Impact of Gingivitis on Circulating Neutrophil Reactivity and Gingival Crevicular Fluid Inflammatory Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Gingival Crevicular Fluid (GCF) Collection and Processing
2.3. Collection of Blood and Preparation of Neutrophils
2.4. Enhanced Chemiluminescent Assay
2.5. Neutrophil Extracellular Trap (NET) Quantification Assay
2.6. Chemotaxis Assays
2.7. GCF Cytokine/Enzyme Quantification by Multiplex Immunoassay
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapple, I.L.C.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S74–S84. [Google Scholar] [CrossRef] [PubMed]
- Albandar, J.M.; Kingman, A. Gingival recession, gingival bleeding, and dental calculus in adults 30 years of age and older in the United States, 1988–1994. J. Periodontol. 1999, 70, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lee, S.; Hujoel, P.; Su, M.; Zhang, W.; Kim, J.; Zhang, Y.P.; De Vizio, W. Prevalence and severity of gingivitis in American adults. Am. J. Dent. 2010, 23, 9–13. [Google Scholar]
- Kinane, D.F.; Attstrom, R.; European Workshop in Periodontology Group B. Advances in the pathogenesis of periodontitis. Group B consensus report of the fifth European Workshop in Periodontology. J. Clin. Periodontol. 2005, 32 (Suppl. 6), 130–131. [Google Scholar]
- Loe, H.; Silness, J. Periodontal Disease in Pregnancy. I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Lang, N.P.; Bartold, P.M. Periodontal health. J. Periodontol. 2018, 89 (Suppl. 1), S9–S16. [Google Scholar] [CrossRef] [Green Version]
- Kowashi, Y.; Jaccard, F.; Cimasoni, G. Sulcular polymorphonuclear leucocytes and gingival exudate during experimental gingivitis in man. J. Periodontal Res. 1980, 15, 151–158. [Google Scholar] [CrossRef]
- El-Benna, J.; Dang, P.M.; Gougerot-Pocidalo, M.A. Priming of the neutrophil NADPH oxidase activation: Role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 2008, 30, 279–289. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Faurschou, M.; Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003, 5, 1317–1327. [Google Scholar] [CrossRef]
- Matthews, J.B.; Wright, H.J.; Roberts, A.; Cooper, P.R.; Chapple, I.L. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol. 2007, 147, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.B.; Wright, H.J.; Roberts, A.; Ling-Mountford, N.; Cooper, P.R.; Chapple, I.L. Neutrophil hyper-responsiveness in periodontitis. J. Dent. Res. 2007, 86, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.R.; Chapple, I.L.; Matthews, J.B. Neutrophil superoxide release and plasma C-reactive protein levels pre- and post-periodontal therapy. J. Clin. Periodontol. 2016, 43, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.R.; Chapple, I.L.; Matthews, J.B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun 2015, 21, 714–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, H.M.; Ling, M.R.; Insall, R.; Kalna, G.; Spengler, J.; Grant, M.M.; Chapple, I.L. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J. Clin. Periodontol. 2015, 42, 1–11. [Google Scholar] [CrossRef] [Green Version]
- White, P.; Sakellari, D.; Roberts, H.; Risafi, I.; Ling, M.; Cooper, P.; Milward, M.; Chapple, I. Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis. J. Clin. Periodontol. 2016, 43, 1041–1049. [Google Scholar] [CrossRef]
- Chapple, I.L.; Socransky, S.S.; Dibart, S.; Glenwright, H.D.; Matthews, J.B. Chemiluminescent assay of alkaline phosphatase in human gingival crevicular fluid: Investigations with an experimental gingivitis model and studies on the source of the enzyme within crevicular fluid. J. Clin. Periodontol. 1996, 23, 587–594. [Google Scholar] [CrossRef]
- Loe, H. The Gingival Index, the Plaque Index and the Retention Index Systems. J. Periodontol. 1967, 38, 610–616. [Google Scholar] [CrossRef]
