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Abstract: Child mortality is high in Sub-Saharan Africa compared to other regions in the world. In
Kenya, the risk of mortality is assumed to vary from county to county due to diversity in socio-
economic and even climatic factors. Recently, the country was split into 47 different administrative
regions called counties, and health care was delegated to those county governments, further aggravat-
ing the spatial differences in health care from county to county. The goal of this study is to evaluate
the effects of spatial variation in under-five mortality in Kenya. Data from the Kenya Demographic
Health Survey (KDHS-2014) consisting the newly introduced counties was used to analyze this risk.
Using a spatial Cox Proportional Hazard model, an Intrinsic Conditional Autoregressive Model
(ICAR) was fitted to account for the spatial variation among the counties in the country while the
Cox model was used to model the risk factors associated with the time to death of a child. Inference
regarding the risk factors and the spatial variation was made in a Bayesian setup based on the Markov
Chain Monte Carlo (MCMC) technique to provide posterior estimates. The paper indicate the spatial
disparities that exist in the country regarding child mortality in Kenya. The specific counties have
mortality rates that are county-specific, although neighboring counties have similar hazards for death
of a child. Counties in the central Kenya region were shown to have the highest hazard of death,
while those from the western region had the lowest hazard of death. Demographic factors such as the
sex of the child and sex of the household head, as well as social economic factors, such as the level of
education, accounted for the most variation when spatial differences were factored in. The spatial
Cox proportional hazard frailty model performed better compared to the non-spatial non-frailty
model. These findings can help the country to plan health care interventions at a subnational level
and guide social and health policies by ensuring that counties with a higher risk of Under Five Child
Mortality (U5CM) are considered differently from counties experiencing a lower risk of death.

Keywords: under five child mortality; kenya dhs; spatial survival models; bayesian survival
applications

1. Introduction

The burden of mortality in children has remained a key area of concern for nations
and organizations in the world. The year 2018 recorded approximately 5.3 million children
and infant deaths worldwide. The risk of under-five mortality in the WHO Africa region
was 76 deaths per 1000 live births, which was eigth-times higher than the WHO European
region [1]. This is far from ideal and is a worrying situation. The rate of mortality in Kenya
in the same period was 46.7 deaths per 1000 live births. This was above the Millennium
Development Goal target expected by 2015 of 33 deaths per 1000 live births, and the 2030
goal of 25 deaths per 1000 live births [2].

This national estimate, worrying as it is, is also accompanied by different concealed
spatial variations [3] and, therefore, poses a complex problem unravelling the intricate
localized or sub-regional variations in an attempt to better understand and offer feasible
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solutions to this burden. There exist various causes of child mortality in Kenya. The frame-
work outlined by [4] provides a blue-print on studying mortality in third world countries.

Key sources of variation in child mortality in Africa include individual characteristics,
such as wealth index, level of education, and nutrition [5]. The duration of breastfeeding,
use of antenatal care, maternal health care services, birth intervals, and the age of the
mother have also been known to be significant in determining the mortality of a child [6–9].
In addition, maternal education, a social economic factor, the presence of it and lack thereof
has been shown to significantly affect the rate of survival of a child [10]. Other areas of
concern on the determinants of child mortality include cultural practices [11].

The existence of these variations caused by the risk factors above are known to vary
from region to region in a country. This suggests a presence of community level character-
istics that influence health outcomes [12]. Such community level variables include income,
place of residence, infrastructure, and region among others. These variables influence
behaviors and patterns regarding child and maternal health care, and are significant in
explaining child mortality [13]. Such disparity could be at the country level or county level.
Urban areas have had lower risk of death for infants and children [14] in Ethiopia and yet
higher odds of death in Nairobi [2] compared to rural areas.

It is, therefore, important to understand the distribution of these factors geographically
and their influence in various locations. In order to understand these disparities, and
eventually the risk factors, survival methods have been applied as a critical tool in the
analysis of life data [14]. Cox models have been applied to model the time to occurrence
of an event [15] and showed significant improvements compared to classical regression
techniques [3].

