The Risk Factors for Development of Type 2 Diabetes: Panasonic Cohort Study 4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Exclusion Criteria
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maskarinec, G.; Erber, E.; Grandinetti, A.; Verheus, M.; Oum, R.; Hopping, B.N.; Schmidt, M.M.; Uchida, A.; Juarez, D.T.; Hodges, K.; et al. Diabetes incidence based on linkages with health plans: The multiethnic cohort. Diabetes 2009, 58, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Mukai, N.; Doi, Y.; Ninomiya, T.; Hata, J.; Hirakawa, Y.; Fukuhara, M.; Iwase, M.; Kiyohara, Y. Cut-off values of fasting and post-load plasma glucose and HbA1c for predicting Type 2 diabetes in community-dwelling Japanese subjects: The Hisayama Study. Diabet. Med. 2012, 29, 99–106. [Google Scholar] [CrossRef]
- Noda, M.; Kato, M.; Takahashi, Y.; Matsushita, Y.; Mizoue, T.; Inoue, M.; Tsugane, S.; Kadowaki, T. Fasting plasma glucose and 5-year incidence of diabetes in the JPHC diabetes study—Suggestion for the threshold for impaired fasting glucose among Japanese. Endocr. J. 2010, 57, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, T.; Hamaguchi, M.; Kojima, T.; Hashimoto, Y.; Ohbora, A.; Kato, T.; Nakamura, N.; Fukui, M. The impact of non-alcoholic fatty liver disease on incident type 2 diabetes mellitus in non-overweight individuals. Liver Int. 2016, 36, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Saito, K.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Saito, A.; Sone, H. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 2009, 32, 1737–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heianza, Y.; Hara, S.; Arase, Y.; Saito, K.; Totsuka, K.; Tsuji, H.; Kodama, S.; Hsieh, S.D.; Yamada, N.; Kosaka, K.; et al. Low serum potassium levels and risk of type 2 diabetes: The Toranomon Hospital Health Management Center Study 1 (TOPICS 1). Diabetologia 2011, 54, 762–766. [Google Scholar] [CrossRef]
- Heianza, Y.; Arase, Y.; Tsuji, H.; Saito, K.; Amakawa, K.; Hsieh, S.D.; Kodama, S.; Shimano, H.; Yamada, N.; Hara, S.; et al. Low lung function and risk of type 2 diabetes in Japanese men: The Toranomon Hospital Health Management Center Study 9 (TOPICS 9). Mayo Clin. Proc. 2012, 87, 853–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunutsor, S.K.; Apekey, T.A.; Walley, J.; Kain, K. Ferritin levels and risk of type 2 diabetes mellitus: An updated systematic review and meta-analysis of prospective evidence. Diabetes Metab. Res. Rev. 2013, 29, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Kiyohara, Y.; Kubo, M.; Ninomiya, T.; Wakugawa, Y.; Yonemoto, K.; Iwase, M.; Iida, M. Elevated C-reactive protein is a predictor of the development of diabetes in a general Japanese population: The Hisayama Study. Diabetes Care 2005, 28, 2497–2500. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bao, W.; Liu, J.; Ouyang, Y.Y.; Wang, D.; Rong, S.; Xiao, X.; Shan, Z.L.; Zhang, Y.; Yao, P.; et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2013, 36, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Kubo, M.; Yonemoto, K.; Ninomiya, T.; Iwase, M.; Tanizaki, Y.; Shikata, K.; Iida, M.; Kiyohara, Y. Liver enzymes as a predictor for incident diabetes in a Japanese population: The Hisayama study. Obesity 2007, 15, 1841–1850. [Google Scholar] [CrossRef]
