Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Water Retention Value (wrv) Calculation by SWAT
2.1.2. Multi-Objective Land Use Demand Optimization
- (1)
- Economic development scenario (ES), which only focuses on a single economic development goal, of course, within a certain development range, to maximize the EV objective function;
- (2)
- Ecological protection development scenario (ECS), which maximizes two objectives of EV and ESV and attaches equal importance to sustainable economic development and ecological protection;
- (3)
- Water resource conservation scenario (WCS), which simultaneously maximizes the three objectives of EV, ESV and WRV in order to strengthen the water retention capacity.
2.1.3. Land Use Change Simulation and Prediction Land Use
2.2. Study Area
2.3. Data Source
3. Results
3.1. Accuracy of SWAT Model and Water Retention Value
3.2. PLUS Model Simulation Accuracy and Results
3.2.1. Model Accuracy and Landscape Comparison
3.2.2. Analysis of Land Use Expansion Strategy
3.3. Future Land Use Simulation
3.3.1. Future Land Demand Simulation Based on the Multi-Objective Scenario
3.3.2. Future Land Spatial Pattern Simulation Based on PLUS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Metrics | Explanation | Metrics | Explanation |
---|---|---|---|
PD | Patch Density | PLADJ | Proportion of Like Adjacencies Index |
PAFRAC | Perimeter-Area Fractal Dimension | IJI | Interspersion and Juxtaposition Index |
LSI | Landscape Shape Index | CONNECT | Landscape Connectivity Index |
PLAND | Percentage of Landscape | COHESION | Patch Cohesion Index |
COHESION | Patch Cohesion Index | DIVISION | Landscape Division Index |
SHAPE | Mean Shape Index | SHDI | Shannon Diversity Index |
LPI | Largest Patch Index | SIDI | Shannon’s Diversity Index |
ED | Edge Density | SHEI | Shannon’s Evenness Index |
CONTIG | Contiguity Index | AI | Aggregation Index |
CONTAG | Contagion Index |
Metric | PD | PAFRAC | LSI | PLAND | COHESION | AI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ob10 | Ob20 | Sim20 | Ob10 | Ob20 | Sim20 | Ob10 | Ob20 | Sim20 | Ob10 | Ob20 | Sim20 | Ob10 | Ob20 | Sim20 | Ob10 | Ob20 | Sim20 | |
AGRL | 0.15 | 0.17 | 0.32 | 1.35 | 1.31 | 1.34 | 96.4 | 101.1 | 128.7 | 11.4 | 10.1 | 10.2 | 99.4 | 99.3 | 99.3 | 93.8 | 93.1 | 91.2 |
FRSD | 0.36 | 0.35 | 1.25 | 1.35 | 1.36 | 1.41 | 94.0 | 93.8 | 103.0 | 78.1 | 79.0 | 79.0 | 100.0 | 100.0 | 100.0 | 97.7 | 97.7 | 97.5 |
FRSE | 0.01 | 0.01 | 0.07 | 1.30 | 1.25 | 1.14 | 14.7 | 14.8 | 17.4 | 1.4 | 1.4 | 1.4 | 99.6 | 99.6 | 99.5 | 97.4 | 97.4 | 97.0 |
FRSM | 0.02 | 0.02 | 0.02 | 1.23 | 1.21 | 1.30 | 25.6 | 26.0 | 32.9 | 3.1 | 3.0 | 3.0 | 99.6 | 99.5 | 99.6 | 96.9 | 96.8 | 96.0 |
FRSO | 0.10 | 0.10 | 0.11 | 1.29 | 1.27 | 1.32 | 57.3 | 53.6 | 60.6 | 0.3 | 0.4 | 0.4 | 88.8 | 91.6 | 91.6 | 78.3 | 82.7 | 80.4 |
SHRUB | 0.01 | 0.01 | 0.01 | 1.28 | 1.28 | 1.30 | 15.3 | 14.7 | 16.6 | 0.0 | 0.0 | 0.0 | 84.6 | 86.4 | 85.2 | 75.4 | 77.5 | 74.4 |
GRASSS | 4.07 | 3.97 | 4.18 | 1.43 | 1.45 | 1.45 | 285.9 | 286.5 | 294.5 | 3.9 | 3.6 | 3.6 | 95.7 | 95.8 | 95.8 | 68.3 | 67.2 | 66.3 |
WETL | 0.00 | 0.00 | 0.00 | 1.21 | 1.30 | 1.23 | 3.9 | 8.2 | 7.0 | 0.0 | 0.1 | 0.0 | 96.5 | 98.3 | 96.2 | 94.7 | 93.3 | 92.8 |
WATR | 0.12 | 0.12 | 0.14 | 1.54 | 1.54 | 1.54 | 59.0 | 59.8 | 60.5 | 1.0 | 1.0 | 1.0 | 99.4 | 99.4 | 99.4 | 87.2 | 87.1 | 86.9 |
