Are All Urban Parks Robust to the COVID-19 Pandemic? Focusing on Type, Functionality, and Accessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement
2.2. Methodology
3. Results
3.1. Model Diagnoses
3.2. Results of Regression Analyses on Urban Park Visits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spano, G.; D’Este, M.; Giannico, V.; Elia, M.; Cassibba, R.; Lafortezza, R.; Sanesi, G. Association between indoor-outdoor green features and psychological health during the COVID-19 lockdown in Italy: A cross-sectional nationwide study. Urban For. Urban Green. 2021, 62, 127156. [Google Scholar] [CrossRef]
- Geng, D.C.; Innes, J.; Wu, W.; Wang, G. Impacts of COVID-19 pandemic on urban park visitation: A global analysis. J. Res. 2021, 32, 553–567. [Google Scholar] [CrossRef]
- Tyrovolas, S.; Giné Vázquez, I.; Fernández, D.; Morena, M.; Koyanagi, A.; Janko, M.; Haro, J.M.; Lin, Y.; Lee, P.; Pan, W.; et al. Estimating the COVID-19 spread through real-time population mobility patterns: Surveillance in Low-and Middle-income countries. J. Med. Internet Res. 2021, 23, e22999. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Wu, X.; Lo, S.M. Escaping to nature during a pandemic: A natural experiment in Asian cities during the COVID-19 pandemic with big social media data. Sci. Total. Environ. 2021, 777, 146092. [Google Scholar] [CrossRef]
- Park, I.K.; Chung, I.R.; Oh, D.; Jung, Y. Changes in the Number of Urban Park Users Due to the Spread of COVID-19: Time Series Big Data Analysis. J. Korean Reg. Sci. Assoc. 2021, 37, 17–33. [Google Scholar] [CrossRef]
- Soga, M.; Evans, M.J.; Cox, D.T.; Gaston, K.J. Impacts of the COVID-19 pandemic on human–nature interactions: Pathways, evidence and implications. People Nat. 2021, 3, 518–527. [Google Scholar] [CrossRef]
- Volenec, Z.M.; Abraham, J.O.; Becker, A.D.; Dobson, A.P. Public parks and the pandemic: How park usage has been affected by COVID-19 policies. PLoS ONE 2021, 16, e0251799. [Google Scholar] [CrossRef]
- Alizadehtazi, B.; Tangtrakul, K.; Woerdeman, S.; Gussenhoven, A.; Mostafavi, N.; Montalto, F.A. Urban Park Usage During the COVID-19 Pandemic. J. Extrem. Events 2021, 7, 2150008. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Wei, W.; Zhao, B. Effects of urban parks on residents’ expressed happiness before and during the COVID-19 pandemic. Landsc. Urban Plan. 2021, 212, 104118. [Google Scholar] [CrossRef]
- Hong, X.-C.; Wang, G.Y.; Liu, J.; Song, L.; Wu, E.T.Y. Modeling the impact of soundscape drivers on perceived birdsongs in urban forests. J. Clean. Prod. 2021, 292, 125315. [Google Scholar] [CrossRef]
- Lehberger, M.; Kleih, A.K.; Sparke, K. Self-reported well-being and the importance of green spaces–A comparison of garden owners and non-garden owners in times of COVID-19. Landsc. Urban Plan. 2021, 212, 104108. [Google Scholar] [CrossRef]
- Park, B.J.; Furuya, K.; Kasetani, T.; Takayama, N.; Kagawa, T.; Miyazaki, Y. Relationship between psychological responses and physical environments in forest settings. Landsc. Urban Plan. 2011, 102, 24–32. [Google Scholar] [CrossRef]
- Poortinga, W.; Bird, N.; Hallingberg, B.; Phillips, R.; Williams, D. The role of perceived public and private green space in subjective health and wellbeing during and after the first peak of the COVID-19 outbreak. Landsc. Urban Plan. 2021, 211, 104092. [Google Scholar] [CrossRef]