The assumption of Cox models is that child survival is dependent on a baseline
survival and certain risk factors; however, this is not often true in reality as survival data
are dependent when clusters or locations are considered. This dependency introduces
unobserved random effects (frailties) present at various levels, and suggests the presence
of community level characteristics that influence health outcomes [12]. The existence of
these effects caused either by a location, or a presence in certain population clusters leads
to the use of spatial survival models to capture these unobserved effects, especially if they
are geographical.

In spatial survival analysis, the survival of a child is assumed to be correlated if areas
or points are close together, and it is possible to analyze data that are clustered when the
clustering is a result of geographical regions or some other form of stratification [16]. The
expected hazard rates will be more similar in neighboring regions, owing to underlying
factors, such as access to health care services, which varies spatially. Studies, such as
Kazembe et al. (2012), Ezra et al. (2016), Hesam et al. (2018), and Kazembe et al. (2007), in
various regions in Africa emphasized the significance or improvement that spatial survival
models have over and above the existing survival analysis models, particularly when the
spatial heterogeneity is significant [3,17–19].

The purpose of this study is to evaluate the effect of spatial variation on under-five
mortality in Kenya. This is informed by the introduction of counties in 2010 and the
delegation of health care functions to the counties. The extent of the disparities in the
burden of child mortality between those counties is not known, and therefore it is important
to investigate the differences to aid in county-based health care planning and intervention.
This is done using a spatial Cox Proportional Hazards model using the Kenya Demographic
and Health Survey, (2014) data set.

2. Materials and Methods
2.1. Data Source

The data analyzed in this study were sourced from the Kenya Demographic and Health
Survey 2014 [20]. Authorization to use the data set was obtained through the DHS Portal,
which contains a repository of the survey data. The Demographic and Health Survey
is an initiative sponsored by the United States Agency for International Development
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(USAID) in partnership with other Kenyan research agencies, including the Kenya National
Bureau of Statistics (KNBS), National Council for Population and Development (NCPD),
Ministry of Health, Kenya Medical Research Institute (KEMRI), and National AIDS Control
Council (NACC). The DHS program has been run in many nations to provide periodic
updates, outlooks, and estimates of various indicators, such as maternal and child health
and individual level information pertaining to the health of such individuals in specific
cases. The data collected contains information about families, children, child bearing
mothers, and other socioeconomic factors as relevant to help monitor the population and
health status in Kenya.

2.2. Survey Design

The 2014 KDHS survey was the first of its kind to provide county level estimates
since the promulgation of the New Constitution in 2010. County information was included
in the dataset using a separate country shape file. The Kenyan agencies provided the
personnel to conduct the survey. The survey used samples from the country’s population
and housing census estimates. Using a two stage sampling frame, Enumeration Areas
(EAs) in the census served as the primary sampling unit. Clusters were selected in the first
stage from the Enumeration Areas, while households were selected in the second stage. All
mothers aged 15–49 years old were eligible respondents, and information about children
born 5 years prior to the survey was obtained.

2.3. Variable Selection

The variables used in the study were pre-selected based on the existing literature on
the significant determinants of child mortality. The variables ranged from demographic
and socieconomic factors to variables specific to the mother and child. The study focused
on the existence of spatial variations and the differences in child mortality across regions
in the country. The demographic and socioeconomic variables selected included the sex
of the child at birth, maternal age at birth, age of respondent at first birth, gender of the
household head, Wealth Index, Highest Education level, and the type of place of residence.
The geo-referenced regions were the counties and coordinates (displaced) provided. The
primary outcome was the mortality of a child, defined as the time to death of a baby before
his or her fifth birthday.

2.4. Statistical Analysis

Statistical analyses were performed using the R-software for statistical computing.
Spatial survival analysis to estimate the spatial differences in mortality across the counties
was performed using Intrinsic Conditional Autoregressive Models incorporated into the
Cox proportional hazard model. In addition, the effects of the preselected variables were
estimated using a Cox proportional hazards model.