URBN | 0.03 | 0.04 | 0.08 | 1.22 | 1.30 | 1.24 | 27.6 | 44.8 | 41.9 | 0.8 | 1.3 | 1.3 | 97.1 | 97.6 | 97.0 | 93.3 | 91.5 | 92.0 |
Metrics | Ob10 | Ob20 | Sim20 | Metrics | Ob10 | Ob20 | Sim20 |
---|---|---|---|---|---|---|---|
PD | 4.86 | 4.79 | 6.18 | CONNECT | 0.04 | 0.04 | 0.05 |
SHAPE | 1.24 | 1.26 | 1.22 | COHESION | 99.96 | 99.96 | 99.95 |
LPI | 76.19 | 76.9 | 76.99 | DIVISION | 0.42 | 0.41 | 0.41 |
ED | 27.44 | 27.66 | 30.6 | SHDI | 0.84 | 0.84 | 0.83 |
LSI | 96.05 | 96.79 | 106.89 | SIDI | 0.37 | 0.36 | 0.36 |
CONTIG | 0.23 | 0.22 | 0.18 | SHEI | 0.36 | 0.36 | 0.36 |
CONTAG | 77.8 | 77.75 | 77.45 | IJI | 41.27 | 44.24 | 43.47 |
PLADJ | 95.84 | 95.81 | 95.36 | AI | 95.88 | 95.85 | 95.4 |
References
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Deng, X.; Shi, Q.; Zhang, Q.; Shi, C.; Yin, F. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000–2010. Phys. Chem. Earth-Parts A/B/C 2015, 79–82, 2–10. [Google Scholar] [CrossRef]
- Pelletier, J.; Murray, B.; Pierce, J.; Bierman, P.; Breshears, D.; Crosby, B.; Ellis, M.; Foufoula-Georgiou, E.; Heimsath, A.; Houser, C.; et al. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs. Earth’s Future 2015, 3, 220–251. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Zhao, C.; Yan, H. Systematic Modeling of Impacts of Land use and Land Cover Changes on Regional Climate: A Review. Adv. Meteorol. 2013, 2013 Pt 1, 1–11. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milligan, G.; Bradshaw, R.H.W.; Clancy, D.; Żychaluk, K.; Spencer, M. Effects of human land use and temperature on community dynamics in European forests. Quat. Sci. Rev. 2020, 247, 106458. [Google Scholar] [CrossRef]
- Mendoza, M.E.; Granados, E.L.; Geneletti, D.; Pérez-Salicrup, D.R.; Salinas, V. Analysing land cover and land use change processes at watershed level: A multitemporal study in the Lake Cuitzeo Watershed, Mexico (1975–2003). Appl. Geogr. 2011, 31, 237–250. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change Part A Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Huang, J.; Zhang, R.; Huang, J. Critical Studies on Integrating Land use Induced Effects on Climate Regulation Services into Impact Assessment for Human Well-Being. Adv. Meteorol. 2013, 2013 Pt 2, 1–14. [Google Scholar] [CrossRef]
- Scholte, S.S.K.; van Teeffelen, A.J.A.; Verburg, P.H. Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods. Ecol. Econ. 2015, 114, 67–78. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-based impact assessment of land use/cover and climate changes on watershed hydrology in heihe river basin of northwest china. Adv. Meteorol. 2015, 2015 Pt 1, 410198. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.S.; Benfield, E.F.; Bolstad, P.V.; Helfman, G.S.; Jones, E.B.D. Stream biodiversity: The ghost of land use past. Proc. Natl. Acad. Sci. USA 1998, 95, 14843–14847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crooks, E.C.; Harris, I.M.; Patil, S.D. Influence of Land use Land Cover on River Water Quality in Rural North Wales, UK. J. Am. Water Resour. Assoc. 2021, 57, 357–373. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H.; Wang, Q. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecol. Indic. 2016, 62, 1–13. [Google Scholar] [CrossRef]
- Greene, E.M.; Liston, G.E.; Sr, R.A.P. Relationships between landscape, snowcover depletion, and regional weather and climate. Hydrol. Processes 1999, 13, 2453–2466. [Google Scholar] [CrossRef]
