Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Transport of Samples to the Laboratory
2.2. Cultivation and Evaluation of Bacterial Growth on Culture Medium
2.3. Identification of Samples by MALDI-TOF MS
2.4. Testing of Susceptibility of Identified Bacteria to Selected Antibiotics
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.O.; da Paixão, P.L.; Barros, E.T.M. Epidemiology of bacterial contamination of inert hospital surfaces and equipment in critical and non-critical care units: A Brazilian multicenter study. Microbiol. Res. J. Int. 2020, 30, 31–43. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Rello, J.; Marshall, J. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmagari, N. National action plan on antimicrobial resistance (AMR) 2016–2020 and relevant activities. Japan Glob. Health Med. 2019, 1, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Spellberg, B.; Guidos, R.; Gilbert, D. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis 2008, 46, 155–164. [Google Scholar] [CrossRef]
- Manoukian, S.; Stewart, S.; Dancer, S.; Graves, N.; Mason, H.; McFarland, A. Estimating excess length of stay due to healthcare-associated infections: A systematic review and metaanalysis of statistical methodology. J. Hosp. Infect. 2018, 100, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two european point prevalence surveys, 2016 to 2017. Eurosurveillance 2018, 23, pii1800516. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Kaur, S.; Kaur, H.P.; Mishra, T. Nosocomial infection: Source and prevention. Int. J. Pharm. Sci. Res. 2019, 10, 1613–1624. [Google Scholar] [CrossRef]
- Mirhoseini, S.H.; Nikaeen, M.; Shamsizadeh, Z.; Khanahmad, H. Hospital air: A potential route for transmission of infections caused by β-lactam-resistant bacteria. Am. J. Infect. Control 2016, 44, 898–904. [Google Scholar] [CrossRef]
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Zazouli, M.; Yazdani-charati, J.; Ahanjan, M.; Homayon, M. Bacterial contamination of environmental surfaces in two educational hospitals under the auspices of Mazandaran University of Medical Sciences. J. Health Field 2015, 3, 36–41. [Google Scholar]
- Mehraban, F.; Rostami, M.N.; Douraghi, M. Prevalence of environmental gram-negative bacilli in the intensive care units of hospitals from the city of Qom. Infect. Epidemiol. Med. 2016, 2, 5–7. [Google Scholar] [CrossRef]
- Suleyman, G.; Alangaden, G.; Bordossy, A.C. The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Curr. Infect. Dis. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Akbari, R.; Fattahi Bafghi, M.; Fazeli, H. Nosocomial Infections Pathogens Isolated from Hospital Personnel, Hospital Environment and Devices. J. Med. Bacteriol. 2018, 7, 22–30. [Google Scholar]
- Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect. Dis. 2011, 11, 381–393. [Google Scholar] [CrossRef]
- Won, S.Y.; Munoz-Price, L.S.; Lolans, K.; Hota, B.; Weinstein, R.A.; Hayden, M.K. Centers for Disease Control and Prevention Epicenter Program. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin. Infect. Dis. 2011, 53, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Lalami, A.E.O.; Touijer, H.; Ettayebi, M.; Benchemsi, N. Microbiological monitoring of environment surfaces in a hospital in Fez city, Morocco surveillance microbiologique des surfaces de l’ environnement d’ un hôpital dans la ville de Fès, au Maroc. J. Mater. Environ. Sci. 2016, 7, 123–130. [Google Scholar]
- Oviaño, M.; Rodríguez-Sánchez, B. MALDI-TOF mass spectrometry in the 21st century clinical microbiology laboratory. Enferm. Infecc. Y Microbiol. Clin. 2021, 39, 192–200. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 1 January 2022).
