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Abstract: The digital economy plays a dual role in the process of global carbon emissions decoupling;
for this reason, its overall impact direction and mechanism are worth discussing. This paper attempts
to answer the question of the role of the digital economy, based on a review of the existing literature.
By constructing a panel smooth transition regression (PSTR) model, this paper empirically tests the
effect of the digital economy on carbon emissions decoupling, based on panel data from 30 provinces
in China from 2010 to 2019. In order to study the impact mechanism of the digital economy on
carbon emissions decoupling, the mediating effect of industrial structure optimization is analyzed
through a mediating effect model; the moderating effect is also explored by analyzing the network
centrality characteristics of the digital economy. The core-periphery analysis method is adopted
to group the samples to test the impact heterogeneity of the digital economy on carbon emissions
decoupling. Based on this empirical analysis, the following conclusions are drawn. First, the
digital economy has a promoting effect on carbon emissions decoupling, but this effect gradually
weakens with the development of the digital economy. Second, the digital economy can promote
carbon emissions decoupling through industrial structure optimization, and network centrality has a
positive moderating effect on this mechanism. Third, heterogeneity exists in the promoting effect of
the digital economy on carbon emissions decoupling, which is reflected in the different intensities of
the promotion effect between the core nodes and the peripheral nodes in the network; the attenuation
range of the promotion effect is also different when the regime switches.

Keywords: digital economy; carbon emissions decoupling; PSTR model; social network analysis

1. Introduction

The digital economy has gradually become an increasingly important driving force for
global economic growth [1]. Against this background, the relationship between the digital
economy and carbon emissions decoupling has attracted much attention. On the one hand,
the role of digital technology in reducing emissions has been widely recognized all over the
world. In the report “Digitalization and Energy”, published by the International Energy
Agency (IEA), it is predicted that through the large-scale use of digital technologies, in the
European Union alone, increased storage and digitally-enabled demand response could
reduce the curtailment of solar photovoltaics (PV) and wind power from 7 to 1.6% in 2040,
avoiding 30 million tonnes of carbon dioxide emissions in 2040 [2]. On the other hand, the
massive energy consumption brought about by the digital infrastructure has also raised
concerns about carbon emissions. Research from the German Information Technology
Association (ITG) in 2020 shows that the manufacturing and operation of digital equipment
and infrastructure directly generate 1.8 to 3.2% of global greenhouse gas emissions [3]. In
this context, it is of great practical significance to clarify the relationship between the digital
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economy and carbon emissions decoupling, which is conducive to grasping the positioning
of the digital economy in the process of global carbon emissions decoupling.

In the existing studies, there is little direct research on the relationship between the
digital economy and carbon emissions decoupling. The relevant research can be divided
into two categories. The first is research on the evolution characteristics and influencing
factors of carbon emissions decoupling, and the second is direct research into the role of
the digital economy in terms of carbon emissions.

Some of the relevant literature on the evolution characteristics of carbon emissions
decoupling analyzes the state of carbon emissions decoupling in a region by calculating
the carbon emissions decoupling coefficient. For example, Mikayilov et al. studied the
relationship between carbon dioxide emissions and GDP, based on the data of 12 Western
European countries from 1861 to 2015. It was found that among the 12 European countries,
8 countries have a slower growth of emissions than of GDP and are in a relatively strong
decoupling state [4]. Zhao, X. et al. studied the decoupling of China’s carbon dioxide
emissions from industrial growth from 1993 to 2013 and found that China’s industrial sector
was generally in a weak decoupling state during this period [5]. Xie, P. et al. calculated the
Tapio Decoupling Index of carbon dioxide emissions for China’s power industry from 1985
to 2017. The results show that the decoupling state of carbon dioxide emissions in the power
industry has mainly been characterized by expansionary negative decoupling and weak
decoupling, and the current strong decoupling state has only existed for 5 years [6]. Other
scholars have studied the factors affecting the decoupling coefficient using decomposition
analysis. For example, Xu, S. et al. decomposed the carbon emissions decoupling coefficient
of China’s fossil energy consumption through the logarithmic mean Divisia index, and they
found that the economic output effect significantly enhanced the decoupling, while the
energy intensity effect greatly reduced the decoupling, and the energy structure and the
economic structure effects had a slight impact on the decoupling [7]. Chen, J. et al. also
analyzed the impact of technical and non-technical factors on the carbon dioxide decoupling
coefficient of OECD (Organization for Economic Co-operation and Development) countries
by the logarithmic mean Divisia index. They believed that the impact of technical factors
was greater than that of non-technical factors, and their impact directions were usually
opposite [8]. Raza et al. decomposed the carbon emissions decoupling coefficient of
Pakistan’s transport sector from 1984 to 2018 and found that the carbon dioxide coefficient
effect is the factor that increases the decoupling coefficient, while the economic growth
effect is the factor that decreases the decoupling coefficient [9].

In the literature that directly studies the role of the digital economy regarding carbon
emissions, different scholars have put forward various views, which can be divided into
the following three types. The first view is that the development of the digital economy
will increase carbon emissions. For example, based on the panel data of Chinese provinces,
Qiang, M. et al. found that the digital economy had a negative impact on carbon emission
based on consumption, using the quantile regression method [10]. Avom et al. discovered
that the use of information and communications technology (ICT) increased carbon dioxide
emissions in 21 sub-Saharan African countries from 1996 to 2014 [11]. The second view is
that the development of the digital economy can reduce carbon emissions. For example,
based on OECD data, Wang, L. et al. discussed the impact and mechanism of digital tech-
nology innovation and spillover on China’s carbon emission intensity, and they suggested
that digital technology could promote energy conservation and emission reduction [12].
Based on the panel data of 30 provinces in China from 2011 to 2017, Li, Y. et al. conducted
research using the expanded STIRPAT (Stochastic Impacts by Regression on Population,
Affluence and Technology) model and found that the digital economy can reduce carbon
emissions via the moderating effect of the energy structure [13]. The third view holds that
the relationship between the digital economy and carbon emissions is not simply linear but
possesses certain nonlinear characteristics. For example, Li, X. et al. introduced the digital
economy variable into the Solow growth model and conducted research based on the panel
data of 190 countries from 2005 to 2016. They found that there is an inverted U-shaped,
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nonlinear relationship between carbon dioxide emissions and the digital economy [14].
Chien et al. studied the role of ICT in sustainable development in BRICS countries (Brazil,
Russia, India, China and South Africa) from 1995 to 2018. The results showed that ICT
significantly reduced carbon dioxide emissions only at a lower level of emissions [15].