- Mao, D.; Cherkauer, K.A. Impacts of land use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Matheussen, B.; Kirschbaum, R.L.; Goodman, I.A.; O’Donnell, G.M.; Lettenmaier, D.P. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Hydrol. Processes 2000, 14, 867–885. [Google Scholar] [CrossRef]
- VanShaar, J.R.; Haddeland, I.; Lettenmaier, D.P. Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchments. Hydrol. Processes 2002, 16, 2499–2520. [Google Scholar] [CrossRef]
- Wilopo, W.; Putra, D.P.E.; Hendrayana, H. Impacts of precipitation, land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin, Indonesia. Environ. Monit. Assess. 2021, 193, 76. [Google Scholar] [CrossRef]
- Salama, R.; Hatton, T.; Dawes, W. Predicting land use impacts on regional scale groundwater recharge and discharge. J. Environ. Qual. 1999, 28, 446–460. [Google Scholar] [CrossRef]
- Cho, J.; Barone, V.A.; Mostaghimi, S. Simulation of land use impacts on groundwater levels and streamflow in a Virginia watershed. Agric. Water Manag. 2009, 96, 1–11. [Google Scholar] [CrossRef]
- Guo, Y.; Zhai, Y.; Wu, Q.; Teng, Y.; Jiang, G.; Wang, J.; Guo, F.; Tang, Q.; Liu, S. Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shandong Province, China: A case study. Environ. Earth Sci. 2016, 75, 112. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, Y.; Qian, J.; Wang, X.; Chang, X.; Ma, L.; Li, F.; Wu, J. Spring protection and sustainable management of groundwater resources in a spring field. J. Hydrol. 2020, 582, 124498. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X. Deforestation, forestation, and water supply. Science 2021, 371, 990–991. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Başkent, E.Z. Assessment and valuation of key ecosystem services provided by two forest ecosystems in Turkey. J. Environ. Manag. 2021, 285, 112135. [Google Scholar] [CrossRef]
- Paluš, H.; Krahulcová, M.; Parobek, J. Assessment of Forest Certification as a Tool to Support Forest Ecosystem Services. Forests 2021, 12, 300. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Cortés-Calderón, S.; Mora, F.; Arreola-Villa, F.; Balvanera, P. Ecosystem services supply and interactions along secondary tropical dry forests succession. For. Ecol. Manag. 2021, 482, 118858. [Google Scholar] [CrossRef]
- Gash, J.H.C. Comparative estimates of interception loss from three coniferous forests in Great Britain. J. Hydrol. 1980, 48, 89–105. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Sun, G.; McNulty, S.G.; Cohen, E.C.; Myers, J.A.M. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US. Hydrol. Earth Syst. Sci. 2012, 16, 2839–2857. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, A.I.J.M.; Bruijnzeel, L.A.S. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description. J. Hydrol. 2001, 247, 239. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, J.; Liu, Y.; Tian, L. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China. Sci. Total Environ. 2018, 625, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Canales, M.; Lopez Benito, A.; Passuello, A.; Terrado, M.; Ziv, G.; Acuna, V.; Schuhmacher, M.; Javier Elorza, F. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Sci. Total Environ. 2012, 440, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.N.; Kawasaki, A. A Review of Methodological Integration in Land use Change Models. Int. J. Agric. Environ. Inf. Syst. 2016, 7, 25. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ni, D.; Song, W. Agricultural land use optimal allocation system in developing area: Application to Yili watershed, Xinjiang Region. Chin. Geogr. Sci. 2012, 22, 232–244. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, Z.; Coello Coello, C.A.; Mansourian, A. Dynamic urban land use change management using multi-objective evolutionary algorithms. Soft Comput. 2020, 24, 4165–4190. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Jinbing, Z.; Huiru, Z.; Pengyan, Z.; Yongpeng, S.; Ying, Z.; Yanyan, L.; Tianqi, R.; Zhenyue, L.; Dan, Y.; Yuanyuan, L. Construction of GI Network Based on MSPA and PLUS Model in the Main Urban Area of Zhengzhou: A Case Study. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Nianlong, H.; Miao, Y.; Peihong, J. Multi-Scenario Landscape Ecological Risk Simulation for Sustainable Development Goals: A Case Study on the Central Mountainous Area of Hainan Island. Int. J. Environ. Res. Public Health 2022, 19, 4030. [Google Scholar] [CrossRef]
- Chen, L.; Ying-Mei, W.; Bin-Pin, G.; Ke-Jun, Z.; Yan, W.; Chan, L. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin. Water 2016, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Faiz, M.; Liu, D.; Fu, Q.; Li, M.; Baig, F.; Tahir, A.; Khan, M.; Li, T.; Cui, S. Performance evaluation of hydrological models using ensemble of General Circulation Models in the northeastern China. J. Hydrol. 2018, 565, 599–613. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Ieee Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Kevin, M.; Barbara, J.M. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Pacific Northwest Research Station: Corvallis, OR, USA, 1995. [Google Scholar] [CrossRef]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, J.; Song, C. Study on the dynamic relation between spring discharge and precipitation in Fusong County, Changbai Mountain, Jilin Province of China. Water Sci. Technol. Water Supply 2016, 16, 428–437. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Li, L.; Yun, W.J.; Ma, J.N.; Gao, L.L. Delimitating the Ecological Spaces for Water Conservation Services in Jilin Province of China. Land 2021, 10, 1029. [Google Scholar] [CrossRef]
- Wu, X.; Shi, W.J.; Tao, F.L. Estimations of forest water retention across China from an observation site-scale to a national-scale. Ecol. Indic. 2021, 132, 10. [Google Scholar] [CrossRef]
- Du, H.; Liu, J.; Li, M.; Buntgen, U.; Yang, Y.; Wang, L.; Wu, Z.; He, H. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Glob. Chang. Biol. 2018, 24, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Zaremehrjardy, M.; Victor, J.; Park, S.; Smerdon, B.; Alessi, D.S.; Faramarzi, M. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. J. Hydrol. 2022, 606, 16. [Google Scholar] [CrossRef]
- Ge Wang, C.X.; Qi, Z.; Lai, Q.; Meng, F.; Liang, X. Research on the exploitation and utilization degree of mineral water based on ecological base flow in the Changbai Mountain basalt area, northeast China. Forests 2021, 1–13. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhong, Q.L.; Cheng, D.L.; Xu, C.B.; Chang, Y.N.; Lin, Y.Y.; Li, B.Y. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 13. [Google Scholar] [CrossRef]
