association between PM2.5 concentration and daily resident mortality in urban area of Changsha. J. Environ. Occup. Med. 2018, 35, 131–136. [Google Scholar]
- Hu, K.; Guo, Y.; Hu, D.; Du, R.; Yang, X.; Zhong, J.; Fei, F.; Chen, F.; Chen, G.; Zhao, Q.; et al. Mortality burden attributable to PM10 in Zhejiang province, China. Environ. Int. 2018, 121, 515–522. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, X.; Lu, Y. Influence of air pollution on residents’ death in Fuzhou urban area by time series analysis, 2015–2017. Strait J. Prev. Med. 2018, 24, 15–17. [Google Scholar]
- Zhu, Z. Study on the influence of air pollution of Huidong county in Huizhou city at Guangdong province. China Med. Pharm. 2017, 7, 197–199. [Google Scholar]
- Wu, R.; Zhong, L.; Huang, X.; Xu, H.; Liu, S.; Feng, B.; Wang, T.; Song, X.; Bai, Y.; Wu, F.; et al. Temporal variations in ambient particulate matter reduction associated short-term mortality risks in Guangzhou, China: A time-series analysis (2006–2016). Sci. Total Environ. 2018, 645, 491–498. [Google Scholar] [CrossRef]
- Yang, C.; Peng, X.; Huang, W.; Chen, R.; Xu, Z.; Chen, B.; Kan, H. A time-stratified case-crossover study of fine particulate matter air pollution and mortality in Guangzhou, China. Int. Arch. Occup. Environ. Health 2012, 85, 579–585. [Google Scholar] [CrossRef]
- Li, T.; Du, Y.; Mo, Y.; Xue, W.; Xu, D.; Wang, J. Assessment of haze-related human health risks for four Chinese cities during extreme haze in January 2013. Natl. Med. J. China 2013, 93, 2699–2702. [Google Scholar]
- Shi, T.; Dong, H.; Yang, Y.; Jiang, Q.; Hu, G.; Feng, W.; Lv, J.; Lin, H. Association between PM2.5 air pollution and daily resident mortality in Guangzhou urban area in winter. J. Environ. Health 2015, 32, 477–481. [Google Scholar]
- Lin, H.; Liu, T.; Xiao, J.; Zeng, W.; Li, X.; Guo, L.; Zhang, Y.; Xu, Y.; Tao, J.; Xian, H.; et al. Mortality burden of ambient fine particulate air pollution in six Chinese cities: Results from the Pearl River Delta study. Environ. Int. 2016, 96, 91–97. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Zhou, L.; Yu, Y.; Wang, L.; Lu, J.; Wang, W.; Krafft, T. Spatiotemporal patterns of particulate matter (PM) and associations between PM and mortality in Shenzhen, China. BMC Public Health 2016, 16, 215. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Xue, M.; Zeng, Q.; Cai, Y.; Pan, X.; Meng, Q. Association between fine ambient particulate matter and daily total mortality: An analysis from 160 communities of China. Sci. Total Environ. 2017, 599–600, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, X.S.; Shi, A.J.; Huang, Y.H.