As discussed above, the existing literature has tested the relationship between the
digital economy and carbon emissions using different methods, which lays a foundation
for subsequent research. However, at present, most of the literature directly studies the
relationship between the digital economy and carbon emissions without considering the
decoupling theory, which leaves a gap for the research presented in this paper. There
are some limitations in using carbon emission indicators directly as explained variables
for research because the result does not reflect the proper balance between economic
development and the environment. Similar to the contribution that lean technologies
can make to sustainable development, the technological changes brought about by the
digital economy should also aim to achieve sustainable development [16,17]. Sustainable
development theories emphasize promoting economic development without exceeding
the carrying capacity of the earth, to ensure ecological sustainability [18]. The key of the
sustainable development theory is how to reduce overall emissions while maintaining a
high pace of economic development [4]. It can be seen that according to sustainability
theory, reducing carbon emissions is not an isolated process. If reducing carbon emissions
is at the cost of causing severe losses to economic growth, this emission reduction is not
in line with the concept of sustainable development. Compared with the direct use of
carbon emissions as the explained variable, the decoupling theory can more appropriately
reflect the concept of sustainable development. Therefore, this paper attempts to introduce
the concept of decoupling based on existing research, taking the decoupling coefficient
of carbon emissions as the explained variable and digital economy as the explanatory
variable, to study the relationship between them. Furthermore, the mediating effect is
tested to explore the impact mechanism. The conclusions in the existing literature on the
relationship between the two are quite diverse. One of the possible reasons is that the
impact of the status of the digital economy has not been considered [19], because the impact
of individual digital economy development on carbon emissions decoupling may vary due
to its anomalous status. Therefore, this paper adopts a social network analysis method and
introduces the network centrality variable to further analyze the possible impact of the
digital economy’s status, from the perspective of the overall network.

The possible marginal contributions of this paper are as follows. First, the impact of
the digital economy on carbon emissions decoupling is tested. This paper examines the
impact of the digital economy on carbon emissions, based on the duality of the impact,
making the relationship between them controversial. This research is conducive to further
reflecting the transformation of the dependence of economic growth on carbon emissions
and the role of the digital economy in this process. Second, network centrality is included in
the analysis. The social network analysis method can help explore the status characteristics
(i.e., network centrality) of individuals in the population by abstracting several individuals
and their connections, to create a complex network of nodes and links. Incorporating
the network centrality variable into the analysis framework is conducive to exploring the
possible impacts of the network characteristics of the digital economy on carbon emissions
decoupling.

The structure of the rest of this paper is as follows. Section 2 elaborates the research
scheme; that is, based on the theoretical analysis of the impact of the digital economy
on carbon emissions decoupling, the primary research hypotheses are put forward and
the econometric models are set. Section 3 measures the variables, that is, measuring the
variables in the models based on the data source explanation. Section 4 conducts econo-
metric tests, wherein the relationship between the digital economy and carbon emissions
decoupling is analyzed through benchmark regression and the appropriate robustness tests.
Section 5 further discusses the transmission path of the digital economy affecting carbon
emissions decoupling on the basis of econometric tests, as well as the possible impacts of
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the digital economy on network centrality. Section 6 summarizes our conclusions and puts
forward the relevant policy implications.

2. Research Scheme
2.1. Theoretical Analysis and Research Hypothesis

Firstly, regarding the relationship between the digital economy and carbon emissions
decoupling, it is difficult to give a simple answer to this question due to the complexity
of the digital economy itself; the conclusions here will be different from the viewpoints of
different angles of the digital economy. On the one hand, the core industries in the digital
economy, such as the information technology industry, have a technological spillover effect
that can promote industrial structural transformation through technological empowerment,
decrease the proportion of the manufacturing industry, and increase the proportion of
the service industry, thereby reducing carbon emissions [11,19]. From this point of view,
the digital economy should promote carbon emissions decoupling. On the other hand,
the core industries of the digital economy will also generate substantial carbon emissions,
which will increase continuously with the development of the digital economy. From this
perspective, there are also factors within the digital economy that inhibit the decoupling
of carbon emissions. Under such factors, the relationship between the digital economy
and carbon emissions decoupling may not represent a simple linear relationship. The
environmental Kuznets curve (EKC) theory proposes that there is a nonlinear “inverted U-
shaped” relationship between economic growth and environmental pressure; that is, with
economic growth, the changing trend of environmental pressure first rises and then falls,
and that there is an “inflection point” between the two [20–22]. Some studies have shown
that this relationship can still be reflected after the environmental impact is embodied in
carbon dioxide and other emissions [23]. However, it is still controversial whether EKC is
established in terms of carbon emission. A typical criticism holds that the pollution caused
by carbon dioxide emissions is cumulative and is difficult to eliminate with economic
growth [24,25]. Nevertheless, the EKC hypothesis at least shows that there may be a staged
difference in the effect of economic growth on carbon emissions. Therefore, this paper
suggests that the digital economy, as a new economic form, may have a different effect on
the decoupling of carbon emissions from the EKC in terms of the direction, but there is also
the possibility of some staged differences; that is, with the continuous development of the
digital economy, its role in carbon emissions decoupling will change. Based on this theory,
the current paper proposes the following hypothesis:

Hypothesis 1 (H1). The digital economy promotes carbon emissions decoupling, on the whole, but
there is a nonlinear relationship between the two.