- Sato, K.K.; Hayashi, T.; Nakamura, Y.; Harita, N.; Yoneda, T.; Endo, G.; Kambe, H. Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: The Kansai Healthcare Study. Diabetes Care 2008, 31, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, S.; Heianza, Y.; Arase, Y.; Saito, K.; Hsieh, S.D.; Tsuji, H.; Hanyu, O.; Suzuki, A.; Tanaka, S.; Kodama, S.; et al. Comparison of different aspects of BMI history to identify undiagnosed diabetes in Japanese men and women: Toranomon Hospital Health Management Center Study 12 (TOPICS 12). Diabet. Med. 2014, 31, 1378–1386. [Google Scholar] [CrossRef]
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Nagasawa, S.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; et al. Self-reported speed of eating and 7-year risk of type 2 diabetes mellitus in middle-aged Japanese men. Metabolism 2012, 61, 1566–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heianza, Y.; Kato, K.; Fujihara, K.; Tanaka, S.; Kodama, S.; Hanyu, O.; Sato, K.; Sone, H. Role of sleep duration as a risk factor for Type 2 diabetes among adults of different ages in Japan: The Niigata Wellness Study. Diabet Med. 2014, 31, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Sone, H.; Mizuno, S.; Ohashi, Y.; Yamada, N. Type 2 diabetes prevalence in Asian subjects. Diabetes Care 2004, 27, 1251–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yabe, D.; Kuroe, A.; Watanabe, K.; Iwasaki, M.; Hamasaki, A.; Hamamoto, Y.; Harada, N.; Yamane, S.; Lee, S.; Murotani, K.; et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J. Diabetes Complicat. 2015, 29, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, M.; Austin, P.C.; Manuel, D.G.; Shah, B.R.; Tu, J.V. Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care 2011, 34, 1741–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijhuis, J.; Rensen, S.S.; Slaats, Y.; van Dielen, F.M.; Buurman, W.A.; Greve, J.W. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 2009, 17, 2014–2018. [Google Scholar] [CrossRef]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15, 1–5. [Google Scholar]
- Campbell, P.J.; Carlson, M.G. Impact of obesity on insulin action in NIDDM. Diabetes 1993, 42, 405–410. [Google Scholar] [CrossRef]
- Bogardus, C.; Lillioja, S.; Mott, D.M.; Hollenbeck, C.; Reaven, G. Relationship between degree of obesity and in vivoinsulin action in man. Am. J. Physiol. 1985, 248, E286–E291. [Google Scholar] [PubMed]
- Esteve, E.; Ricart, W.; Fernández-Real, J.M. Adipocytokines and insulin resistance: The possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care 2009, 32, S362–S367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, M.; Fernández-Veledo, S.; Vila-Bedmar, R.; Garcia-Guerra, L.; De Alvaro, C.; Nieto-Vazquez, I. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci. 2008, 86, E94–E104. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.; James, W.P.T.; Loria, C.M.; Smith, S.C.J. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Willi, C.; Bodenmann, P.; Ghali, W.A.; Faris, P.D.; Cornuz, J. Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2007, 298, 2654–2664. [Google Scholar] [CrossRef]