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wu, Z.J.; Huang, X.F.; Shen, H.Y.; Bai, Y.; Qiao, K.; Meng, X.X.Y.; Hu, W.W.; Tang, M.J.; He, L.Y. Aerosol phase state and its link to chemical composition and liquid water content in a subtropical coastal megacity. Environ. Sci. Technol. 2019, 53, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Y.; Li, L.; Zhang, G. Acidity and inorganic ion formation in PM2.5 based on continuous online observations in a South China megacity. Atmos. Pollut. Res. 2020, 11, 1339–1350. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhang, Y.; Li, L.; Wai, C.P.; Lu, C.; Zhang, L. Characteristics of aerosol pollution under different visibility conditions in winter in a coastal mega-city in China. J. Trop. Meteorol. 2020, 26, 231–238. [Google Scholar]
- Shao, L.; Xu, Y.; Huang, G. An inexact double-sided chance-constrained model for air quality management in Nanshan District, Shengzhen, China. Eng. Optim. 2014, 46, 1694–1708. [Google Scholar] [CrossRef]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.H.; Cohen, A.J.; Pope, C.R.; Ezzati, M.; Lim, S.S.; Hubbell, B.J.; Burnett, R.T. Meta-analysis methods to estimate the shape and uncertainty in the association between long-term exposure to ambient fine particulate matter and cause-specific mortality over the global concentration range. Risk Anal. 2016, 36, 1813–1825. [Google Scholar] [CrossRef] [Green Version]
Serial Number of Included Literatures | Authors | Research Area | Published Period | β | 95% CI |
---|---|---|---|---|---|
[57] | Yang et al. | Guangzhou | 2012 | 0.009 | (0.0055~0.0126) |
[51] | Geng et al. | Shanghai | 2013 | 0.0057 | (0.0012~0.0101) |
[50] | Chen et al. | Shanghai | 2013 | 0.0017 | (0.0002~0.0035) |
[49] | Chen et al. | Shanghai | 2011 | 0.0047 | (0.0022~0.0079) |
[48] | Chen et al. | Shanghai | 2011 | 0.0047 | (0.0022~0.0072) |
[58] | Li et al. | Shanghai | 2013 | 0.0043 | (0.0014~0.0073) |
[56] | Wu et al. | Guangzhou | 2018 | 0.0055 | (0.0024~0.0086) |
[61] | Zhang et al | Shenzhen | 2016 | 0.0069 | (0.0055~0.0083) |
[54] | Zhou et al | Fuzhou | 2018 | 0.0017 | (−0.0009~0.0043) |
[52] | Feng et al | Changsha | 2018 | 0.00518 | (0.00065~0.00994) |
[60] | Lin et al | Dongguan | 2016 | 0.0052 | (0.0024~0.008) |
[60] | Lin et al | Foshan | 2016 | 0.0091 | (0.0061~0.0122) |
[60] | Lin et al | Guangzhou | 2016 | 0.0057 | (0.0042~0.0073) |
[60] | Lin et al | Jiangmen | 2016 | 0.007 | (0.0047~0.0093) |
[60] | Lin et al | Shenzhen | 2016 | 0.001 | (−0.0004~0.0024) |
[60] | Lin et al | Zhuhai | 2016 | 0.0014 | (−0.0006~0.0034) |
[53] | Hu et al | Zhejiang Province | 2018 | 0.0061 | (0.0034~0.0089) |