We compared two survival analysis models, one with a spatial frailty assumption,
while the other one had no frailty assumption. Model comparison was done through the
Deviance Information Criterion. For an estimation of the model parameters, a Bayesian
approach was used and assigned priors for the model priors and the distribution of the
baseline survival function. An Intrinsic Conditional auto-regressive (ICAR) prior was
assumed to model the spatial structure [3]. The results are presented as posterior estimates
of the spatial variance and the covariates and the corresponding 95% Credible Intervals.
For more details on the methods please refer to Appendix A.

3. Results

The number of children in each county is shown in Figure 1. The sample was repre-
sentative of the children in each county, due to the sampling frame.
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Figure 1. Distribution of Children by County

2.1. Model Comparison136

This section deals with the comparison of the two models fitted, the spatial dif-137

ferences in the risk of child mortality and the results of the covariates considered. The138

Deviance Information Criterion was used to compare the performance of the two models,139

where a lower DIC indicated a better model fit, on 856 degrees of freedom. The first140

model was fitted using the Proportional Hazards assumption on the child mortality data,141

where the response was the hazard of death dependent only on the baseline hazard and a142

set of covariates. The DIC value for this model (3384) was larger compared to the spatial143

model as shown in 1. The second model was fitted with the spatial frailty term, and had144

the lowest value of the Deviance Information Criterion (3344) and therefore a better fit.145

This model assumed unobserved variation (heterogeneity) at the geographical (county)146

regions in the country. There was a significant improvement brought about by the147

spatial model with frailties that accounted for randomness apart from the independent148

covariates. The Watanabe Akaike Information Criterion deals with the predictive power149

of the model, lower values mean higher predictive power. The Spatial Cox proportional150

hazards model had the higher predictive power as shown in Table 1.151

Table 1. Model Comparison Results

Model Deviance
Information
Criterion
(DIC)

Log Pseudo
Marginal
Likeli-
hood(LPML)

Watanabe-
Akaike Infor-
mation Crite-
rion(WAIC)

Cox Proportional Hazards (No Frailty) 3384 -1694 3389

Proportional Hazard Spatial Frailty
Model

3344 -1682 3362

2.2. Goodness of Fit Tests152

The Markov Chain Monte Carlo estimation deals with estimating model parameters153

in a Bayesian setting. The MCMC sampler explores the parameter space of a certain154

parameter, resulting from prior knowledge about the parameter and the likelihood of the155

observed values. To ensure mixing, the resulting chain selection of parameters results in156

a stationary distribution of the parameters. Trace plots; time plots of the Markov Chain,157

were used to assess proper mixing of the parameters, and were stationary, indicating158

convergence and hence were reliable.159

Figure 1. Distribution of children by county.

3.1. Model Comparison

This section deals with the comparison of the two models fitted, the spatial differences
in the risk of child mortality, and the results of the covariates considered. The Deviance
Information Criterion was used to compare the performance of the two models, where a
lower DIC indicated a better model fit on 856 degrees of freedom. The first model was
fitted using the Proportional Hazards assumption on the child mortality data, where the
response was the hazard of death dependent only on the baseline hazard and a set of
covariates. The DIC value for this model (3384) was larger compared to the spatial model
as shown in Table 1.

The second model was fitted with the spatial frailty term and had the lowest value of
the Deviance Information Criterion (3344) and, therefore, a better fit. This model assumed
unobserved variation (heterogeneity) at the geographical (county) regions in the country.
There was a significant improvement brought about by the spatial model with frailties that
accounted for randomness apart from the independent covariates. The Watanabe Akaike
Information Criterion deals with the predictive power of the model, where lower values
mean higher predictive power. The Spatial Cox proportional hazards model had the higher
predictive power as shown in Table 1.

Table 1. The model comparison results.