Secondly, this paper analyzes the mechanism of the effect of the digital economy
on carbon emissions decoupling from two perspectives. On the one hand, the digital
economy can optimize the current industrial structure. Since the digital economy takes
digital knowledge and information as being essential production factors, with digital
technology as the core driving force [26], the development of the digital economy itself
is accompanied by a digital transformation from resource- and labor-intensive industries
to technology-intensive industries, thus optimizing the industrial structure. In addition,
the digital industrialization brought by the digital economy has led to the birth of many
emerging industries, most of which are in relatively low-emission, technology-intensive
fields. The increasing proportion of such industries in the economic structure also promotes
the optimization of the industrial structure. On the other hand, the optimization of this
industrial structure can promote the decoupling of carbon emissions. In terms of the sources
of carbon emissions, statistics from the International Energy Agency (IEA) show that in
2020, global carbon emissions mainly came from three fields: energy power generation and
heating, transportation, and manufacturing and construction, accounting for 43%, 26%,
and 11% of emissions, respectively [27]. It is clear that in these three industries, the leading
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producers of carbon emissions are the various industrial sectors in the secondary industry.
In theory, the proportion of “dirty industries” in the broad industrial sector can be reduced
gradually through industrial structure optimization [28]. Industrial structure optimization
means that the proportion of the tertiary industry represented by technology-intensive
industries increases, most of which are clean industries exhibiting high efficiency and low
emissions. Their substitution for “dirty industries” is conducive to decoupling economic
growth from carbon emissions. Based on the above analysis, this paper proposes the
following hypothesis:

Hypothesis 2 (H2). The digital economy can promote the decoupling of carbon emissions by
optimizing the industrial structure.

Thirdly, this paper analyzes the influence of network centrality on the digital economy,
from the following two perspectives.

On the one hand, network centrality may affect the impact mechanism of the digital
economy regarding carbon emissions decoupling. In the digital economy network, nodes
have different network centralities because of their different positions in the overall network.
Network centrality measures the digital economy status of a node. The higher the network
centrality, the nearer the digital economy is to the core of the whole network. The core’s
status in the network is likely to lead to the emergence of digital economy agglomeration.
In his book Principles of Economics, Marshall mentioned that an important manifestation
of economic agglomeration is the lock-in effect; that is, once an industry chooses a certain
location, it tends to remain centered in that location for a long time [29]. The nodes at the
core of the digital economy network are often those regions with a relatively developed
economy, which are in an advantageous position in terms of the factor endowments
related to the digital economy. Digital economy agglomeration promotes technology-
intensive industries related to the digital economy, encouraging them to develop and
expand continuously in a concentrated manner in the region, resulting in the optimization
and upgrading of the industrial structure. Based on the above analysis, this paper proposes
the following hypothesis:

Hypothesis 3 (H3). Network centrality has a positive mediating effect on the process of the digital
economy’s optimization of the industrial structure.

Fourthly, network centrality may lead to the heterogeneity of the digital economy
affecting carbon emissions decoupling. According to the core–peripheral theory, once a
certain area forms a start-up industry, economic development will concentrate in the area
near the starting point, due to the comprehensive action of various factors, making the area
a core area; the peripheral area controlled by the core area is called the edge area [30,31].
There is a similar core–peripheral structure in the digital economy network, and network
centrality is considered to be a criterion when quantitatively distinguishing the core and
edge nodes. The location difference between the core and the edge areas in the digital
economy network leads to industrial transfer between the two nodes, resulting in the
heterogeneity of carbon emissions decoupling being promoted by the digital economy. The
nodes in the core position in the digital economy network control the edge nodes. The
core nodes can continuously obtain the production factors of the digital economy from the
edge nodes and can transfer the replaced industries to the edge nodes after optimizing
their industrial structure. As a result, when the digital economy develops, although the
edge nodes can also enjoy the carbon emissions decoupling effect brought by the digital
economy, their decoupling effect regarding carbon emissions will be more restrained and
lower than that of the core nodes because the areas must accommodate the relocation and
transfer of “dirty industries” from the core nodes. Based on this finding, this paper puts
forward the following hypothesis:

Hypothesis 4 (H4). The digital economy at the core of the network plays a stronger role in
promoting carbon emissions decoupling.
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2.2. Model Setting

Based on H1, this paper adopts the PSTR model as the benchmark model, taking the
carbon emissions decoupling coefficient as the explained variable and the digital economy
as the core explanatory variable, to analyze the possible nonlinear relationship between
the digital economy and carbon emissions decoupling. In 1999, Hansen proposed the
well-known panel threshold model (PTR) [32] to study the nonlinear relationship between
variables using panel data. The panel smooth transition regression (PSTR) model was
developed on the basis of the PTR model. By introducing a smooth transition function,
the PSTR model addresses the problem that the regression coefficients of the explanatory
variable of the PTR model will jump on both sides of the threshold value, so the new model
can achieve a smooth transition around the threshold [33]. In terms of the issues studied in
this paper, if the role of the digital economy in decoupling carbon emissions undergoes a
regional shift, this transition should be a gradual and smooth process rather than a sudden
change. Therefore, the use of the PSTR model can more accurately reflect the possible
regime transition process of the role of the digital economy on carbon emissions decoupling.
The specific structure of the PSTR model set in this paper is shown in Formula (1):

FCO2it = c + β0DEit + βXit +
r

∑
j=1

β jDEitGj
(
qit; γj, cj

)
+ ui + εit (1)

where FCO2it represents the decoupling coefficient of carbon emissions of province i in year
t; DEit stands for the digital economy development index of province i in year t; Xit is a
series of control variables; ui represents the individual fixed effect; εit is the random error
term. The coefficient β0 represents the impact of the digital economy on carbon emissions
decoupling, and this is the main parameter that this paper focuses on.