- Lobene, R.R. Clinical studies of the cleaning functions of dentifrices. J. Am. Dent. Assoc. 1982, 105, 798–802. [Google Scholar] [CrossRef]
- Chapple, I.L.; Brock, G.R.; Milward, M.R.; Ling, N.; Matthews, J.B. Compromised GCF total antioxidant capacity in periodontitis: Cause or effect? J. Clin. Periodontol. 2007, 34, 103–110. [Google Scholar] [CrossRef]
- Palmer, L.J.; Cooper, P.R.; Ling, M.R.; Wright, H.J.; Huissoon, A.; Chapple, I.L. Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin. Exp. Immunol. 2012, 167, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Muinonen-Martin, A.J.; Veltman, D.M.; Kalna, G.; Insall, R.H. An improved chamber for direct visualisation of chemotaxis. PLoS ONE 2010, 5, e15309. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
- Gamonal, J.; Sanz, M.; O’Connor, A.; Acevedo, A.; Suarez, I.; Sanz, A.; Martinez, B.; Silva, A. Delayed neutrophil apoptosis in chronic periodontitis patients. J. Clin. Periodontol. 2003, 30, 616–623. [Google Scholar] [CrossRef]
- Bhadbhade, S.J.; Acharya, A.B.; Thakur, S. Correlation between probing pocket depth and neutrophil counts in dental plaque, saliva, and gingival crevicular fluid. Quintessence Int. 2012, 43, 111–117. [Google Scholar]
- Sanikop, S.; Patil, S.; Agrawal, P. Gingival crevicular fluid alkaline phosphatase as a potential diagnostic marker of periodontal disease. J. Indian Soc. Periodontol. 2012, 16, 513–518. [Google Scholar]
- Eberhard, J.; Grote, K.; Luchtefeld, M.; Heuer, W.; Schuett, H.; Divchev, D.; Scherer, R.; Schmitz-Streit, R.; Langfeldt, D.; Stumpp, N.; et al. Experimental gingivitis induces systemic inflammatory markers in young healthy individuals: A single-subject interventional study. PLoS ONE 2013, 8, e55265. [Google Scholar] [CrossRef]
- Oh, H.; Hirano, J.; Takai, H.; Ogata, Y. Effects of initial periodontal therapy on interleukin-1beta level in gingival crevicular fluid and clinical periodontal parameters. J. Oral Sci. 2015, 57, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, J.; Dommisch, H.; Skora, P.; Horvath, G.; Latz, E.; Hoerauf, A.; Waller, T.; Kawai, T.; Jepsen, S.; Deschner, J.; et al. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol. 2015, 305, 453–463. [Google Scholar] [CrossRef]
- Gonzales, J.R.; Herrmann, J.M.; Boedeker, R.H.; Francz, P.I.; Biesalski, H.; Meyle, J. Concentration of interleukin-1beta and neutrophil elastase activity in gingival crevicular fluid during experimental gingivitis. J. Clin. Periodontol. 2001, 28, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.J.; Chapple, I.L.; Matthews, J.B. Levels of TGFbeta1 in gingival crevicular fluid during a 21-day experimental model of gingivitis. Oral Dis. 2003, 9, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Offenbacher, S.; Barros, S.; Mendoza, L.; Mauriello, S.; Preisser, J.; Moss, K.; De Jager, M.; Aspiras, M. Changes in gingival crevicular fluid inflammatory mediator levels during the induction and resolution of experimental gingivitis in humans. J. Clin. Periodontol. 2010, 37, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, M.M.; Creese, A.J.; Barr, G.; Ling, M.R.; Scott, A.E.; Matthews, J.B.; Griffiths, H.R.; Cooper, H.J.; Chapple, I.L. Proteomic analysis of a noninvasive human model of acute inflammation and its resolution: The twenty-one day gingivitis model. J. Proteome Res. 2010, 9, 4732–4744. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, G.G.; Baelum, V.; Sorsa, T.; Tervahartiala, T.; Skottrup, P.D.; López, R. Salivary levels of MPO, MMP-8 and TIMP-1 are associated with gingival inflammation response patterns during experimental gingivitis. Cytokine 2019, 115, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Wellappuli, N.C.; Fine, N.; Lawrence, H.P.; Goldberg, M.; Tenenbaum, H.C.; Glogauer, M. Oral and Blood Neutrophil Activation States during Experimental Gingivitis. JDR Clin. Transl. Res. 2018, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Van Dyke, T.E.; Working Group 1 of the Joint EFPAAPw. Periodontitis and atherosclerotic cardiovascular disease: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J. Periodontol. 2013, 84 (Suppl. 4), S24–S29. [Google Scholar] [CrossRef]
