Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Preprocess of Data
2.2. Voronoi Diagram and Areal Interpolation
2.3. Bayesian Spatial Modeling on the Supply of Adult Surgical Mask
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, J.; Huang, A.; Li, Z.; Tufekci, Z.; Zdimal, V.; van der Westhuizen, H.-M.; von Delft, A.; Price, A.; Fridman, L.; Tang, L.-H.; et al. An evidence review of face masks against COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2014564118. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Yen, M.-Y.; Lee, P.-I.; Hsueh, P.-R. How to Keep COVID-19 at Bay: A Taiwanese Perspective. J. Epidemiol. Glob. Health 2020, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.L.; Chi, H.; Chiu, N.C.; Tseng, C.Y.; Huang, Y.N.; Lin, C.Y. The Effect of a Name-Based Mask Rationing Plan in Taiwan on Public Anxiety Regarding a Mask Shortage During the COVID-19 Pandemic: Observational Study. JMIR Form Res 2021, 5, e21409. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Lin, Y.-W.; Wang, J.-Y.; Lin, M.-H. The pharmaceutical practice of mask distribution by pharmacists in Taiwan’s community pharmacies under the Mask Real-Name System, in response to the COVID-19 outbreak. Cost Eff. Resour. Alloc. 2020, 18, 1–5. [Google Scholar] [CrossRef]
- Wang, C.J.; Ng, C.; Brook, R.H. Response to COVID-19 in Taiwan Big Data Analytics, New Technology, and Proactive Testing. JAMA J. Am. Med. Assoc. 2020, 323, 1341. [Google Scholar] [CrossRef]
- Rao, J.N.K. Small Area Estimation; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ferrante, M.R.; Trivisano, C. Small area estimation of the number of firms’ recruits by using multivariate models for count data. Surv. Methodol. 2010, 36, 171–180. [Google Scholar]
- Chandra, H.; Chambers, R.; Salvati, N. Small area estimation of survey weighted counts under aggregated level spatial model. Surv. Methodol. 2019, 45, 31–59. [Google Scholar]
- Wakefield, J.; Okonek, T.; Pedersen, J. Small Area Estimation for Disease Prevalence Mapping. Int. Stat. Rev. 2020, 88, 398–418. [Google Scholar] [CrossRef]
- Jiang, J.M.; Lahiri, P. Mixed model prediction and small area estimation. TEST-Spain 2006, 15, 1–96. [Google Scholar] [CrossRef]
- Petrucci, A.; Salvati, N. Small area estimation for spatial correlation in watershed erosion assessment. J. Agric. Biol. Environ. Stat. 2006, 11, 169–182. [Google Scholar] [CrossRef]
- Griffith, D.A. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2000, 2, 141–156. [Google Scholar] [CrossRef]
- Lesage, J.P. Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models. Geogr. Anal. 2000, 32, 19–35. [Google Scholar] [CrossRef]
- Ross, M.; Wakefield, J. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation. J. R. Stat. Soc. Stat. 2015, 178, 1009–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Schrödle, B.; Held, L. A primer on disease mapping and ecological regression using INLA. Comput. Stat. 2010, 26, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.-C.; Hu, T.-H.; Hwang, J.-S. Daily forecast of dengue fever incidents for urban villages in a city. Int. J. Health Geogr. 2015, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Jin, C.; Xu, J.; Zhong, Y.; Xu, B. Supply-demand matching of medical services at a city level under the background of hierarchical diagnosis and treatment—based on Didi Chuxing Data in Haikou, China. BMC Health Serv. Res. 2022, 22, 354. [Google Scholar] [CrossRef]
- Sha, D.X.; Miao, X.; Lan, H.; Stewart, K.; Ruan, S.Y.; Tian, Y.F.; Tian, Y.Y.; Yang, C.W. Spatiotemporal analysis of medical resource deficiencies in the U.S. under COVID-19 pandemic. PLoS ONE 2020, 15, e0240348. [Google Scholar] [CrossRef]
- NCHC. Historical data repository, National Center for High-Performance Computing. Available online: https://scidm.nchc.org.tw/dataset/nhi-maskdata-archive (accessed on 19 May 2022).