- Barry, G.; Hall, M.B. Revised Ambler classification of β-lactamases. J. Antimicrob. Chemother. 2005, 55, 1050–1051. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.M.; Johani, K.; Melo, D.S.; Lopes, L.K.O.; Lima, L.K.O.; Tipple, A.F.V.; Hu, H.; Vickery, K. Biofilm contamination of high-touched surfaces in intensive care units: Epidemiology and potential impacts. Lett. Appl. Microbiol. 2019, 68, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Dancer, S.J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 2009, 73, 378–385. [Google Scholar] [CrossRef] [PubMed]
- La Fauci, V.; Riso, R.; Facciolà, A.; Merlina, V.; Squeri, R. Surveillance of microbiological contamination and correct use of protective lead garments. Ann. Ig. 2016, 28, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shen, N.; Hou, H.; Lu, Y.; Yu, J.; Mao, L.; Mao, L.; Sun, Z. Identification accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for clinical pathogenic bacteria and fungi diagnosis: A meta-analysis. Int. J. Clin. Exp. Med. 2017, 10, 4057–4076. [Google Scholar]
- Guo, L.; Ye, L.; Zhao, Q.; Ma, Y.; Yang, J.; Luo, Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J. Thorac. Dis. 2014, 6, 534–538. [Google Scholar] [CrossRef]
- Wang, C.; Zolotarskaya, O.; Ashraf, K.M.; Wen, X.; Ohman, D.E.; Wynne, K.J. Surface characterization, antimicrobial effectiveness, and human cell response for a biomedical grade polyurethane blended with a mixed soft block PTMO-Quat/PEG copolyoxetane polyurethane. ACS Appl. Mater. Interfaces 2019, 11, 20699–20714. [Google Scholar] [CrossRef]
- Darge, A.; Kahsay, A.G.; Hailekiros, H.; Niguse, S.; Abdulkader, M. Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res. Notes. 2019, 12, 621. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.H.; Hassan, H.M.; El-Sherbiny, N.M.; Soliman, A.M.A. Bacteriological Monitoring of Inanimate Surfaces and Equipment in Some Referral Hospitals in Assiut City, Egypt. Int. J. Microbiol. 2019, 2019, 5907507. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Lopes, E.M.; Kishi, L.T.; Ribeiro, L.F.C.; Menegueti, M.G.; Gaspar, G.G.; Silva-Rocha, R.; Guazzaroni, M.E. Microbial Community Profiling in Intensive Care Units Expose Limitations in Current Sanitary Standards. Front. Public Health 2019, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.M.; Kretzschmar, M.; Bertrand, X.; Bootsma, M. Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models. PLoS Comput. Biol. 2019, 15, e1006697. [Google Scholar] [CrossRef] [Green Version]
- de Abreu, P.M.; Farias, P.G.; Paiva, G.S.; Almeida, A.M.; Morais, P.V. Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: A potential health hazard. BMC Microbiol. 2014, 14, 118. [Google Scholar] [CrossRef] [Green Version]
- Różańska, A.; Bulanda, D. Bacteria contamination of touch surfaces in polish hospital wards. Med. Pr. 2017, 68, 459–467. Available online: http://medpr.imp.lodz.pl/en (accessed on 1 January 2022). [CrossRef] [PubMed] [Green Version]
- Weber, D.J.; Rutala, W.A.; Miller, M.B.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging healthcare-associated pathogens: Noroviruse, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 2010, 38, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.V.; Xavier, D.E.; Almeida, K.R.H.; Oliveira, S.R.; Leal, N.C. Multidrug-resistant Acinetobacter baumannii clones persist on hospital inanimate surfaces. Braz. J. Infect. Dis. 2018, 22, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, X.; Wang, L.; Liu, M.; Zheng, K.; Wang, Y. Risk factors and drug resistance of the MDR Acinetobacter baumannii in pneumonia patients in ICU. Open Med. 2019, 14, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Birru, M.; Mengistu, M.; Siraj, M.; Aklilu, A.; Boru, K.; Woldemariam, M.; Biresaw, G.; Seid, M.; Manilal, A. Magnitude, Diversity, and Antibiograms of Bacteria Isolated from Patient-Care Equipment and Inanimate Objects of Selected Wards in Arba Minch General Hospital, Southern Ethiopia. Res. Rep. Trop. Med. 2021, 12, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, Z.; Silla, I. Role of Hospital Surfaces in Transmission of Infectious Diseases. Pak. J. Med. Health Sci. 2018, 3, 1258–1288. [Google Scholar]