[62] | Li et al. | Pearl river delta | 2017 | 0.0054 | (0.0015~0.0092) |
[55] | Zhu | Huizhou | 2017 | 0.0095 | (0.0013~0.0179) |
[59] | Shi | Guangzhou | 2015 | 0.012 | (0.0063~0.0177) |
Emission Sources | Average Discharge Height (m) | Pollutants | Discharge Amounts (t/d) | ||
---|---|---|---|---|---|
k = 1 | k = 2 | k = 3 | |||
Power plant Co. Ltd. (Shenzhen, China) (PPC) | 50 | PM | 5.57 | 6.13 | 6.41 |
50 | SO2 | 69.31 | 76.24 | 79.71 | |
50 | NOx | 14.54 | 15.99 | 16.72 | |
Power plant (Shenzhen, China) (PP) | 210 | PM | 3.84 | 4.22 | 4.42 |
210 | SO2 | 47.70 | 52.47 | 54.86 | |
210 | NOx | 70.69 | 77.75 | 81.29 | |
Oil Co. Ltd. (Shenzhen, China) (Oc) | 20 | PM | 0.11 | 0.12 | 0.12 |
20 | SO2 | 0.10 | 0.11 | 0.12 | |
20 | NOx | 0.79 | 0.86 | 0.90 | |
Glass Co. Ltd. 1 (Shenzhen, China) (Gc1) | 120 | PM | 0.31 | 0.34 | 0.36 |
120 | SO2 | 1.62 | 1.78 | 1.86 | |
120 | NOx | 0.67 | 0.74 | 0.77 | |
Glass Co. Ltd. 2 (Shenzhen, China) (Gc2) | 30 | PM | 0.09 | 0.09 | 0.10 |
30 | SO2 | 0.08 | 0.09 | 0.09 | |
30 | NOx | 0.63 | 0.70 | 0.73 |
Pollutants | Technologies | Indicators | Planning Period | ||
---|---|---|---|---|---|
k = 1 | k = 2 | k = 3 | |||
PM | Bag filter (BF) | OC | 281.25 | 323.44 | 351.56 |
TE | 0.98 | 0.98 | 0.98 | ||
Electrostatic precipitator (EP) | OC | 173.28 | 199.27 | 216.60 | |
TE | 0.93 | 0.93 | 0.93 | ||
Cyclones (CL) | OC | 54.69 | 62.89 | 68.36 | |
TE | 0.65 | 0.65 | 0.65 | ||
Wet scrubbers (WS) | OC | 112.50 | 129.38 | 140.63 | |
TE | 0.91 | 0.91 | 0.91 | ||
SO2 | Limestone gypsum (LG) | OC | 515.63 | 592.97 | 644.53 |
TE | 0.95 | 0.95 | 0.95 | ||
Spray drying (SD) | OC | 437.50 | 503.13 | 546.88 | |
TE | 0.7 | 0.7 | 0.7 | ||
Circulating fluid bed (CFB) | OC | 343.75 | 395.31 | 429.69 | |
TE | 0.9 | 0.9 | 0.9 | ||
Limestone injection (LI) | OC | 375.00 | 431.25 | 468.75 | |
TE | 0.6 | 0.6 | 0.6 | ||
NOx | Selective Catalytic Reduction (SCR) | OC | 225.00 | 258.75 | 281.25 |
TE | 0.8 | 0.8 | 0.8 | ||
Selective non-catalytic reduction (SNCR) | OC | 340 | 391 | 425 | |
TE | 0.5 | 0.5 | 0.5 | ||
SCR + SNCR | OC | 312.50 | 359.38 | 390.63 | |
TE | 0.75 | 0.75 | 0.75 | ||
Low nitrogen burning (LNB) + SCR | OC | 410.94 | 472.58 | 513.67 | |
TE | 0.94 | 0.94 | 0.94 |
ES | T | w1 = 0.7 and w2 = 0.3 | w1 = 0.6 and w2 = 0.4 | w1 = 0.4 and w2 = 0.6 | w1 = 0.3 and w2 = 0.7 |
---|---|---|---|---|---|
PPc | k = 1 | BF (5.57) | BF (5.57) | BF (5.57) | BF (5.57) |
k = 2 | BF (6.13) | BF (6.13) | BF (6.13) | BF (6.13) | |
k = 3 | BF (6.41) | BF (6.41) | BF (6.41) | BF (6.41) | |
Sum | BF (18.11) | BF (18.11) | BF (18.11) | BF (18.11) | |
PP | k = 1 | BF (3.84) | BF (3.84) | WS (3.84) | WS (3.84) |
k = 2 | BF (4.22) | BF (4.22) | WS (4.22) | WS (4.22) | |