- Salama, A.M. Coronavirus questions that will not go away: Interrogating urban and socio-spatial implications of COVID-19 measures. Emerald Open Res. 2020, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, K.; Barthel, S.; Giusti, M.; Hartig, T. Visiting nearby natural settings supported wellbeing during Sweden’s “soft-touch” pandemic restrictions. Landsc. Urban Plan. 2021, 214, 104176. [Google Scholar] [CrossRef]
- Spotswood, E.N.; Benjamin, M.; Stoneburner, L.; Wheeler, M.; Beller, E.E.; Balk, D.; McPhearson, T.; Kuo, M.; McDonald, R.I. Nature inequity and higher COVID-19 case rates in less-green neighbourhoods in the United States. Nat. Sustain. 2021, 4, 1092–1098. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M.S. Back to nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak. Landsc. Urban Plan. 2021, 214, 104175. [Google Scholar] [CrossRef]
- Jia, Z.; Xu, S.; Zhang, Z.; Cheng, Z.; Han, H.; Xu, H.; Wang, M.; Zhang, H.; Zhou, Y.; Zhou, Z. Association between mental health and community support in lockdown communities during the COVID-19 pandemic: Evidence from rural China. J. Rural Stud. 2021, 82, 87–97. [Google Scholar] [CrossRef]
- Yoon, J.; Han, J.; Yi, J. The relationship between the risk perception, stress level, and coping for the outdoor recreation participants during pandemic. Korean J. Leis. Recreat. Park 2021, 45, 89–101. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; COVID-19 Systematic Urgent Review Group Effort (SURGE) Study Authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Loades, M.E.; Chatburn, E.; Higson-Sweeney, N.; Reynolds, S.; Shafran, R.; Brigden, A.; Linney, C.; McManus, M.N.; Borwick, C.; Crawley, E. Rapid systematic review: The impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 1218–1239. [Google Scholar] [CrossRef]
- Nordha, H.; Hartigb, T.; Hagerhalla, C.M.; Fry, G. Components of small urban parks that predict the possibility for restoration. Urban For. Urban Green. 2009, 8, 225–235. [Google Scholar] [CrossRef]
- Schipperijna, J.; Ekholmb, O.; Stigsdotter, U.K.; Toftager, M.; Bentsena, P.; Kamper-Jørgensenb, F.; Randrup, T.B. Factors influencing the use of green space: Results from a Danish national representative survey. Landsc. Urban Plan. 2010, 95, 130–137. [Google Scholar] [CrossRef]
- van Vliet, E.; Dane, G.; Weijs-Perrée, M.; van Leeuwen, E.; van Dinter, M.; van den Berg, P.; Borgers, A.; Chamilothori, K. The influence of urban park attributes on user preferences: Evaluation of virtual parks in an online stated-choice experiment. Int. J. Environ. Res. Public Health 2021, 18, 212. [Google Scholar] [CrossRef]
- Grantz, K.H.; Meredith, H.R.; Cummings, D.A.T.; Metcalf, C.J.E.; Grenfell, B.T.; Giles, J.R.; Mehta, S.; Solomon, S.; Labrique, A.; Kishore, N.; et al. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Oliver, N.; Lepri, B.; Sterly, H.; Lambiotte, R.; Deletaille, S.; De Nadai, M.; Letouzé, E.; Salah, A.A.; Benjamins, R.; Cattuto, C.; et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 2020, 6, eaay2471. [Google Scholar] [CrossRef]