Model Deviance Information Criterion
(DIC)

Log Pseudo Marginal Likelihood
(LPML)

Watanabe-Akaike Information
Criterion (WAIC)

Cox Proportional Hazards (No Frailty) 3384 −1694 3389
Proportional Hazard Spatial Frailty Model 3344 −1682 3362

3.2. Goodness of Fit Tests

The Markov Chain Monte Carlo (MCMC) estimation deals with estimating model
parameters in a Bayesian setting. The MCMC sampler explores the parameter space of a
certain parameter, resulting from prior knowledge about the parameter and the likelihood
of the observed values. To ensure mixing, the resulting chain selection of parameters
results in a stationary distribution of the parameters. Trace plots—time plots of the Markov
Chain—were used to assess the proper mixing of the parameters and were stationary,
indicating convergence, and hence were reliable.
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To assess the goodness of fit of the model, a Cox–Snell plot was used. Cox–Snell
residuals; the residuals of the observed data points and the predicted values analogous
to normal probability plots test the reliability of the model. The Cox–Snell plot showed
hazard plots that were approximately straight with slope one, indicating a good model fit,
as shown in Figure 2.

Figure 2. Cox–Snell plot.

3.3. Model Results

The spatial frailty model had the best fit on the data. The posterior variance of the
ICAR frailty; accounting for the variance due to the spatial effect is shown in Table 2. The
mean was 0.2001, which was statistically significant with a 95% credibility interval (0.0578,
0.4649). On average, the spatial effect explained 20% of the heterogeneity variance.

Table 2. Variance of the ICAR frailty term.

ICAR Frailty Mean Median Std Deviation 95% Lower CI 95% Upper CI

Variance 0.2001 0.1776 0.1117 0.0578 0.4649

The statistically significant determinants of child mortality included the sex of the
child, age of the respondent at first birth, gender of the household head, and whether a
family had multiple sets of twins. These encompass the set of demographic risk factors
associated with child survival, while the socio-economic factors associated with child
survival included the highest level of education (secondary). The posterior mean for
the sex of the child was −0.1304, and the median was −0.1315. The hazard ratio was
exp(−0.1304) = 0.877, and the probability of survival was higher in female children by
12.23 percent compared to male children, holding all other predictors constant. The
95 percent credible interval of the hazard ratio was (0.7761, 0.9921).

The mean for the sex of the household head was−0.1550 and the median was−0.1579.
Adjusting for the sex of the child, level of education, and age of the respondent at first
birth; for a child born in female-headed households, the computed hazard was 0.8564, and
therefore the probability of survival increased by 14.36 percent compared to male-headed
households. The age of a respondent at first birth had a mean and median of 0.025. There
was a positive association, i.e., an increased risk of death for children for an increase in age
at first birth. There was also an increase of risk of death by 2.5 percent for a unit increase in
age of a respondent at first birth. Families with multiple sets of twins (the first multiple of
twins refers to the first set of twins born, while second multiple of twins refers to a second
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set of twins) had a high risk of child mortality. The mean was 0.4438, with a hazard ratio of
1.5586. Children born as a second set of twins had a higher risk of death by 55.86 percent
compared to children born in single births.

The respondent’s level of education was statistically significant at the secondary level.
Respondents who had attained a secondary level of education in Kenya had a mean of
−0.2982 and a hazard ratio of 0.7422; the risk of child mortality in respondents who had
attained secondary education decreased by 25 percent compared to respondents who had
not had any education at all. These results are shown in Table 3.

Table 3. Model summary regression output.

Variable Mean Std Dev 95% CI−Low 95% CI−Upper

Sex of the child (Female) −0.1304 0.0636 −0.2535 −0.0079
Type of place of residence (Rural) 0.1424 0.083 −0.02 0.3102
Sex of household head (Female) −0.155 0.0693 −0.2813 −0.0159
Wealth Index (Poorer) 0.0851 0.0952 −0.0979 0.2751
Wealth Index (Middle) 0.1952 0.102 −0.0038 0.3824
Wealth Index (Richer) 0.2017 0.1188 −0.0291 0.4229
Wealth Index (Richest) 0.2512 0.1533 −0.0292 0.5688
Highest Level of Education (Primary) −0.1756 0.1095 −0.3869 0.0499
Highest Level of Education (Secondary) −0.2982 0.1385 −0.5533 −0.0128
Highest Level of Education (Higher) −0.046 0.2001 −0.4231 0.3574
Age of respondent at first birth 0.0251 0.0112 0.0041 0.0463
Maternal age at birth 0.0013 0.0056 −0.0089 0.0126
Child is twin (1st Multiple) 0.1642 0.1421 −0.1285 0.4325
Child is twin (2nd Multiple) 0.4438 0.1749 0.0951 0.7585

Table 2 shows the posterior frailties on the variance of the spatial term. The variance
was 0.2001 and was significant at 0.05, the credible interval was (0.05776, 0.4649). Adjusting
for the effect of the covariates, there were other unobserved spatially varying covariates
relevant for child survival in Kenya.