k = 3 | BF (4.42) | BF (4.42) | WS (4.42) | WS (4.42) | |
Sum | BF (12.48) | BF (12.48) | WS (12.48) | WS (12.48) | |
Oc | k = 1 | BF (0.11) | WS (0.11) | WS (0.11) | WS (0.11) |
k = 2 | BF (0.12) | WS (0.12) | WS (0.12) | WS (0.12) | |
k = 3 | WS (0.12) | WS (0.12) | WS (0.12) | WS (0.12) | |
Sum | BF (0.23) WS (0.12) | WS (0.35) | WS (0.35) | WS (0.35) | |
Gc1 | k = 1 | BF (0.31) | BF (0.31) | BF (0.31) | BF (0.31) |
k = 2 | BF (0.34) | BF (0.34) | BF (0.34) | BF (0.34) | |
k = 3 | BF (0.36) | BF (0.36) | BF (0.36) | BF (0.36) | |
Sum | BF (1.01) | BF (1.01) | BF (1.01) | BF (1.01) | |
Gc2 | k = 1 | BF (0.09) | BF (0.09) | WS (0.09) | WS (0.09) |
k = 2 | BF (0.09) | BF (0.09) | WS (0.09) | WS (0.09) | |
k = 3 | BF (0.10) | BF (0.10) | WS (0.10) | WS (0.10) | |
Sum | BF (0.28) | BF (0.28) | WS (0.28) | WS (0.28) |
ES | T | w1 = 0.7 and w2 = 0.3 | w1 = 0.6 and w2 = 0.4 | w1 = 0.4 and w2 = 0.6 | w1 = 0.3 and w2 = 0.7 |
---|---|---|---|---|---|
PPc | k = 1 | LG (69.31) | LG (69.31) | LG (69.31) | LG (69.31) |
k = 2 | LG (76.24) | LG (76.24) | LG (76.24) | LG (42.17) CFB (34.07) | |
k = 3 | LG (79.71) | LG (79.71) | LG (68.55) CFB (11.16) | LG (68.69) CFB (11.02) | |
Sum | LG (225.26) | LG (225.26) | LG (214.10) CFB (11.16) | LG (180.17) CFB (45.09) | |
PP | k = 1 | CFB (47.70) | CFB (47.70) | CFB (47.70) | CFB (47.70) |
k = 2 | CFB (52.47) | CFB (52.47) | CFB (52.47) | CFB (52.47) | |
k = 3 | CFB (54.86) | CFB (54.86) | CFB (54.86) | CFB (54.86) | |
Sum | CFB (155.03) | CFB (155.03) | CFB (155.03) | CFB (155.03) | |
Oc | k = 1 | CFB (0.10) | CFB (0.10) | CFB (0.10) | CFB (0.10) |
k = 2 | CFB (0.11) | CFB (0.11) | CFB (0.11) | CFB (0.11) | |
k = 3 | CFB (0.12) | CFB (0.12) | CFB (0.12) | CFB (0.12) | |
Sum | CFB (0.33) | CFB (0.33) | CFB (0.33) | CFB (0.33) | |
Gc1 | k = 1 | LG (1.62) | LG (1.62) | CFB (1.62) | CFB (1.62) |
k = 2 | LG (1.78) | CFB (1.78) | CFB (1.78) | CFB (1.78) | |
k = 3 | LG (1.86) | CFB (1.86) | CFB (1.86) | CFB (1.86) | |
Sum | LG (5.26) | LG (1.62) CFB (3.64) | CFB (5.26) | CFB (5.26) | |
Gc2 | k = 1 | CFB (0.08) | CFB (0.08) | CFB (0.08) | CFB (0.08) |
k = 2 | CFB (0.09) | CFB (0.09) | CFB (0.09) | CFB (0.09) | |
k = 3 | CFB (0.09) | CFB (0.09) | CFB (0.09) | CFB (0.09) | |
Sum | CFB (0.26) | CFB (0.26) | CFB (0.26) | CFB (0.26) |
ES | T | w1 = 0.7 and w2 = 0.3 | w1 = 0.6 and w2 = 0.4 | w1 = 0.4 and w2 = 0.6 | w1 = 0.3 and w2 = 0.7 |
---|---|---|---|---|---|
PPc | k = 1 | LNB + SCR (14.54) | LNB + SCR (14.54) | LNB + SCR (14.54) | LNB + SCR (14.54) |
k = 2 | LNB + SCR (15.99) | LNB + SCR (15.99) | LNB + SCR (15.99) | LNB + SCR (15.99) | |