- Pan, J.; Bardhan, R.; Jin, Y. Spatial distributive effects of public green space and COVID-19 infection in London. Urban For. Urban Green. 2021, 62, 127182. [Google Scholar] [CrossRef]
- Johnson, T.F.; Hordley, L.A.; Greenwell, M.P.; Evans, L.C. Associations between COVID-19 transmission rates, park use, and landscape structure. medRxiv 2021. [Google Scholar] [CrossRef]
- Veitch, J.; Carver, A.; Abbott, G.; Giles-Corti, B.; Timperio, A.; Salmon, J. How active are people in metropolitan parks? An observational study of park visitation in Australia. BMC Public Health 2015, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Huerta, C.; Cafagna, G. Snapshot of the Use of Urban Green Spaces in Mexico City during the COVID-19 Pandemic: A Qualitative Study. Int. J. Environ. Res. Public Health 2021, 18, 4304. [Google Scholar] [CrossRef]
- Abdullah, M.; Dias, C.; Muley, D.; Shahin, M. Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transp. Res. Interdiscip. Perspect. 2020, 8, 100255. [Google Scholar] [CrossRef]
- Shakibaei, S.; De Jong, G.C.; Alpkokin, P.; Rashidi, T.H. Impact of the COVID-19 pandemic on travel behavior in Istanbul: A panel data analysis. Sustain. Cities Soc. 2021, 65, 102619. [Google Scholar] [CrossRef]
- Park, J.; Lee, P.S.-H. Relationship between Remotely Sensed Ambient PM10 and PM2.5 and Urban Forest in Seoul, South Korea. Forests 2020, 11, 1060. [Google Scholar] [CrossRef]
- Wolch, J.; Jerrett, M.; Reynolds, K.; McConnell, R.; Chang, R.; Dahmann, N.; Brady, K.; Gilliland, F.; Su, J.G.; Berhane, K. Childhood obesity and proximity to urban parks and recreational resources: A longitudinal cohort study. Health Place 2011, 17, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.; Jeong, S. Assessing the spatial distribution of urban parks using GIS. Landsc. Urban Plan. 2007, 82, 25–32. [Google Scholar] [CrossRef]
- Donahue, M.; Keeler, B.; Wood, S.; Fisher, D.; Hamstead, Z.; McPhearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Sung, H.; Go, D.; Choi, C.; Cheon, S.; Park, S. Effects of street-level physical environment and zoning on walking activity in Seoul, Korea. Land Use Policy 2015, 49, 152–160. [Google Scholar] [CrossRef]
- Hox, J.J. Multilevel Analysis: Techniques and Applications, 2nd ed.; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R(2) and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Sohn, D. Private-Car Mode Choice in Commuting and Its Hidden Impacts on the Travel Time: Focused on the Multilevel Determinant Measures of Individual, Household, and Residential Area. J. Korea Plan. Assoc. 2020, 55, 54–68. [Google Scholar] [CrossRef]
- Rabe Hesketh, S.; Skrondal, A. Multilevel and Longitudinal Modeling Using Stata; STATA Press: College Station, TX, USA, 2008. [Google Scholar]
- Festus, I.A. Key issues on landscape planning in the context of environmental sustainability. Eur. Sci. J. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Hart, J.E.; Holland, I.; Sabath, M.B.; Wu, X.; Laden, F.; Dominici, F.; James, P. County-level exposures to greenness and associations with COVID-19 incidence and mortality in the United States. Environ. Res. 2021, 199, 111331. [Google Scholar] [CrossRef] [PubMed]