Gj
(
qit; γj, cj

)
is the jth transition function, which is a continuous function with a value

range of [0, 1]. Generally, the logistic function is adopted; that is:

Gj
(
qit; γj, cj

)
= 1/

[
1 + exp

(
−γj

m

∏
j=1

(
qit − cj

))]
(2)

In Formula (2), qit is the transition variable. In order to study the impact of the digital
economy on carbon emissions decoupling in different digital economy development levels,
the transition variable set in this paper is the digital economy development level itself,
so qit = DEit. γj is the smoothing parameter, which determines the smoothness of the
transition. When γj → ∞ , the form of the model is close to the PTR model; when γj → 0 ,
the model changes into an ordinary fixed-effect model. cj is the threshold value, and the
model will then have a smooth regime transition near cj.

3. Variable Measurement
3.1. Measurement of Carbon Emissions Decoupling

Regarding the selection of the carbon emissions decoupling coefficients, there are two
main decoupling coefficients used in the current mainstream research. One is the OECD
decoupling coefficient proposed by the OECD [34], and the other is the Tapio decoupling
coefficient proposed by Tapio in 2005 [35]. The calculation formulae of these two decoupling
coefficients are as follows:

F = 1−
Eti

/
Yti

Et0

/
Yt0

. (3)



Int. J. Environ. Res. Public Health 2022, 19, 6800 7 of 25

Formula (3) is the OECD decoupling coefficient, where E is the pollutant emissions; Y
is the regional GDP; ti is the final year; t0 is the base year.

ε =
Et+1 − Et

Et

/
Yt+1 −Yt

Yt
(4)

Formula (4) is the Tapio decoupling coefficient, where E and Y represent pollutant
emissions and regional GDP; t + 1 is the current period and t is the previous period.

The Tapio decoupling coefficient measures decoupling by calculating the elasticity.
Compared with the OECD decoupling coefficient, it has the advantage that there is no
need to select the base period. However, for trend-based research, the Tapio decoupling
coefficient has defects when exploring long-term relationships and it is highly sensitive
to short-term policies [36]. Since decoupling should not be a sudden process but instead
a stable and continuous separation of pollutant emissions and economic growth in the
long term, it requires a certain time period and exacts an economic cost [37]. From the
perspective of the trend research, the OECD decoupling coefficient is better than the Tapio
decoupling coefficient. Therefore, this paper chooses the OECD decoupling coefficient
to measure carbon emissions decoupling, to study the long-term trend change of carbon
emissions decoupling under the influence of the digital economy. In this paper, 2009 is
set as the base year of the measurement, and E in Formula (3) is concretely converted into
carbon dioxide emissions. After calculation, the carbon emissions decoupling coefficient
FCO2 is obtained. The value range of FCO2 is (−∞, 1); the larger the value, the greater the
degree of carbon emissions decoupling.

3.2. Digital Economy Measurement

In terms of measuring the digital economy development level, referring to the research
of Bei and Zhang [38], this paper comprehensively evaluates the development level of the
digital economy from four different dimensions: the digital industry, digital innovation,
digital users, and digital platform. After comprehensively considering the representative-
ness of indicators and the availability of relevant data, the final indicator system that is
constructed is shown in Table 1.

For some missing data, this paper adopts a combination of the LOCF (last observation
carried forward) method and the NOCB (next observation carried backward) method to
supplement them.

In the selection of the comprehensive evaluation method, this paper selects the entropy
method as the method of index weight calculation and comprehensive evaluation because
the method has the advantage of objectivity. Unlike the subjective assignment method,
the entropy method judges the weight of each index by the degree of discrete data, which
avoids the arbitrariness and indiscipline caused by the subjective assignment process
of the researcher. The specific steps to calculate the weight of each indicator and the
comprehensive evaluation value of the digital economy using the entropy method are
as follows.

First, weset xij as thevalueof indicator j ofevaluationobject i, (i = 1, 2, · · · , m; j = 1, 2, · · · , n);
the initial data matrix is as follows:

X=

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


Second, all indicators are standardized to eliminate the impact of different dimensions

on evaluation results, as shown in Formula (5):

x′ij =
xj − xmin

xmax − xmin
; x′ij =

xmax − xj

xmax − xmin
(5)
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In Formula (5), xj represents the value of indicator j; xmax represents the maximum
value of indicator j; xmin represents the minimum value of indicator j; xij represents the
standardized value. If the indicator used is a positive one, the first equation in Formula (5)
is used for processing; otherwise, the second equation is used for processing.

Table 1. Digital economy indicator system.

Level 1 Indicators Level 2 Indicators Level 3 Indicators Weight

Level of digital economy
development

Digital industry

Proportion of employment in urban units in
information transmission, computer services, and

software industries
24.24%

Software business revenue (log) 3.47%

The proportion of information transmission,
computer services, and the software industry in the

fixed assets of the whole society
11.41%

Digital innovation
Number of patents granted for 5G industry (log) 1.12%

Number of industrial Internet patents granted (log) 3.17%

Number of e-commerce patent granted (log) 14.61%

Digital user

Popularization rate of mobile telephones 6.88%

Total amount of telecommunication services (log) 5.45%

Number of Internet broadband access users per
capita 11.23%

Digital financial inclusion development (log) 5.72%

Digital platform
Number of domain names (log) 7.18%

Number of web pages (log) 1.53%

Number of Internet users (log) 4.00%

Third, to calculate the proportion of the ith evaluation value in indicator j, as shown
in Formula (6):

yij =
x′ij

∑m
i=1 x′ij

(i = 1, 2 . . . , m; j = 1, 2, . . . , n) (6)

Fourth, to calculate the information entropy value and utility value of the jth indicator
with Formulas (7) and (8):

ej = −K
m

∑
i=1

yijlnyij

(
K is a constant, K =

1
lnm

)
(7)

dj = 1− ej (8)

Formula (7) is the calculation formula of the information entropy. The information
utility value of an indicator is equal to the difference between 1 and the information entropy
value, as shown in Formula (8). The information utility value directly affects the size of the
weight. The bigger its value, the greater the indicator’s impact on the evaluation will be,
and the greater the weight.