- Zarifi, E.; Vakili, G.; Mahmood, V.; Hossein, Z. Prevalence of ESBLs in Acinetobacter baumannii isolated from intensive care unit (ICU) of Ghaem hospital, Mashhad, Iran. J. Pure Appl. Microbiol. 2017, 11, 811–819. [Google Scholar] [CrossRef]
- Slimene, K.; El Salabi, A.A.; Dziri, O.; Mabrouk, A.; Miniaoui, D.; Gharsa, H.; Shokri, S.A.; Alhubge, A.M.; Achour, W.; Rolain, J.M.; et al. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb. Drug Resist. 2021, 27, 1546–1554. [Google Scholar] [CrossRef]
- Yagoubat, M.; Ould El-Hadj-Khelil, A.; Malki, A.; Bakour, S.; Touati, A.; Rolain, J.M. Genetic characterization of carbapenem-resistant Gram-negative bacteria isolated from the Mohamed Boudiaf University Hospital in Ouargla, southern Algeria. J. Glob. Antimicrob. Resist. 2017, 8, 55–59. [Google Scholar] [CrossRef]
- Kiros, T.; Damtie, S.; Eyayu, T.; Tiruneh, T.; Hailemichael, W.; Workineh, L. Bacterial Pathogens and Their Antimicrobial Resistance Patterns of Inanimate Surfaces and Equipment in Ethiopia: A Systematic Review and Meta-analysis. Biomed. Res. Int. 2021, 2021, 5519847. [Google Scholar] [CrossRef]
- Otter, J.A.; Yezli, S.G.; French, G.L.; Salkeld, J.A. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am. J. Infect. Control 2013, 41, S6–S11. [Google Scholar] [CrossRef] [PubMed]
Identified Strain | DIM | DAIC | Overall | p (Value) |
---|---|---|---|---|
Acinetobacterbaumannii | 16 (28.57%) | 4 (9.52%) | 20 (20.41%) | p = 0.021 * |
Pseudomonas aeruginosa | 15 (26.79%) | 18 (42.86) | 33 (33.67%) | NS |
Enterobacter cloacae | 7 (12.5%) | 7 (16.67%) | 14 (14.29%) | NS |
Lecleria adecarboxylata | 5 (8.93%) | 1 (2.38%) | 6 (6.12%) | NS |
Raoltella planticola | 2 (3.57%) | 0 (0%) | 2 (2.04%) | NS |
Stenotrophomonas maltophilia | 2 (3.57%) | 6 (14.29%) | 8 (8.16%) | NS |
Citrobacter braakii | 1 (1.79%) | 2 (4.76%) | 3 (3.06%) | NS |
Citrobacter freundii | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Escherichia hermannii | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Escherichia vulneris | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Klebsiella pneumoniae | 1 (1.79%) | 1 (2.38%) | 2 (2.04%) | NS |
Pantoea calida | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Proteus mirabillis | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Proteus vulgaris | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Providencia rettgeri | 1 (1.79%) | 0 (0%) | 1 (1.02%) | NS |
Enterobacter asburiae | 0 (0%) | 1 (2.38%) | 1 (1.02%) | NS |
Pantoea aglomerans | 0 (0%) | 1 (2.38%) | 1 (1.02%) | NS |
Serratia marcescens | 0 (0%) | 1 (2.38%) | 1 (1.02%) | NS |
Total | 56 | 42 | 98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahornacký, O.; Porubčin, Š.; Rovňáková, A.; Jarčuška, P. Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance. Int. J. Environ. Res. Public Health 2022, 19, 6039. https://doi.org/10.3390/ijerph19106039
Zahornacký O, Porubčin Š, Rovňáková A, Jarčuška P. Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance. International Journal of Environmental Research and Public Health. 2022; 19(10):6039. https://doi.org/10.3390/ijerph19106039
Chicago/Turabian StyleZahornacký, Ondrej, Štefan Porubčin, Alena Rovňáková, and Pavol Jarčuška. 2022. "Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance" International Journal of Environmental Research and Public Health 19, no. 10: 6039. https://doi.org/10.3390/ijerph19106039
APA StyleZahornacký, O., Porubčin, Š., Rovňáková, A., & Jarčuška, P. (2022). Gram-Negative Rods on Inanimate Surfaces of Selected Hospital Facilities and Their Nosocomial Significance. International Journal of Environmental Research and Public Health, 19(10), 6039. https://doi.org/10.3390/ijerph19106039