- Astell Burt, T.; Feng, X. Time for ‘green’ during COVID-19? Inequities in green and blue space access, visitation and felt benefits. Int. J. Environ. Res. Public Health 2021, 18, 2757. [Google Scholar] [CrossRef] [PubMed]
Variable | No. of Grid | Average (Percent) | Std. Dev. | Min | Max | ||
---|---|---|---|---|---|---|---|
Dep. Var. | Average daily park visit before pandemic (A) | 2512 | 332.9 | 636.671 | 0 | 10,494.6 | |
Log-visitor before pandemic (Log A) | 2512 | 4.1 | 2.349 | 0 | 9.3 | ||
Average daily park visitor during pandemic (B) | 2512 | 336.0 | 593.846 | 0 | 8324.6 | ||
Log-visitor during pandemic (Log B) | 2512 | 4.3 | 2.188 | 0 | 9.0 | ||
Difference in park visiting (C = A − B) | 2512 | 3.1 | 180.257 | −2170.1 | 1565.9 | ||
Log-difference (Log (C + min(C))) | 2512 | 7.7 | 0.187 | −0.1 | 8.2 | ||
Independent Variables | Park type | Plane (ref.) | 1394 | 55.5% | |||
Line | 529 | 21.1% | |||||
Point | 589 | 23.5% | |||||
Exercise facility | No (ref.) | 1513 | 60.2% | ||||
Yes | 999 | 39.8% | |||||
Play facility | No (ref.) | 2078 | 82.7% | ||||
Yes | 434 | 17.3% | |||||
Cultural facility | No (ref.) | 2340 | 93.2% | ||||
Yes | 172 | 6.8% | |||||
Parking lot | No (ref.) | 1626 | 64.7% | ||||
Yes | 886 | 35.3% | |||||
No. bus stations (cell) | 2512 | 0.4 | 0.841 | 0 | 6 | ||
Subway station (cell) | No (ref.) | 2503 | 99.6% | ||||
Yes | 9 | 0.4% | |||||
Shopping mall (cell) | No (ref.) | 2422 | 96.4% | ||||
Yes | 90 | 3.6% | |||||
No. bus stations (park) | 2512 | 4.7 | 6.035 | 0 | 25 | ||
Subway station (park) | No (ref.) | 2340 | 93.2% | ||||
Yes | 172 | 6.8% | |||||
Shopping mall (park) | No (ref.) | 2029 | 80.8% | ||||
Yes | 483 | 19.2% | |||||
Daily neighborhood facility density (m2/km2) within 500 m buffer | 2512 | 2852.5 | 6017.612 | 0 | 47,259.0 | ||
General hospital within 500 m buffer | No (ref.) | 1664 | 66.2% | ||||
Yes | 848 | 33.8% | |||||
Population density (persons/km2) within 500 m buffer | 2512 | 2991.8 | 4055.741 | 45.4 | 25487.1 | ||
Employment density (persons/km2) within 500 m buffer | 2512 | 2410.0 | 2492.544 | 14.6 | 13,904.5 | ||
Zoning | Commercial (ref.) | 158 | 6.3% | ||||
Green | 1121 | 44.6% | |||||
Residential | 1037 | 41.3% | |||||
Others | 196 | 7.8% | |||||
Difference of population before pandemic (Model A/Model B/Model C) | 2512 | 1754.8/786.8/14,752.7 | 4207.8/2190.6/37702.5 | −1192/−1029/−14821 | 13,973/7310/126,799 |
Predictors | Model A: Before Pandemic | Model B: During Pandemic | Model C: Difference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Estimates | Std. Error | Estimates | Std. Error | Estimates | Std. Error | |||||
(Intercept) | 4.19416 | *** | 0.24774 | 4.26814 | *** | 0.23985 | 7.7047 | *** | 0.0379 | |
Park type [Point] | 0.91456 | *** | 0.19956 | 0.81039 | *** | 0.19378 | 0.011 | 0.0345 | ||
Park type [Line] | 0.66161 | * | 0.25532 | 0.59893 | * | 0.24819 | −0.1148 | * | 0.0454 | |
Exercise facility [Yes] | 0.47204 | ** | 0.15845 | 0.46162 | ** | 0.15395 | 0.0381 | 0.0268 | ||
Play facility [Yes] | 0.31202 | + | 0.16818 | 0.30173 | + | 0.1639 | 0.0129 | 0.0276 | ||
Cultural facility [Yes] | −0.72998 | 0.4641 | −0.79357 | + | 0.45045 | 0.099 | 0.0865 | |||
Parking lot [Yes] | −0.14809 | 0.22628 | −0.10215 | 0.21983 | −0.0217 | 0.0408 | ||||