Fifth, to calculate the weight of each indicator, the proportion of the information utility
value of the indicator among the information utility values of all indicators is used. The
weight calculation formula of the jth indicator is shown in Formula (9):

wj =
dj

∑n
j=1 dj

(9)
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Using the above methods, this paper calculates the weight of each indicator, as shown
in Table 1.

Sixth, the comprehensive evaluation value of the evaluation object is calculated. The
evaluation value of the evaluation object is calculated using the linear weighted summation
formula, as shown in Formula (10):

U =
n

∑
j=1

yijwj (10)

Using the above six steps, this paper finally calculates the comprehensive evaluation
value of the digital economy and uses it as an indicator to measure the development level
of the digital economy.

From the results in Table 1, it can be seen that among all the three-level indicators in
the indicator system, the proportion of urban unit employment in information transmission,
computer services, and the software industry has the largest weight, accounting for 24.24%.
The number of patents granted in the 5G industry has the lowest weight, which is 1.12%.

3.3. Measurement of the Network Centrality of the Digital Economy

In order to measure the network centrality of the digital economy, this paper first
constructs a provincial digital economy network using the method of social network
analysis, then calculates the network centrality variable of the digital economy. The specific
process is as follows [39].

The first step is to use the improved gravity model to calculate the digital economic
gravity among provinces, as shown in Formulas (11)–(13):

GEm,n = Km,n

3
√

PmGmDEm
3
√

PnGnDEn

ED2
m,n

(11)

Km,n =
DEm

DEm + DEn
(12)

EDm,n =
Dm,n

GPm − GPn
(13)

In Formulas (11) and (12), GEm,n represents the province-to-province digital economy
attraction; Pm and Pn are the resident population of province m and province n, respectively;
Gm and Gn are the real GDPs of province m and province n, respectively; DEm and DEn rep-
resent the digital economy development scores of province m and province n, respectively.
EDm,n stands for the economic distance between province m and province n; Km,n is the
weight coefficient, which reflects the asymmetry of the digital economy gravity between
two provinces. In Formula (13), Dm,n is the geographical distance between province m
and province n; GPm and GPn represent the per capita GDP of province m and province
n, respectively. Through the calculation of the gravity of the digital economy between
provinces, the digital economy gravity matrix (Ym,n)30×30 can finally be constructed.

In the second step, the gravity matrix is converted into a symmetric bipartite matrix
using the threshold method. The mean values of the elements in each row of the digital
economy gravity matrix are taken as the threshold values, which are compared with
the gravity Ym,n between every two nodes in the matrix. If the gravity is greater than
the threshold value, it means that there is a digital economy connection between nodes:
therefore, let it be 1; otherwise, let it be 0.

The third step is to calculate the measures of the digital economy’s network centrality.
This paper uses the degree of centrality and the closeness centrality as the core measures
of the digital economy’s network centrality [40,41]. The degree of centrality measures the
number of nodes directly connected with a node in the network, which is represented by
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the symbol DC. The more of such connections there are, the more the node is in the center
of the network. The calculation formula of the degree of centrality is as follows:

DCi = ∑
j=1

aij/(n− 1) (14)

In Formula (14), n is the total number of provinces; aij indicates whether there is a
digital economy connection between province i and province j. If aij = 1, it means that there
is a digital economy connection between the two provinces; otherwise, if aij = 0, there is no
digital economy connection between them.

The closeness centrality is the reciprocal of the sum of the distances between a node
and other nodes in the network, and it is represented by the symbol CC. The closeness
centrality can measure the ability of a node to be “independent from other nodes” in the
network. The stronger this ability is, the more direct associations the node can establish
with other nodes in the network, and the closer it is to the center of the network. The
formula for calculating the closeness centrality is as follows:

CC−1
i = ∑

j=1
d(i, j)/(n− 1) (15)

In Formula (15), d(i, j) represents the distance from province i to province j in the
digital economy network.

3.4. Description of Other Variables and Data Sources

In addition to the above variables, other types of variables used in this empirical study
can be described as follows.

The first type of variable is the control variable. Based on the existing research, this
paper selects the variables that may have an impact on carbon emissions decoupling as the
control variables [42–48]. Specifically, they are urban population density (UPD), which is
obtained by dividing the population of cities under the jurisdiction of each province by the
urban area, taking as the logarithm the green coverage of the built-up area (GCBA); that is,
the ratio of green areas of cities under the jurisdiction of each province compared to the
total area of built-up areas. The logarithm of per capita GDP (LGPC) is obtained by using
the nominal per capita GDP of each province to de-inflate through the GDP index, with
2010 as the base period. Considering the theory of the environmental Kuznets curve, the
square term of LGPC (STLGPC) is also taken as one of the control variables. Foreign direct
investment (FDI) is represented by the amount of actually utilized foreign capital, creating
the logarithm.

The second type of variable is the mediating variable. According to our theoretical
analysis and the research hypotheses, this paper selects the industrial structure optimization
as the mediating variable, which is represented by calculating the ratio of the output value
of the tertiary industry to the output value of the secondary industry. All empirical analyses
in this paper use the annual data for 30 Chinese provinces from 2010 to 2019, which can be
considered as panel data (there are a total of 34 provincial administrative units in China,
while the four provincial administrative regions of Hong Kong, Macau, Taiwan, and Tibet
are excluded from our study, due to missing data). After examining the collected data, this
paper ensures data integrity and consistency for all indicators.

The data of all indicators in this paper are obtained from public sources. Among them,
the digital economy and digital economy network centrality are calculated by the authors,
and the data required for the calculation are obtained from the China City Statistical
Yearbook, China Statistical Yearbook, Enterprise Research Data—Digital Economy Industry
Special Database, CEIC China Economic Database, China E-Commerce Yearbook, and
China Internet Network Information Center. The carbon emissions decoupling index is
also calculated by the author, and the data required for the calculation are obtained from
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the China Environment Statistical Yearbook. The data of the other variables are obtained
from the China Statistical Yearbook and provincial statistical yearbooks.