- Kodama, K.; Tojjar, D.; Yamada, S.; Toda, K.; Patel, C.J.; Butte, A.J. Ethnic differences in the relationship between insulin sensitivity and insulin response: A systematic review and meta-analysis. Diabetes Care 2013, 36, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kajiyama, S.; Nitta, A.; Miyawaki, T.; Matsumoto, S.; Ozasa, N.; Kajiyama, S.; Hashimoto, Y.; Fukui, M.; Imai, S. Eating Fast Has a Significant Impact on Glycemic Excursion in Healthy Women: Randomized Controlled Cross-Over Trial. Nutrients 2020, 12, 2767. [Google Scholar] [CrossRef]
- Han, M. The Dose-Response Relationship between Alcohol Consumption and the Risk of Type 2 Diabetes among Asian Men: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Diabetes Res. 2020, 24, 1032049. [Google Scholar] [CrossRef]
- Tsushita, K.; Hosler, A.S.; Miura, K.; Ito, Y.; Fukuda, T.; Kitamura, A.; Tatara, K. Rationale and Descriptive Analysis of Specific Health Guidance: The Nationwide Lifestyle Intervention Program Targeting Metabolic Syndrome in Japan. J. Atheroscler. Thromb. 2018, 25, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Fukuma, S.; Iizuka, T.; Ikenoue, T.; Tsugawa, Y. Association of the National Health Guidance Intervention for Obesity and Cardiovascular Risks with Health Outcomes among Japanese Men. JAMA Intern. Med. 2020, 180, 1630–1637. [Google Scholar] [CrossRef]
- Ito, C.; Maeda, R.; Ishida, S.; Sasaki, H.; Harada, H. Correlation among fasting plasma glucose, two-hour plasma glucose levels in OGTT and HbA1c. Diabetes Res. Clin. Pract. 2000, 50, 225–230. [Google Scholar] [CrossRef]
ALL | BMI < 22.0 kg/m2 | 22.0 ≤ BMI < 25.0 kg/m2 | BMI ≥ 25.0 kg/m2 | p Value | |
---|---|---|---|---|---|
N | 46,001 | 17,857 | 16,629 | 11,515 | - |
Age (y) | 42.06 (6.09) | 41.16 (6.44) | 42.61 (5.83) * | 42.67 (5.72) * | <0.0001 |
Sex (male/female) | 38,569/7432 | 12,935/4922 | 15,092/1537 | 10,542/973 | <0.0001 |
Body mass index (kg/m2) | 23.09 (3.28) | 20.05 (1.38) | 23.36 (0.85) * | 27.43 (2.41) *,# | <0.0001 |
SBP (mmHg) | 118.45 (13.97) | 113.48 (12.95) | 119.09 (12.97) * | 125.25 (13.83) *,# | <0.0001 |
DBP (mmHg) | 74.11 (10.67) | 70.44 (9.88) | 74.64 (10.08) * | 79.03 (10.56) *,# | <0.0001 |
LDL cholesterol (mg/dL) | 123.91 (30.86) | 113.52 (28.93) | 127.17 (29.81) * | 135.29 (30.18) *,# | <0.0001 |
HDL cholesterol (mg/dL) | 59.20 (14.81) | 65.71 (15.15) | 57.42 (13.42) * | 51.66 (11.54) *,# | <0.0001 |
Triglycerides (mg/dL) | 114.41 (88.40) | 84.86 (62.17) | 118.69 (84.55) * | 154.04 (109.31) *,# | <0.0001 |
FPG (mg/dl) | 92.61 (8.75) | 90.40 (8.10) | 93.11 (8.48) * | 95.32 (9.21) *,# | <0.0001 |
Uric acid (mg/dL) | 5.89 (1.38) | 5.34 (1.29) | 6.06 (1.27) * | 6.50 (1.33) *,# | <0.0001 |