k = 3 | LNB + SCR (16.72) | LNB + SCR (16.72) | LNB + SCR (16.72) | LNB + SCR (16.72) | |
Sum | LNB + SCR (47.25) | LNB + SCR (47.25) | LNB + SCR (47.25) | LNB + SCR (47.25) | |
PP | k = 1 | LNB + SCR (70.69) | LNB + SCR (70.69) | LNB + SCR (70.69) | SCR (70.69) |
k = 2 | LNB + SCR (77.75) | SCR (77.75) | SCR (77.75) | SCR (77.75) | |
k = 3 | LNB + SCR (81.29) | SCR (81.29) | SCR (81.29) | SCR (81.29) | |
Sum | LNB + SCR (229.73) | SCR (159.04) LNB + SCR (70.69) | SCR (159.04) LNB + SCR (70.69) | SCR (229.73) | |
Oc | k = 1 | LNB + SCR (0.79) | LNB + SCR (0.79) | SCR (0.79) | SCR (0.79) |
k = 2 | SCR (0.86) | SCR (0.86) | SCR (0.86) | SCR (0.86) | |
k = 3 | SCR (0.90) | SCR (0.90) | SCR (0.90) | SCR (0.90) | |
Sum | SCR (1.76) LNB + SCR (0.79) | SCR (1.76) LNB + SCR (0.79) | SCR (2.55) | SCR (2.55) | |
Gc1 | k = 1 | LNB + SCR (0.67) | LNB + SCR (0.67) | LNB + SCR (0.67) | LNB + SCR (0.67) |
k = 2 | LNB + SCR (0.74) | LNB + SCR (0.74) | LNB + SCR (0.74) | SCR (0.74) | |
k = 3 | LNB + SCR (0.77) | LNB + SCR (0.77) | LNB + SCR (0.77) | SCR (0.77) | |
Sum | LNB + SCR (2.18) | LNB + SCR (2.18) | LNB + SCR (2.18) | SCR (1.51) LNB + SCR (0.67) | |
Gc2 | k = 1 | LNB + SCR (0.63) | LNB + SCR (0.63) | LNB + SCR (0.63) | SCR (0.63) |
k = 2 | LNB + SCR (0.70) | SCR (0.70) | SCR (0.70) | SCR (0.70) | |
k = 3 | LNB + SCR (0.73) | SCR (0.73) | SCR (0.73) | SCR (0.73) | |
Sum | LNB + SCR (2.06) | SCR (1.43) LNB + SCR (0.63) | SCR (1.43) LNB + SCR (0.63) | SCR (2.06) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, B.; Zhou, M.; Qiu, Y.; Ma, Y.; Ma, C.; Tu, J.; Li, S. An Integration Method for Regional PM2.5 Pollution Control Optimization Based on Meta-Analysis and Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 344. https://doi.org/10.3390/ijerph19010344
Qiu B, Zhou M, Qiu Y, Ma Y, Ma C, Tu J, Li S. An Integration Method for Regional PM2.5 Pollution Control Optimization Based on Meta-Analysis and Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(1):344. https://doi.org/10.3390/ijerph19010344
Chicago/Turabian StyleQiu, Bingkui, Min Zhou, Yang Qiu, Yuxiang Ma, Chaonan Ma, Jiating Tu, and Siqi Li. 2022. "An Integration Method for Regional PM2.5 Pollution Control Optimization Based on Meta-Analysis and Systematic Review" International Journal of Environmental Research and Public Health 19, no. 1: 344. https://doi.org/10.3390/ijerph19010344
APA StyleQiu, B., Zhou, M., Qiu, Y., Ma, Y., Ma, C., Tu, J., & Li, S. (2022). An Integration Method for Regional PM2.5 Pollution Control Optimization Based on Meta-Analysis and Systematic Review. International Journal of Environmental Research and Public Health, 19(1), 344. https://doi.org/10.3390/ijerph19010344