Day 0 | Day 21 | Day 35 | ||
---|---|---|---|---|
Gingival Index (% above threshold) | Control | 17.78 ± 13.80 | 21.48 ± 23.93 | 14.07 ± 10.68 |
Test | 23.71 ± 15.64 | 65.19 ± 17.75 **** | 17.04 ± 10.17 | |
Plaque Index (% above threshold) | Control | 34.22 ± 25.93 | 21.331 ± 4.31 | 13.78 ± 11.12 |
Test | 33.33 ± 19.35 | 88.89 ± 13.51 **** | 16.00 ± 9.71 | |
GCF volume (µL) | Control | 0.26 ± 0.15 | 0.34 ± 0.18 | 0.20 ± 0.19 |
Test | 0.31 ± 0.13 | 0.48 ± 0.14 * | 0.19 ± 0.20 |
Analyte | Day 0 | Day 21 | Day 35 | |
---|---|---|---|---|
C5C5a | Control | 6.41 ± 9.29 | 6.68 ± 3.68 | 6.81 ± 7.91 |
Test | 4.62 ± 2.59 | 7.42 ± 4.82 | 9.55 ± 6.82 * | |
CXCL1/GRO-α | Control | 0.17 ± 0.18 | 0.16 ± 0.06 | 0.16 ± 0.09 |
Test | 0.29 ± 0.39 | 0.24 ± 0.14 | 0.46 ± 0.24 * | |
CXCL5/ENA-78 | Control | 0.011 ± 0.009 | 0.015 ± 0.007 | 0.013 ± 0.009 |
Test | 0.018 ± 0.021 | 0.02 ± 0.006 | 0.041 ± 0.022 * | |
IL-1β | Control | 0.03 ± 0.04 | 0.02 ± 0.02 | 0.04 ± 0.03 |
Test | 0.04 ± 0.05 | 0.28 ± 0.2 *** | 0.11 ± 0.09 | |
S100A8 | Control | 1.02 ± 1.68 | 1.15 ± 0.66 | 0.43 ± 0.36 |
Test | 0.82 ± 0.6 | 1.02 ± 0.47 | 1.07 ± 0.86 | |
TNF-α | Control | 0.002 ± 0.002 | 0.002 ± 0.001 | 0.003 ± 0.002 |
Test | 0.003 ± 0.002 | 0.004 ± 0.002 | 0.007 ± 0.004 ** | |
C3a | Control | 3.67 ± 3.67 | 3.49 ± 2.04 | 1.66 ± 1.37 |
Test | 3.57 ± 2.92 | 3.15 ± 3.06 | 5.21 ± 1.97 * | |
CXCL2/GRO-β | Control | 0.029 ± 0.032 | 0.031 ± 0.018 | 0.031 ± 0.028 |
Test | 0.049 ± 0.043 | 0.059 ± 0.051 | 0.08 ± 0.049 | |
CXCL8/IL-8 | Control | 0.13 ± 0.2 | 0.08 ± 0.03 | 0.11 ± 0.09 |
Test | 0.21 ± 0.32 | 0.11 ± 0.05 | 0.4 ± 0.35 ** | |
S100A9 | Control | 3.65 ± 3.81 | 3.88 ± 2.29 | 4.68 ± 3.91 |
Test | 6.06 ± 5.36 | 12.71 ± 7.46 ** | 9.68 ± 6.24 | |
MPO | Control | 7.72 ± 8.64 | 7.71 ± 6.87 | 9.04 ± 6.49 |
Test | 12.72 ± 14.56 | 21.92 ± 14.75 | 30.74 ± 25.98 | |
S100A9/S100A8 | Control | 7.08 ± 5.94 | 4.28 ± 2.84 | 9.92 ± 6.05 |
Test | 9.86 ± 7.88 | 12.04 ± 3.85 * | 12.09 ± 7.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, H.M.; Yonel, Z.; Kantarci, A.; Grant, M.M.; Chapple, I.L.C. Impact of Gingivitis on Circulating Neutrophil Reactivity and Gingival Crevicular Fluid Inflammatory Proteins. Int. J. Environ. Res. Public Health 2022, 19, 6339. https://doi.org/10.3390/ijerph19106339
Roberts HM, Yonel Z, Kantarci A, Grant MM, Chapple ILC. Impact of Gingivitis on Circulating Neutrophil Reactivity and Gingival Crevicular Fluid Inflammatory Proteins. International Journal of Environmental Research and Public Health. 2022; 19(10):6339. https://doi.org/10.3390/ijerph19106339
Chicago/Turabian StyleRoberts, Helen M., Zehra Yonel, Alpdogan Kantarci, Melissa M. Grant, and Iain L. C. Chapple. 2022. "Impact of Gingivitis on Circulating Neutrophil Reactivity and Gingival Crevicular Fluid Inflammatory Proteins" International Journal of Environmental Research and Public Health 19, no. 10: 6339. https://doi.org/10.3390/ijerph19106339
APA StyleRoberts, H. M., Yonel, Z., Kantarci, A., Grant, M. M., & Chapple, I. L. C. (2022). Impact of Gingivitis on Circulating Neutrophil Reactivity and Gingival Crevicular Fluid Inflammatory Proteins. International Journal of Environmental Research and Public Health, 19(10), 6339. https://doi.org/10.3390/ijerph19106339