- Chiang, C.H.; Chiang, C.H.; Chiang, C.H. Maintaining mask stockpiles in the COVID-19 pandemic: Taiwan as a learning model. Infect. Control Hosp. Epidemiol. 2021, 42, 244–245. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zeng, H. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis. J. Geogr. Syst. 2016, 18, 45–66. [Google Scholar] [CrossRef]
- Chiu, S. Spatial Point Pattern Analysis by using Voronoi Diagrams and Delaunay Tessellations—A Comparative Study. Biom. J. 2003, 45, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Do, V.H.; Thomas-Agnan, C.; Vanhems, A. Accuracy of areal interpolation methods for count data. Spat. Stat. 2015, 14, 412–438. [Google Scholar] [CrossRef] [Green Version]
- Goodchild, M.F.; Lam, N.S.-N. Areal interpolation: A variant of the traditional spatial problem. Geo-Processing 1980, 1, 297–312. [Google Scholar]
- Lenk, P.; Rao, A. Transition times: Distributions arising from time heterogeneous Poisson processes. Manag. Sci. 1995, 41, 1117–1129. [Google Scholar] [CrossRef]
- Moraga, P. Small Area Disease Risk Estimation and Visualization Using R. R J. 2018, 10, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Besag, J.; York, J.A.M. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. Vol. 1991, 42, 1–20. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Folmer, H. Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia. J. Geogr. Syst. 2020, 22, 105–142. [Google Scholar] [CrossRef]
- Mohebbi, M.; Wolfe, R.; Forbes, A. Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach. Int. J. Environ. Res. Public Health 2014, 11, 883–902. [Google Scholar] [CrossRef]
- Zhu, L.; Gorman, D.M.; Horel, S. Hierarchical Bayesian spatial models for alcohol availability, drug “hot spots” and violent crime. Int. J. Health Geogr. 2006, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Morales-Otero, M.; Núñez-Antón, V. Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates. Mathematics 2021, 9, 282. [Google Scholar] [CrossRef]
- Richardson, S.; Thomson, A.; Best, N.; Elliott, P. Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies. Environ. Health Perspect. 2004, 112, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. J. Mach. Learn. Res. 2010, 11, 3571–3594. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Aregay, M.; Lawson, A.B.; Faes, C.; Kirby, R.S. Bayesian multi-scale modeling for aggregated disease mapping data. Stat. Methods Med. Res. 2017, 26, 2726–2742. [Google Scholar] [CrossRef] [Green Version]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Neton, M.; Raftery, A. Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). J. R. Stat. Soc. Ser. B 1994, 56, 1–48. [Google Scholar]
- Bivand, R.S.; Gomez-Rubio, V.; Rue, H. Spatial Data Analysis with R-INLA with Some Extensions. J. Stat. Softw. 2015, 63, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, F.; Rue, H. Bayesian Spatial Modelling withR-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Alexander, N. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. J. R. Stat. Soc. Ser. A 2011, 174, 512–513. [Google Scholar] [CrossRef]
- Lin, Y.; Wannitikul, G.; Macnab, Y.C. A Bayesian Disease Mapping and Ecological Study on Spatial Epidemiology of Youth Suicide Mortality and Hospitalization, British Columbia, Canada, 1991–2000. Am. J. Epidemiol. 2006, 163, S28. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, A.; Kaur, J.; Sidana, C.; Shivam, S.; Singh, H. Geo-prioritization framework for COVID-19 vaccine allocation in India. Vaccine 2021, 39, 5254–5256. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, S.; Zheng, Z.; Lu, J. Optimizing Spatial Allocation of COVID-19 Vaccine by Agent-Based Spatiotemporal Simulations. GeoHealth 2021, 5, e2021GH000427. [Google Scholar] [CrossRef]
- Lee, M.-L.; Pace, R.K. Spatial Distribution of Retail Sales. J. Real Estate Finance Econ. 2005, 31, 53–69. [Google Scholar] [CrossRef]
- Sung, H. Estimating the spatial impact of neighboring physical environments on retail sales. Cities 2022, 123, 103579. [Google Scholar] [CrossRef]
- Haining, R.; Law, J.; Griffith, D. Modelling small area counts in the presence of overdispersion and spatial autocorrelation. Comput. Stat. Data Anal. 2009, 53, 2923–2937. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yin, X.; Napier, G.; Anderson, C.; Lee, D. Spatio-temporal disease risk estimation using clustering-based adjacency modelling. Stat. Methods Med. Res. 2022, 1–20. [Google Scholar] [CrossRef]