Smoking (none/past/current) | 23,613/5910/16,478 | 10,019/1872/5966 | 8113/2410/6106 | 5481/1628/4406 | <0.0001 |
Eating speed (fast/normal/slow) | 15,838/27,032/3131 | 4304/11,691/1862 | 5975/9759/895 | 5559/5582/374 | <0.0001 |
Snack after dinner (+/−) | 7991/38,010 | 3023/14,834 | 2797/13,832 | 2171/9344 | <0.0001 |
Skipping breakfast (+/−) | 10,566/35,435 | 4035/13,822 | 3779/12,850 | 2752/8763 | 0.02 |
Alcohol drinker (+/−) | 11,085/34,916 | 4228/13,629 | 4502/12,127 | 2355/9160 | <0.0001 |
Physical exercise (+/−) | 7009/38,992 | 2504/15,353 | 2741/13,888 | 1764/9751 | <0.0001 |
BMI < 22.0 kg/m2 | 22.0 kg/m2 ≤ BMI < 25.0 kg/m2 | BMI ≥ 25.0 kg/m2 | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (per 1 year) | 1.10 (1.08–1.12) | <0.0001 | 1.08 (1.07–1.10) | <0.0001 | 1.04 (1.03–1.05) | <0.0001 |
Sex (male) | 3.28 (2.44–4.51) | <0.0001 | 2.12 (1.60–2.89) | <0.0001 | 1.23 (1.03–1.49) | 0.02 |
Body mass index at baseline(per 1 kg/m2) | 1.22 (1.13–1.32) | <0.0001 | 1.27 (1.18–1.36) | <0.0001 | 1.18 (1.16–1.19) | <0.0001 |
Systolic blood pressure(per 1 mmHg) | 1.04 (1.03–1.04) | <0.0001 | 1.02 (1.01–1.02) | <0.0001 | 1.02 (1.02–1.03) | <0.0001 |
LDL cholesterol(per 1 mg/dL) | 1.01 (1.007–1.01) | <0.0001 | 1.007 (1.005–1.009) | <0.0001 | 1.006 (1.004–1.007) | <0.0001 |
HDL cholesterol (per 1 mg/dL) | 0.98 (0.98–0.99) | <0.0001 | 0.98 (0.98–0.99) | <0.0001 | 0.98 (0.97–0.98) | <0.0001 |
Triglycerides (per 1 mg/dL) | 1.003 (1.002–1.004) | <0.0001 | 1.002 (1.0016–1.002) | <0.0001 | 1.001 (1.001–1.002) | <0.0001 |
Fasting plasma glucose (per 1 mg/dL) | 1.17 (1.16–1.18) | <0.0001 | 1.16 (1.15–1.16) | <0.0001 | 1.13 (1.12–1.13) | <0.0001 |
Uric acid (per 1 mg/dL) | 1.30 (1.21–1.40) | <0.0001 | 1.18 (1.12–1.23) | <0.0001 | 1.10 (1.06–1.14) | <0.0001 |
Smoking (past) (ref: none) | 1.35 (0.96–1.85) | 0.08 | 1.33 (1.09–1.61) | 0.004 | 1.00 (0.86–1.16) | 0.99 |
Smoking (current) (ref: none) | 2.03 (1.66–2.47) | <0.0001 | 1.81 (1.59–2.08) | <0.0001 | 1.34 (1.22–1.48) | <0.0001 |
Eating speed (slow) (ref: normal) | 0.56 (0.37–0.81) | 0.002 | 0.86 (0.62–1.15) | 0.31 | 0.87 (0.64–1.16) | 0.35 |
Eating speed (fast) (ref: normal) | 0.9999 (0.80–1.24) | 0.99 | 1.12 (0.98–1.27) | 0.09 | 1.18 (1.08–1.30) | 0.0005 |
Snack after dinner (yes) (ref: no) | 0.84 (0.64–1.08) | 0.18 | 0.90 (0.76–1.06) | 0.44 | 1.01 (0.89–1.13) | 0.90 |
Skipping breakfast (yes) (ref: no) | 1.34 (1.09–1.65) | 0.007 | 1.33 (1.16–1.52) | <0.0001 | 1.23 (1.11–1.37) | <0.0001 |
Alcohol drinker (yes) (ref: no) | 1.65 (1.35–2.01) | <0.0001 | 1.10 (0.96–1.26) | 0.17 | 0.80 (0.70–0.90) | 0.0002 |
Physical exercise (yes) (ref: no) | 1.21 (0.93–1.55) | 0.15 | 1.11 (0.95–1.30) | 0.19 | 0.96 (0.84–1.09) | 0.52 |
BMI < 22.0 kg/m2 | 22.0 kg/m2 ≤ BMI < 25.0 kg/m2 | BMI ≥ 25.0 kg/m2 | ||||
---|---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | HR (95% CI) | p Value | |
Age (per 1 year) | 1.06 (1.04–1.08) | <0.0001 | 1.04 (1.02–1.05) | <0.0001 | 1.02 (1.007–1.03) | 0.001 |
Sex (male) | 1.05 (0.72–1.54) | 0.81 | 0.68 (0.49–0.96) | 0.03 | 0.90 (0.73–1.11) | 0.32 |