In Figure 3, we can identify a cluster of counties with higher median frailties or a
higher hazard (counties with yellow colors) located centrally in the country. This shows that
these counties, apart from the covariates, have a spatial correlation, hence, the similarities in
the hazard of death for a child. Children from these counties (Makueni, Machakos, Kiambu,
Nyandarua, Nyeri, and Laikipia) were shown to have the highest risk of mortality adjusted
for effects of covariates. Medium level frailties were identified as clustered around the
Garissa, Tana River, Kilifi, and Lamu counties, Meru and Tharaka-Nithi counties, counties
in Rift Valley (Nandi, Uasin Gishu, and Elgeyo Marakwet), and Narok and Kisii counties.

Counties in Western Kenya and Nyanza also had low frailties with spatial correlation
(counties with purple color) related to death from other causes apart from the main effects of
the independent variables. The highest number of counties, however, (counties with green
color) had the same frailties and a similar hazard. These were counties in Northern Kenya,
South Rift, and counties bordering Tanzania on the South West. The others were around
the Mount Kenya region (Kirinyaga, Embu, and Murang’a) that showed a homogeneous
risk of death of a child.
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Figure 3. Map of posterior frailties. Kenya is a country in Africa on the East African region at (4.0889,
39.7707) divided in half by the Equator.

4. Discussion

The aim of the study was to bring out the spatial disparities on child mortality
existing in the counties in Kenya. The spatial frailty proportional hazards model was
used to determine the risk factors associated with under-five mortality in the country.
Two models, the proportional hazard model without any frailty assumption and a frailty
model assuming variations across space were compared.

The study reveals unobserved spatially varying covariates relevant for risk factors of
child mortality in addition to the risk factors explaining child mortality. The ICAR spatial
survival model was used to model these unobserved effects and to model the correlation
and or clustering between these regions. This study, therefore, analyzed the time to death
of a child using spatial survival models. The spatial model performed better compared to
the non-spatial model, similar to [19].
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Using the Akaike Information Criterion (AIC), the Cox Proportional Hazards model
with spatial frailties performed better than the non-frailty model. The predictive ability
of the spatial model was also higher compared to the non-spatial non-frailty model. The
variation introduced spatially significantly improved the model, making it the superior
model. The better fit model was therefore used together with the covariates to investigate
the underlying factors contributing to child mortality.

The results show that patterns of child mortality in Kenya have a spatial structure,
which is similar for the neighboring counties around Central Kenya, although majority of
the counties appear to have similar frailties and, similar spatial distribution. The presence of
unexplained variation, save for the main effects, was statistically significant and improved
the model. This may be explained by similarities in access to healthcare and other amenities
and the variance in counties, similar to [3].

After adjusting for the spatial structure, gender of the child, and respondent’s age at
birth, the probability of survival of a child decreased with an increase in the age at first birth.
Multiple births were found to be significant risk factors associated with child mortality.
The gender of the child (male children had a high risk of death) and whether a child was
in a multiple birth (twins) were important risk factors (also found by [3]) associated with
child mortality. The gender of the house-hold head was also found to be significant. The
level of education, also found by [8], was an important risk factor for child mortality.

There is, therefore, an increased survival probability for children born to families
whose respondents have attained a secondary level education. Children from mothers who
had attained secondary education had higher chances of survival compared to children
from mothers who had no education or only primary education. A primary level of
education as well as a higher education level (beyond secondary) were not significant risk
factors associated with child mortality. It is important, therefore, for most mothers to attain
a secondary education level in the country for a reduction in the risk of child mortality.

5. Conclusions

This study brings out the spatial disparities that exist in the country on child mortality
in Kenya. From the models used, the model incorporating spatial terms performed better;
hence, there is a need to consider using the improved model to model key outcomes, such
as the gender of the child, the age of the respondent at first birth, whether a child is in a
multiple birth, gender of the household head and level of education, and other country
indicators of health in the future.