- Tapp, A.F. Areal Interpolation and Dasymetric Mapping Methods Using Local Ancillary Data Sources. Cartogr. Geogr. Inf. Sci. 2010, 37, 215–228. [Google Scholar] [CrossRef]
- Cheng, F.S.; Yen, Y.F.; Lin, S.Y.; Weng, S.H.; Chou, Y.C.; Chu, D.C.; Chen, C.C.; Hu, H.Y. Prevalence and Factors Associated with the Reuse of Mask during the COVID-19 Pandemic: A Nationwide Survey in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 8065. [Google Scholar] [CrossRef]
- Hu, H.Y.; Cheng, Y.F.; Yen, Y.F.; Lin, S.Y.; Weng, S.H.; Chou, Y.C.; Chu, D.C.; Chen, C.C. Mask reuse during the COVID-19 pandemic: A national survey in Taiwan. Eur. J. Public Health 2021, 31. [Google Scholar] [CrossRef]
Variable | Minimum | 1st Quantile | Median | 3rd Quantile | Maximum | VIF |
---|---|---|---|---|---|---|
store number | 0 | 0 | 1 | 2 | 9 | 1.136 |
median income (1000 NTD) | 222 | 378 | 439 | 528 | 1031 | 1.076 |
business area % | 0 | 0.006 | 0.019 | 0.052 | 0.457 | 1.118 |
residential area % | 0 | 0.062 | 0.165 | 0.287 | 0.783 | 1.197 |
mixed area % | 0 | 0.024 | 0.127 | 0.233 | 0.735 | 1.260 |
school area % | 0 | 0 | 0.001 | 0.031 | 0.632 | 1.040 |
supply count | 0 | 47 | 105 | 186 | 854 | − |
𝜌𝑖 | 0 | 0.491 | 0.850 | 1.446 | 18.896 | − |
Variable | Poisson: Mean(sd) | Negative Binomial: Mean(sd) | Poisson Spatial: Mean(sd) | Negative Binomial Spatial: Mean(sd) |
---|---|---|---|---|
intercept | 1.099(0.062) | 2.190(0.564) | 3.702(0.900) | 3.718(0.906) |
store number | 0.119(0.001) | 0.137(0.016) | 0.124(0.015) | 0.124(0.015) |
log(median income) | −0.214(0.010 | −0.341(0.094) | −0.565(0.147) | −0.565(0.147) |
business area % | 1.632(0.039) | 1.833(0.410) | 0.559(0.411) | 0.559(0.413) |
residential area % | −0.976(0.021) | −1.607(0.167) | −2.821(0.205) | −2.822(0.207) |
mixed area % | 0.426(0.021) | 0.131(0.214) | −0.990(0.255) | −0.990(0.258) |
school area % | 1.219(0.025) | 0.939(0.232) | 0.467(0.232) | 0.467(0.234) |
spatial component (1/𝜎u2) | 0.497(0.048) | 0.508(0.042) | ||
iid component (1/𝜎𝜈2) | 6.380(1.279) | 7.689(1.715) | ||
size parameter (𝜗) | 1.600(0.055) | 24.957(9.606) | ||
DIC * | 98,613 | 17,015 | 12,240 | 13,616 |
WAIC * | 97,560 | 17,019 | 11,876 | 13,891 |
MAPE * | 0.694 | 0.600 | 0.035 | 0.066 |
MSE * | 1.738 | 1.671 | 0.002 | 0.039 |
Title 2 | Variable | 0.025 Quantile | 0.500 Quantile | 0.975 Quantile |
---|---|---|---|---|
Poisson | store number | 0.116 | 0.119 | 0.121 |
log(median income) | −0.234 | −0.214 | −0.194 | |
business area % | 1.555 | 1.632 | 1.708 | |
residential area % | −0.016 | −0.976 | −0.936 | |
mixed area % | 0.385 | 0.426 | 0.467 | |
school area % | 1.170 | 1.219 | 1.268 | |
Negative binomial | store Number | 0.106 | 0.136 | 0.168 |
log(median income) | −0.523 | −0.340 | −0.155 | |
business area % | 1.041 | 1.828 | 2.649 | |
residential area % | −1.932 | −1.607 | −1.279 | |
mixed area % | −0.286 | 0.130 | 0.552 | |
school area % | 0.492 | 0.936 | 1.401 | |
Poisson spatial | store number | 0.095 | 0.124 | 0.153 |
log(median income) | −0.853 | −0.565 | −0.277 | |
business area % | −0.248 | 0.559 | 1.366 | |
residential area % | −3.224 | −2.821 | −2.418 | |
mixed area % | −1.491 | −0.990 | −0.489 | |
school area % | 0.012 | 0.467 | 0.923 | |
Negative binomial spatial | store number | 0.095 | 0.124 | 0.153 |
log(median income) | −0.853 | −0.565 | −0.275 | |
business area % | −0.251 | 0.559 | 1.372 | |
residential area % | −3.228 | −2.823 | −2.416 | |
mixed area % | −1.495 | −0.990 | −0.482 | |
school area % | 0.009 | 0.466 | 0.926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-C.; Lo, G.-J.; Chan, T.-C. Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 6704. https://doi.org/10.3390/ijerph19116704
Chen C-C, Lo G-J, Chan T-C. Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2022; 19(11):6704. https://doi.org/10.3390/ijerph19116704
Chicago/Turabian StyleChen, Chien-Chou, Guo-Jun Lo, and Ta-Chien Chan. 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 19, no. 11: 6704. https://doi.org/10.3390/ijerph19116704
APA StyleChen, C. -C., Lo, G. -J., & Chan, T. -C. (2022). Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(11), 6704. https://doi.org/10.3390/ijerph19116704