After winsorizing 1% in each tail of all variables, the descriptive statistics of all
variables in this paper are shown in Table 2.

Table 2. Descriptive statistics.

Item Mean sd Min Max

FCO2 0.371 0.189 −0.0630 0.666
DE 0.391 0.145 0.112 0.818

UPD 7.877 0.412 6.952 8.614
GCBA 0.392 0.0367 0.295 0.484
LGPC 10.70 0.462 9.482 11.78

STLGPC 114.7 9.937 89.90 138.8
FDI 12.80 1.651 7.310 15.09
LS 1.264 0.702 0.527 5.234
DC 0.250 0.0647 0.0690 0.414
CC 0.334 0.0487 0.213 0.547

From the descriptive statistics in Table 2, it can be seen that there is basically no singular
value for each variable, which meets the basic empirical requirements. Specifically, for the
carbon emissions decoupling coefficients, the average value is 0.371, and the maximum and
minimum values are −0.063 and 0.666, respectively, indicating that within the time span
selected in this paper, most provinces are in a relative decoupling state in terms of carbon
emissions decoupling. There is still room for improvement in the intensity of decoupling.

After obtaining all the data, this paper draws a scatter plot between the digital economy
and carbon emissions decoupling, to initially verify the relationship between the two, as
shown in Figure 1.
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As can be seen from Figure 1, the relationship between the digital economy and carbon
decoupling is positive overall, but there is a significant non-linear characteristic. This
indicates that Hypothesis 1 of this paper is reasonable. In the next part of this paper, this
nonlinear relationship will be empirically tested and quantitatively analyzed.
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4. Econometric Tests of the Impact of the Digital Economy on Carbon Emissions Decoupling
4.1. The Impact of the Digital Economy on Carbon Emissions Decoupling

According to the previous model setting, the PSTR model is adopted in the benchmark
regression to explore the impact of the digital economy on carbon emissions decoupling.
Before using the PSTR model for parameter estimation, it is necessary to determine the
transition function number r and the threshold value number m via testing, which can be
divided into the following steps [49,50].

Firstly, a linear test is conducted to determine whether the model has at least one
transition function; that is, the null hypothesis of the test meets γ = 0. However, since the
transition function of the PSTR model contains unknown parameters, the Taylor expansion
is used to replace the transition function G(qit; γ, c). The results of the tests are shown
in Table 3.

Table 3. Linear tests.

H0 chi2 df1 df2 Prob

b1 = 0 17.6282 2 263 6.541 × 10−8

b1 = b2 = 0 16.3572 3 262 8.967 × 10−10

b1 = b2 = b3 = 0 14.0167 4 261 2.254 × 10−10

b1 = b2 = b3 = b4 = 0 11.5404 5 260 4.450 × 10−10

According to the results in Table 3, all p-values are less than 0.05 under the null
hypothesis that the coefficient of the first-order to the fourth-order Taylor expansion is 0.
Therefore, the null hypothesis is rejected; that is, γ 6= 0, and the model has at least one
transition function.

Secondly, it is necessary to carry out the residual nonlinear test to see whether the
nonlinear information extraction of the model is sufficient; that is, it is assumed that there
is a second transition function G2(qit; γ2, c). The null hypothesis is γ2 = 0, and the Taylor
expansion is also used. The test results are shown in Table 4.

Table 4. Residual nonlinear test.

H0 chi2 df1 df2 Prob

b1 = 0 0.5738 1 263 0.4494
b1 = b2 = 0 0.5335 2 262 0.5872

b1 = b2 = b3 = 0 0.3638 3 261 0.7792
b1 = b2 = b3 = b4 = 0 0.3012 4 260 0.877

According to the results in Table 4, all p-values are greater than 0.05, so the null
hypothesis is accepted; that is, γ2 = 0, and the model has fully extracted the nonlinear
information. Therefore, the model is optimal when there is only one transition function.

Finally, the Terasvirta sequential test is employed to test the optimal threshold number
of the model. The results are shown in Table 5.

Table 5. Terasvirta sequential test.

H0 chi2 df1 df2 Prob

b1 = 0|b2 = b3 = 0 17.6282 2 263 6.541 × 10−8

b2 = 0|b3 = 0 11.9775 2 262 0.00001053
b3 = 0 9.2935 2 261 0.0001262

It can be seen from the results in Table 5 that the p-value of “b1 = 0|b2 = b3 = 0” is the
smallest and the rejection of the null hypothesis is the strongest, so it can be considered
that the optimal form of the model is established with only one threshold value.
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Based on the above tests, it can be seen that the PSTR model in this paper is optimal
when it has one transition function and one threshold value (that is, r = 1, m = 1). Therefore,
the final form of the benchmark model is set as Formula (16) in this paper:

FCO2it = c + β0DEit + βXit + β1DEitG(qit; γ, c) + ui + εit. (16)

After determining the numbers of the transition function and the threshold, this
paper adopts the NLS method to estimate the parameters. The results of the benchmark
regression are shown in Table 6. Figure 2a,b show the images of the transition function and
the coefficient of the digital economy affecting carbon emissions decoupling, respectively.

Table 6. Benchmark regression.