- Pei, S.; Xie, G.D.; Liu, C.L.; Zhang, C.S.; Li, S.M.; Chen, L. Dynamic Changes of Water Conservation Service of Typical Ecosystems in China within a Year Based on Data from CERN. Sustainability 2015, 7, 16513–16531. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.L.; Du, C.L.; Guo, X.D.; Shi, W.J. Heterogeneity of water-retention capacity of forest and its influencing factors based on meta-analysis in the Beijing-Tianjin-Hebei region. J. Geogr. Sci. 2021, 31, 69–90. [Google Scholar] [CrossRef]
- Zhang, B.A.; Li, W.H.; Xie, G.D.; Xiao, Y. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Tang, L.L.; Cai, X.B.; Gong, W.S.; Lu, J.Z.; Chen, X.L.; Lei, Q.; Yu, G.L. Increased Vegetation Greenness Aggravates Water Conflicts during Lasting and Intensifying Drought in the Poyang Lake Watershed, China. Forests 2018, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Schwarzel, K.; Zhang, L.L.; Montanarella, L.; Wang, Y.H.; Sun, G. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Chang. Biol. 2020, 26, 944–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Q.; Shen, X.J.; Wang, Y.J.; Jiang, M.; Lu, X.G. Effects of Forest Changes on Summer Surface Temperature in Changbai Mountain, China. Forests 2021, 12, 1551. [Google Scholar] [CrossRef]
- Yan, B.; Xiao, C.; Liang, X.; Wei, R.; Wu, S. Characteristics and genesis of mineral water from Changbai Mountain, Northeast China. Environ. Earth Sci. 2015, 73, 4819–4829. [Google Scholar] [CrossRef]
- Tang, M.F.; Qiu, S.; Liu, L.J.; Li, T.; Li, S.L.; Yu, T.S. Landscape influences and management countermeasures of ginseng planting near Changbai mountain nature reserve. J. For. Res. 2021, 1–10. [Google Scholar] [CrossRef]
Land Use | Code | Variable Name | Percentage of Total Area (%) | |
---|---|---|---|---|
2010 | 2020 | |||
Cultivated Land | AGRL | 11.42 | 10.12 | |
Deciduous Broad-leaved Forest | FRSD | 78.13 | 79.01 | |
Evergreen Coniferous Forests | FRSE | 1.39 | 1.41 | |
Needle-broad-leaved Mixed Forest | FRSM | 3.07 | 3.04 | |
Open Forest | FRSO | 0.33 | 0.45 | |
Shrub Land | SHRUB | 0.02 | 0.02 | |
Grass Land | GRASS | 3.89 | 3.64 | |
Wet Land | WETL | 0.02 | 0.06 | |
Water Body | WATR | 0.99 | 1.00 | |
Artificial Surface | URBN | 0.75 | 1.27 |
Objective Function | Formula | Units |
---|---|---|
Economic value objective (EV) | EV 104 CNY eci 104 CNY/ha Ai ha | |
Ecological service value objective (ESV) | ESV 104 CNY esvi 104 CNY/ha Ai ha | |
Water retention value objective (WRV) | WRV 104 CNY wrvi 104 CNY/ha Ai ha |
Constraint Condition | Formula |
---|---|
Total area constraint | 1,876,897 ha |
Forest cover constraint | 1,876,8971,500,000 ha |
Upper and lower boundaries of x1 to x10 in 2030 | Lb = [128,000, 1,400,000, 20,000, 55,000, 0, 0, 0, 1000, 18,000, 23,000] ha Ub = [190,000, 1,500,000, 30,000, 65,000, 9000, 500, 68,000, 2,000, 19,000, 31,000] ha |
Upper and lower boundaries of x1 to x10 in 2050 | Lb = [128,000, 1,400,000, 26,000, 57,000, 0, 0, 0, 1000, 18,000, 23,000] ha Ub = [200,000, 1,876,897, 1,876,897, 1,876,897, 9000, 400, 70,000, 7000, 19,000, 60,000] ha |
Category | Data | Type | Source | Usage |
---|---|---|---|---|
Natural condition | DEM | Grid data | ASTER GDEM 30 m (http://www.gscloud.cn/sources/accessdata/310?pid=302, accessed on 5 June 2021) | Hydrological modeling/Driving factor of land use |
Soil | Grid data | HWSD v1.2 (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 6 June 2021) | Hydrological modeling/Driving factor of land use | |
Stream | Shapefile | Regional drainage map | Hydrological modeling/Driving factor of land use | |