The specific counties have mortality rates that are county-specific, although neighbor-
ing counties have similar hazards of death of a child indicating relationships of a county
and its neighbour. It is important, therefore, to consider interventions that take into consid-
eration the effect of where a child is born from (county) when providing intervention to
reduce the risk of mortality.

In addition, such interventions should pay attention to the case where a child is born
in a multiple birth and should provide special care and monitoring in families where such
cases occur. Families with histories of multiple births, either twins or triplets and so on
should have a flag on them, such as governmental, county, or community level initiatives
that offer extra care for such children.

The important of education cannot be over-emphasized to ensure a child is kept safe
from mortality. This ensures mothers have appropriate information on diets with more
nutritional value, breastfeeding, immunization, and hygiene among others. Mothers with
some level of education (secondary) are also more likely to have a form of income compared
to mothers with no level of education. A level of education for a mother also implies that
one is more likely to be married by a husband with similar or higher levels of education,
which increases income for the overall household and, hence, significantly improves the
probability of survival for a child. It is important, therefore, for most mothers to attain
secondary education level in the country for a reduction in the risk of child mortality.
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As the country aims to achieve the stipulations of the Millenium Development Goals,
as it failed to hit the set targets for MDG 2015, and, in order to hit the targets for MDG 2030,
the significant differences witnessed in counties should be considered at the policy level.
All attempts to smoothly hit the 2030 target within the timelines should include a devolved
approach, where counties spearhead the reduction in risk of mortality. Regional blocks for
which mortality risks appear similar should be considered as an entity to ensure that the
menace that is child mortality is dealt with.
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Appendix A. Methods

Appendix A.1. Introduction

The event of interest was in modelling survival times: the time taken until an event
of death occurred for an individual child. Assuming a sample of size N children aged
between 0 to 59 months, the survival information of a child is (ti, δi), i ∈ 1, · · · , N where
ti ∈ 1, · · · , 60 is the child’s survival time in months and a status variable δi = 1 if the child
is dead and δi = 0 if the child is still alive [3]. Further suppose that the child is a part of a
sample from P counties, the number of children in county j is ni where j = 1, · · · , ni and
∑P

j=1 ∑ni
i=1 = N.

Appendix A.2. Cox Proportional Hazards Model

The proportional hazards model from [15] has a key assumption that the hazard of
death for an individual is proportional to the hazard for any other individual. The hazard
model dependent on the baseline hazard and a set of covariates is shown as

h(tij; xij) = h0(tij)exp(βTxij) (A1)

https://dhsprogram.com/data/
https://dhsprogram.com/data/
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where t is the survival time, h(t) is the hazard function, βT is a parameters vector of
px1 dimension, and xij is a vector with the values of the covariates in individual i from
county j(1xp) dimension, h0 is the baseline hazard function; while eβi denotes the hazard
ratios (H.R).

Appendix A.3. Spatial Frailty Models

Let tij denote the time to death or censoring for subject i in stratum j (hospital, region)
j = 1, · · · , ni and i = 1, · · · , n, while xij denotes the individual specific covariates which
includes; sex of the child at birth, maternal age at birth, age of respondent at first birth,
sex of household head, wealth index [20], highest education level, and the type of place
of residence.

Introducing a frailty term extends the model to [21];

h(tij; xij) = h0(tij)wje∑n
i=1 βiXij (A2)

where wj captures the random effect which is a random variable introduced multiplicatively
to the baseline hazard. Replace wj with logwj then the frailty term is captured effectively
in the exponent as shown below;

h(tij; xij) = h0(tij)e∑n
i=1 βiXij+Wj (A3)

The term Wj captures the differences between the stratum (clusters) that are not
captured by the main effect. An example of Wj (non-spatial) are normal random variables
with mean 0 and variance σ2 [21].