Item

FCO2

Linear
(1)

Non-Linear
(2)

DE 0.530 *** −0.175 ***
(6.540) (−4.120)

UPD −0.003
(−0.220)

GCBA 0.206
(1.150)

LGPC −1.578 ***
(−5.040)

STLGPC 0.106 ***
(7.120)

FDI 0.008
(1.580)

threshold1 0.482 ***
(32.710)

Lngamma 3.277 ***
(9.970)

Constant 4.777 ***
(100.750)

R2 0.968
Observations 300

Robust standard errors in parentheses. *** p < 0.01.
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It can be seen from the results in Table 6 that when the transition function G(sit; c, γ ) = 0,
the model was in the low regime, and the regression coefficient of the digital economy
was 0.530, which is significant at a significance level of 1%. Then, near the threshold
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DE = 0.482, the model underwent a smooth transition process. When the transition function
G(sit; c, γ ) = 1, the model shifted to a high regime. At this time, the regression coefficient
of the digital economy decreased to 0.530 − 0.175 = 0.355, and it was still significant at
the significance level of 1%. The benchmark regression results indicate that the digital
economy (DE) has a significant promoting effect on carbon emissions decoupling (FCO2)
as a whole, but this promoting effect is different around the threshold DE = 0.482. When
DE < 0.482, the promotion effect of the digital economy on carbon emissions decoupling is
stronger than when DE > 0.482. This shows that the promotion effect of the digital economy
on carbon emissions decoupling will be affected by the development level of the digital
economy. When the development level of the regional digital economy is low, the process
of carbon emissions decoupling can be effectively accelerated by developing the digital
economy. However, when the digital economy develops to a certain extent, this promotion
effect will gradually decline until it decays to a relatively low level and, then, remains
stable. The results of the benchmark regression confirm H1 in this paper.

4.2. Robustness Tests

In order to ensure the reliability of the conclusions of this paper, this sub-section
adopts three different methods to test the robustness of the benchmark regression results.

First of all, similar to carbon dioxide, sulfur dioxide is also a common emission in
industrial production and in life and should be controlled. Although there are some
differences in the harmfulness of carbon dioxide and sulfur dioxide, excessive emissions of
sulfur dioxide also bring environmental problems. From this point of view, carbon dioxide
and sulfur dioxide share similar properties. In addition, the two are coordinated in terms
of emissions control. For example, China’s “Air Pollution Prevention and Control Law”
stipulates that “coordinated control should be implemented on particulate matter, sulfur
dioxide, nitrogen oxide, volatile organic compounds, ammonia, and other air pollutants
and greenhouse gases”. Therefore, in the above benchmark model, the explained variable
is replaced by the decoupling coefficient of sulfur dioxide emissions, which is calculated in
a similar way to the decoupling coefficient of carbon emissions, and the parameters are
estimated again under the same conditions.

Secondly, carbon emissions decoupling may also be affected by government poli-
cies [51]. Especially since the new leading group came into power in 2013, the government
has paid more attention to environmental protection and emission reduction, promulgating
a series of policies and laws related to environmental protection and emissions reduction to
curb pollution, of which, limiting carbon emissions is the key measure. It is reasonable to
believe that the emissions reduction policies issued after the 18th CPC National Congress
will have an impact on carbon emissions decoupling. Therefore, referring to the practice of
Shi et al. [52], this paper sets the policy dummy variable (POL) using 2013 as the turning
point, acting as a control variable; that is, the variable value before 2013 is 0, and that after
2013 is 1. After adding the policy dummy variable into the original model, the parameters
are estimated again, ceteris paribus.

Furthermore, in the process of constructing the digital economy indicator system and
calculating the comprehensive evaluation value of digital economy development, some
indicators will have missing data. Although this paper has used statistical methods to
impute these missing data, they still have the potential to affect the benchmark regression
results. In order to eliminate the possible impact of missing data, this paper eliminates all
samples in the years with supplementary values and re-estimates the parameters.

The robustness test results using these three different methods are summarized in
Table 7, where the three groups from left to right correspond to the parameter estimation
results with the above three methods, respectively.

The results in Table 7 show that, under the three different robustness testing methods,
although the numerical values of the regression coefficients of the digital economy have
changed, their signs remain positive and their significance has not decreased significantly.
In addition, the nonlinear relationship between the digital economy and carbon emissions
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decoupling has not changed. In the three sets of results, the model shows significant
regime transition phenomena near the threshold value, and the regression coefficient on
the low regime is higher than that on the high regime, which is the same as the nonlinear
relationship between the two reflected in the benchmark regression. Therefore, it can be
considered that the regression results of the benchmark model in this paper are robust.

Table 7. Robustness test.

Item

FSO2 FCO2 FCO2

Linear
(1)

Non-Linear
(2)

Linear
(3)

Non-Linear
(4)

Linear
(5)

Non-Linear
(6)

DE 0.370 *** −0.150 ** 0.496 *** −0.145 *** 0.324 *** −0.185 ***
(3.040) (−2.260) (6.380) (−3.780) (3.410) (−3.190)

UPD −0.061 *** −0.005 −0.022
(−3.600) (−0.310) (−1.190)

GCBA 0.074 0.262 0.190
(0.370) (1.470) (0.890)

LGPC −2.648 *** −1.529 *** −0.982 *
(−8.000) (−4.990) (−1.910)

STLGPC 0.162 *** 0.102 *** 0.087 ***
(10.320) (6.960) (3.590)

FDI 0.004 0.007 0.005
(0.780) (1.470) (0.790)

POL 0.021 **
(2.540)

threshold1 0.432 *** 0.489 *** 0.470 ***
(10.890) (31.450) (27.910)

Lngamma 3.072 *** 3.403 *** 3.258 ***
(6.910) (9.300) (8.600)

Constant 10.480 *** 4.717 *** 0.852 ***
(91.690) (101.870) (112.980)

R2 0.964 0.968 0.960
Observations 300 300 180

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Discussion on the Impact of the Digital Economy on Carbon Emissions Decoupling

This paper analyzes the regime transition phenomenon in the benchmark model, in
terms of the respective evolutionary trends of carbon emissions and economic growth
under the influence of the digital economy.