Weather data | ASCII text | http://data.cma.cn/, accessed on 1 June 2021 | Hydrological modeling | |
Precipitation | Grid data | WorldClim v2.0 (http://www.worldclim.org/, accessed on 1 June 2021) | Driving factor of land use | |
Temperature | Grid data | Driving factor of land use | ||
Hydrologic data | ASCII text | Hydrological station | Validation of Hydrological Model | |
Social factor | Land use | Grid data | http://www.globallandcover.com/& http://maps.elie.ucl.ac.be/CCI/viewer/, accessed on 3 January 2021 | Hydrological modeling/Multi-objective programming |
Government | Shapefile | https://www.tianditu.gov.cn/, accessed on 4 June 2021 | Driving factor of land use | |
GDP | Grid data | http://www.geodoi.ac.cn/WebCn/Default.aspx, accessed on 4 June 2021 | Driving factor of land use | |
Population | Grid data | Driving factor of land use | ||
Other data | ASCII text | Local government | Basic Parameters |
Land Use Type | AGRL | FRSD | FRSE | FRSM | FRSO | SHRUB | GRAS | WETL | WATR | URBN |
---|---|---|---|---|---|---|---|---|---|---|
WLi (104 m3/ha) | 0.244 | 0.332 | 0.316 | 0.355 | 0.258 | 0.321 | 0.275 | 0.300 | −0.120 | 0 |
Level | Low Contribution | General Contribution | Medium Contribution | Great Contribution |
---|---|---|---|---|
Grading Standard | ||||
Grading Value | 0–0.035 | 0.035–0.067 | 0.067–0.098 | 0.098–1 |
Amount of factors | 19 | 67 | 46 | 18 |
Land Use Demand (ha) | 2020 | 2030 | 2050 | ||||
---|---|---|---|---|---|---|---|
S1_ES | S2_ECS | S3_WCS | S1_ES | S2_ECS | S3_WCS | ||
AGRL | 190,014 | 191,000 | 182,035 | 180,439 | 200,000 | 140,007 | 158,637 |
FRSD | 1,483,516 | 1,462,397 | 1,498,681 | 1,499,999 | 1,400,000 | 1,489,366 | 1,500,622 |
FRSE | 26,472 | 30,000 | 23,710 | 26,799 | 26,000 | 44,750 | 68,734 |
FRSM | 56,991 | 65,000 | 55,294 | 60,075 | 85,497 | 76,954 | 65,131 |
FRSO | 8364 | 9000 | 3684 | 3208 | 9000 | 4098 | 771 |
SHRUB | 347 | 500 | 274 | 169 | 400 | 253 | 274 |
GRASS | 68,373 | 68,000 | 66,457 | 62,555 | 70,000 | 69,999 | 34,220 |
WETL | 1054 | 2000 | 1217 | 1165 | 7000 | 4246 | 1698 |
WATR | 18,751 | 19,000 | 18,257 | 18,670 | 19,000 | 18,001 | 18,010 |
URBN | 23,758 | 31,000 | 27,288 | 23,818 | 60,000 | 29,223 | 28,800 |
EV (107 CNY) | 2908 | 3629 | 3241 | 2886 | 6541 | 3361 | 3293 |
ESV (107 CNY) | 6967 | 6950 | 6984 | 7006 | 6877 | 7094 | 7070 |
WRV (107 CNY) | 1773 | 1765 | 1773 | 1777 | 1735 | 1782 | 1782 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Tang, J.; Li, Z.; Yang, Y.; Dai, C.; Qu, Y.; Lv, H. Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 6610. https://doi.org/10.3390/ijerph19116610
Duan Y, Tang J, Li Z, Yang Y, Dai C, Qu Y, Lv H. Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China. International Journal of Environmental Research and Public Health. 2022; 19(11):6610. https://doi.org/10.3390/ijerph19116610
Chicago/Turabian StyleDuan, Yucong, Jie Tang, Zhaoyang Li, Yao Yang, Ce Dai, Yunke Qu, and Hang Lv. 2022. "Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China" International Journal of Environmental Research and Public Health 19, no. 11: 6610. https://doi.org/10.3390/ijerph19116610
APA StyleDuan, Y., Tang, J., Li, Z., Yang, Y., Dai, C., Qu, Y., & Lv, H. (2022). Optimal Planning and Management of Land Use in River Source Region: A Case Study of Songhua River Basin, China. International Journal of Environmental Research and Public Health, 19(11), 6610. https://doi.org/10.3390/ijerph19116610