BMI at baseline (per 1 kg/m2) | 1.03 (0.95–1.12) | 0.45 | 1.11 (1.03–1.20) | 0.008 | 1.10 (1.09–1.12) | <0.0001 |
Systolic blood pressure (per 1 mmHg) | 1.005 (0.998–1.01) | 0.14 | 0.9996 (0.995–1.004) | 0.88 | 1.006 (1.002–1.009) | 0.001 |
LDL cholesterol (per 1 mg/dL) | 1.003 (0.999–1.006) | 0.10 | 1.002 (0.99998–1.004) | 0.05 | 1.003 (1.002–1.005) | 0.0001 |
HDL cholesterol (per 1 mg/dL) | 0.99 (0.98–0.998) | 0.01 | 0.99 (0.99–0.998) | 0.008 | 0.99 (0.98–0.99) | <0.0001 |
Triglycerides (per 1 mg/dL) | 1.0005 (0.999–1.002) | 0.44 | 1.0008 (1.0003–1.001) | 0.0005 | 1.0005 (1.00008–1.0009) | 0.02 |
Fasting plasma glucose (per 1 mg/dL) | 1.16 (1.15–1.17) | <0.0001 | 1.16 (1.15–1.16) | <0.0001 | 1.12 (1.11–1.13) | <0.0001 |
Uric acid (per 1 mg/dL) | 0.99 (0.91–1.07) | 0.75 | 1.05 (0.997–1.11) | 0.06 | 0.98 (0.94–1.01) | 0.23 |
Smoking (past) (ref: none) | 0.89 (0.63–1.24) | 0.49 | 1.16 (0.95–1.42) | 0.13 | 1.08 (0.92–1.25) | 0.35 |
Smoking (current) (ref: none) | 1.66 (1.32–2.08) | <0.0001 | 1.999 (1.73–2.31) | <0.0001 | 1.51 (1.36–1.68) | <0.0001 |
Eating speed (slow) (ref: normal) | 0.65 (0.42–0.96) | 0.03 | 0.97 (0.70–1.31) | 0.86 | 1.05 (0.76–1.40) | 0.77 |
Eating speed (fast) (ref: normal) | 0.98 (0.78–1.22) | 0.85 | 1.10 (0.96–1.25) | 0.16 | 1.09 (0.99–1.20) | 0.08 |
Snack after dinner (yes) (ref: no) | 1.03 (0.77–1.36) | 0.82 | 0.93 (0.78–1.11) | 0.43 | 1.05 (0.93–1.18) | 0.44 |
Skipping breakfast (yes) (ref: no) | 1.12 (0.89–1.40) | 0.34 | 1.20 (1.04–1.39) | 0.02 | 1.006 (0.90–1.12) | 0.91 |
Alcohol drinker (yes) (ref: no) | 1.04 (0.83–1.30) | 0.72 | 0.75 (0.65–0.87) | 0.0001 | 0.73 (0.64–0.83) | <0.0001 |
Physical exercise (yes) (ref: no) | 1.08 (0.83–1.40) | 0.55 | 1.16 (0.98–1.37) | 0.08 | 0.93 (0.81–1.07) | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saijo, Y.; Okada, H.; Hamaguchi, M.; Habu, M.; Kurogi, K.; Murata, H.; Ito, M.; Fukui, M. The Risk Factors for Development of Type 2 Diabetes: Panasonic Cohort Study 4. Int. J. Environ. Res. Public Health 2022, 19, 571. https://doi.org/10.3390/ijerph19010571
Saijo Y, Okada H, Hamaguchi M, Habu M, Kurogi K, Murata H, Ito M, Fukui M. The Risk Factors for Development of Type 2 Diabetes: Panasonic Cohort Study 4. International Journal of Environmental Research and Public Health. 2022; 19(1):571. https://doi.org/10.3390/ijerph19010571
Chicago/Turabian StyleSaijo, Yuto, Hiroshi Okada, Masahide Hamaguchi, Momoko Habu, Kazushiro Kurogi, Hiroaki Murata, Masato Ito, and Michiaki Fukui. 2022. "The Risk Factors for Development of Type 2 Diabetes: Panasonic Cohort Study 4" International Journal of Environmental Research and Public Health 19, no. 1: 571. https://doi.org/10.3390/ijerph19010571
APA StyleSaijo, Y., Okada, H., Hamaguchi, M., Habu, M., Kurogi, K., Murata, H., Ito, M., & Fukui, M. (2022). The Risk Factors for Development of Type 2 Diabetes: Panasonic Cohort Study 4. International Journal of Environmental Research and Public Health, 19(1), 571. https://doi.org/10.3390/ijerph19010571