Appendix A.4. Intrinsic Conditional Autoregressive (ICAR) Models

To model spatial frailties, the ICAR model was considered. The normal random
variable φi accounting for the spatial interaction between regions, is conditional on the
average of its neighbors; each with φij, with mean equal to the average of its neighbors di.
The variance reduces due to an increment of the neighbors of a region, assuming a strong
correlation around many neighbors. The distribution of each φi conditional on φij and is
given as;

φi|φij ∼ n(
∑i j φij

di
,

σ2
i

di
) (A4)

where σ2
i is unknown spatial variance, and the joint probability density for φi is centered at

0 and has precision matrix Q. Assuming variance σ2 = 1, the joint specification becomes;

p(φ) = exp(
−1
2 ∑

i j
(φi − φj)

2) (A5)

This is a pairwise difference formulation, each each (φi − φj) is only dependent on
the distance between the values of the neighboring regions. Adding ∑N φi = 0 centers this
model, and the log probability of this model is constrained to be between 0 and 1.

The precision matrix is constructed from the adjacency matrix and the diagonal
matrix; the two matrices describe the neighborhood structure of a region P. The adjacency
matrix is an PXP matrix where every entry pij = 1 if regions pi and pj are neighbours
and 0 otherwise. The diagonal matrix is a PXP matrix the diagonal elements pii contain
the number of neighbors of each region pi and all the off-diagonal entries are 0. The
specification for the precision matrix is therefore;

Q = D(I − A) (A6)
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The determinant of this matrix is 0, but with some data from N it is positive definite.
The advantage of the ICAR model from the usual CAR model is the reduction of computa-
tion time, and capturing the spatial dependence mainly by the distance between the values
of the neighboring regions.

Appendix A.5. Bayesian Approach

For an estimation of the model parameters, a Bayesian approach is used and assigned
priors for the model priors, and the distribution of the baseline survival function. An Intrin-
sic Conditional auto-regressive (ICAR) prior was assumed to model the spatial structure [3].
The prior models the mean for each area φi, which is conditional on areas neighboring it;
is normally distributed with mean equal to the average of the neighboring areas φi and
variance is inversely proportional to the number of neighbors di as above.

For the semi-parametric survival function, the baseline survival function is modeled
using a Transformed Bernstein Polynomial (TBP) prior, usually centered around a given
parametric family and selects only smooth densities [22]. The prior TBPL(α, Sθ(·)), where
α > 0 and Sθ are parameters of a Dirichlet Process, defined as

S0(t) =
L

∑
j=1

wj I(Sθ(t)|j, L− j + 1), (A7)

where WL ∼ Dirichlet(α, · · · , α), and WL = (w1. · · · , wL)
T is a vector of positive weights,

I(·|a, b) denotes a beta cumulative distribution function with (a, b) as parameters and
Sθ(·) : θ ∈ Ω is a parametric family of survival functions. The log-logistic

Sθ(t) = (1 + (eθ1 t)exp(θ2))−1 (A8)

is chosen as the prior specification for the baseline survival function in this study. Vague
normal priors are chosen for the regression coefficients, and a gamma prior τ−2 ∼ Γ(aτ , bτ)
for the precision parameter [23]. Posterior inference on the parameters were computed
using Markov Chain Monte Carlo iterations carried out through a Bayesian approach [23].
The likelihood function based on (wL, θ, β, φ) is given by;

L(wL, θ, β, φ) =
k

∏
i=1

ni

∏
j=1

[Sxij(aij)− Sxij(bij)]
I(aij≤bij) f xij(aij)

I(aij=bij) (A9)

The posterior distribution given as

p(wL, θ, β, φ) = p(θ, β, φ)L(wL, θ, β, φ) (A10)

where p(θ, β, φ) is the prior distribution of the parameters and L(wL, θ, β, φ) is the likeli-
hood function obtained from the observed values.

Model comparison is done using the Deviance Information Criterion (DIC). Analysis
was carried out in the R-software for statistics with the spBayesSurv package. A burn-in
period of 5000 iterations was considered, and displayed after every 1000 saved iterates and
run for 615 s on an HP Intel Core i3 Laptop computer. Small values of DIC indicated better
performing models.

The flow diagram for the model implementation is shown in Figure A1.
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Figure A1. The model implementation chart.
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