No. bus stations (cell) | 0.64782 | *** | 0.04154 | 0.59071 | *** | 0.04038 | −0.0266 | *** | 0.0045 | |
Subway station (cell) [Yes] | 0.10208 | 0.53954 | −0.10459 | 0.52452 | −0.0398 | 0.0568 | ||||
Shopping mall (cell) [Yes] | 0.64434 | *** | 0.18485 | 0.49374 | ** | 0.17971 | −0.0057 | 0.0194 | ||
No. bus stations (park) | 0.04067 | + | 0.0227 | 0.03575 | 0.02205 | 0.0027 | 0.004 | |||
Subway station (park) [Yes] | −0.58639 | 0.45308 | −0.48451 | 0.43999 | 0.0287 | 0.0796 | ||||
Shopping mall (park) [Yes] | −0.25423 | 0.29878 | −0.11511 | 0.29019 | 0.0865 | 0.053 | ||||
Daily neighborhood facility density (m2/km2) within 500 m buffer | 0.00001 | 0.00001 | 0.00000 | 0.00001 | 0.00000 | 0.00000 | ||||
General hospital within 500 m buffer [Yes] | 0.31797 | * | 0.15787 | 0.35964 | * | 0.15263 | −0.0072 | 0.0263 | ||
Population density (persons/km2) within 500 m buffer | 0.00001 | 0.00002 | 0.00002 | 0.00002 | 1.051 × 10−5 | ** | 3.139 × 10−6 | |||
Employment density (persons/km2) within 500 m buffer | 0.00006 | 0.00004 | 0.00006 | 0.00004 | −3.295 × 10−5 | *** | 6.139 × 10−6 | |||
Zoning [Green] | −1.0279 | *** | 0.16338 | −0.83993 | *** | 0.15856 | 0.0013 | 0.0176 | ||
Zoning [Others] | −1.04095 | *** | 0.21447 | −0.85381 | *** | 0.20842 | 0.0217 | 0.0243 | ||
Zoning [Residential] | −0.56588 | *** | 0.1586 | −0.52325 | ** | 0.15405 | 0.005 | 0.0171 | ||
Difference of population | −0.00006 | *** | 0.00001 | −0.00005 | * | 0.00002 | 0.00000 | 0.00000 | ||
Random Effects | ||||||||||
(Variance at the park level) | 2.13 | 2.01 | 0.02 | |||||||
τ (Variance of the intercept at the unit level) | 0.75 | 0.70 | 0.03 | |||||||
0.26/0.403 | 0.26/0.382 | 0.102/0.614 | ||||||||
Model statistics | Observations at the park level | 338 | 338 | 338 | ||||||
Observations at the cell level | 2512 | 2512 | 2512 | |||||||
Marginal R2/Conditional R2 | 0.348/0.518 | 0.295/0.478 | 0.102/0.614 | |||||||
AIC | 9382.24 | −1705.093 | −1705.093 | |||||||
OLS model statistics | Adjusted R2 | 0.48 | 0.43 | 0.051 | ||||||
AIC | 9801.309 | 9693.138 | −1390.727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, H.; Kim, W.-R.; Oh, J.; Lee, S.; Lee, P.S.-H. Are All Urban Parks Robust to the COVID-19 Pandemic? Focusing on Type, Functionality, and Accessibility. Int. J. Environ. Res. Public Health 2022, 19, 6062. https://doi.org/10.3390/ijerph19106062
Sung H, Kim W-R, Oh J, Lee S, Lee PS-H. Are All Urban Parks Robust to the COVID-19 Pandemic? Focusing on Type, Functionality, and Accessibility. International Journal of Environmental Research and Public Health. 2022; 19(10):6062. https://doi.org/10.3390/ijerph19106062
Chicago/Turabian StyleSung, Hyungun, Woo-Ram Kim, Jiyeon Oh, Samsu Lee, and Peter Sang-Hoon Lee. 2022. "Are All Urban Parks Robust to the COVID-19 Pandemic? Focusing on Type, Functionality, and Accessibility" International Journal of Environmental Research and Public Health 19, no. 10: 6062. https://doi.org/10.3390/ijerph19106062
APA StyleSung, H., Kim, W. -R., Oh, J., Lee, S., & Lee, P. S. -H. (2022). Are All Urban Parks Robust to the COVID-19 Pandemic? Focusing on Type, Functionality, and Accessibility. International Journal of Environmental Research and Public Health, 19(10), 6062. https://doi.org/10.3390/ijerph19106062