First, from the perspective of carbon emissions, there are stage differences in the role
of the digital economy regarding carbon emissions. When the development of the digital
economy is at a low level, industrial digitization integrates digital technology into the
traditional production process, improves the production efficiency of traditional manufac-
turing enterprises, and improves the energy consumption control mode, thereby achieving
a good effect in terms of emission reduction and pollution control. Meanwhile, digital
industrialization in the digital economy promotes the upgrading of the industrial structure
by giving birth to emerging industries, having a substitution effect on the secondary indus-
try containing more high-emission industries. Therefore, at this stage, the development
of the digital economy can significantly reduce carbon emissions. When digital economy
development reaches a certain level, the continuous expansion of its scale may be restricted
by some objective conditions, especially the constraints of the digital economy infrastruc-
ture. Therefore, after reaching this stage, continued digital economy development needs
the support of larger-scale digital economy infrastructure construction and continuous
operation, and this process will inevitably bring higher energy consumption and carbon
dioxide emissions. Digital economy infrastructure, such as big data centers and cloud
computing centers, will consume a great deal of electricity, which usually comes from
coal-fired power plants, in terms of China’s energy structure, leading to significant carbon
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emissions. According to the 2019 statistics from the Greenpeace Organization and the
North China Electric Power University, China’s data centers generated 99 million tons of
carbon dioxide in 2018, equivalent to the annual emissions of about 21 million vehicles [53].
Therefore, as the scale of the digital economy continues to expand during this stage, its
role in reducing emissions gradually declines. This process continues until the needs of
infrastructure for the expansion of the digital economy are gradually met and a relative
balance is reached between the two. After that, the emission reduction role of the digital
economy still dominates, but since the digital economy infrastructure that has been built
will still generate large carbon emissions, the emission reduction role of the digital economy
will be suppressed to a certain extent at a relatively low institutional level at this time. In
addition to the above reasons, the new pollution problems brought by the development
of the digital economy are also one of the possible factors leading to the stage differences.
With digital economy development, especially the development of digital industrialization,
many emerging industries have been born and gradually expanded [54,55], the most typical
example of which is the e-commerce industry. The emergence of e-commerce not only
brings convenience to people’s lives but also brings new emission problems. For example,
the large amount of waste packaging generated by online shopping need to be disposed
of, as well as a large amount of fossil fuel energy being consumed by vehicles during
commodity transportation, all of which have brought new carbon emission problems. As
digital economy development reaches a certain level, the impact of these new pollution
problems becomes more and more apparent. Therefore, the emission reduction role of the
digital economy will be restrained to a certain extent.

Secondly, from the perspective of economic growth, unlike the effect on carbon emis-
sions, the development of the digital economy makes a stable contribution to economic
growth, as evidenced by many existing studies [56–58]. As an emerging economic form, the
digital economy itself is part of the overall economy, so it is obvious that the development
of the digital economy has a positive impact on economic growth. In addition, in terms
of economic structure analysis, there is still much room to increase the share of the digital
economy in China’s overall GDP. According to the “14th Five-Year Plan for Digital Economy
Development” issued by the Chinese State Council, the value-added figures of China’s
digital economy core industries account for 7.8% of the GDP in 2020, while according to
the Plan, this share should reach 10% by 2025. This indicates that China’s digital economy
will have great potential for a long time to come and can contribute to economic growth
steadily without the phenomenon of regime transition.

From the above two aspects of the analysis, it is clear that digital economy development
makes a stable contribution to economic growth, while there are stage differences in the
contribution of the digital economy to carbon emissions. Influenced by these two aspects,
the impact of the digital economy on carbon emissions decoupling shows a phenomenon
of regime transition.

5. Further Analysis of the Digital Economy Affecting Carbon Emissions Decoupling
5.1. Analysis of the Impact Mechanism of the Digital Economy on Carbon Emissions Decoupling

The direct impact of the digital economy on carbon emissions decoupling has been
analyzed above. However, in theory, the promotion of carbon emissions decoupling by the
digital economy may not be a simple and direct process, but instead can only be realized
through certain paths. Therefore, it is necessary to analyze the specific mechanism of the
digital economy affecting carbon emissions decoupling. According to H2 and H3, this
paper tests the mediating effect of industrial structure optimization and the moderating
effect of network centrality, in order to explore the impact mechanism.

5.1.1. Analysis on the Mediating Effect of Industrial Structure Optimization

Based on H2, this paper explores the possible mediating effect of industrial structure
optimization on the process of the digital economy promoting carbon emissions decou-
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pling by testing the regression coefficients step-by-step. The regression is divided into
three stages [59]. The specific model settings are as in Formulas (17)–(19):

FCO2it = c + β0DEit + βXit + β1DEitG(qit; γ, c) + ui + εit (17)

LSit = c′ + β′0DEit + β′Xit + u′i + ε′it (18)

FCO2it = c′′ + β
′′
0 DEit + αLSit + β′′Xit + β′1DEitG(qit; γ, c) + u′′i + ε

′′
it (19)

Among them, Formula (17) is the benchmark regression model, which has been
verified earlier, so it will not be described repeatedly here. In Formulas (18) and (19), LS
represents the mediating variable of industrial structure optimization, and the meanings of
other variables are the same as those in the benchmark model. The parameter estimation
results of Formulae (18) and (19) are shown in Table 8.

Table 8. Mediating effect test results.

Item

LS FCO2

(1)
Linear

(2)
Non-Linear

(3)

DE 1.718 *** 0.411 *** −0.204 ***
(4.240) (4.760) (−3.31)

LS 0.085 ***
(5.840)

UPD −0.227 0.015
(−1.630) (0.990)

GCBA −0.849 0.283 *
(−0.750) (1.670)

LGPC −6.059 * −1.146 ***
(−1.760) (−3.550)

STLGPC 0.293 * 0.085 ***
(1.770) (5.520)

FDI 0.029 0.006
(0.690) (1.200)

threshold1 0.481 ***
(31.550)

lngamma 3.069 ***
(7.630)

Constant 33.538 * 2.358 ***
(1.810) (116.550)

R2 0.704 0.971
Observations 300 300 300

Robust standard errors are in parentheses *** p < 0.01, * p < 0.1.

It can be seen from the empirical results of Formula (18) that the digital economy
(DE) has a positive and significant effect on industrial structure optimization (LS) at the
1% significance level, indicating that the digital economy has a significant positive role in
promoting industrial structure optimization. In Formula (19), the regression coefficient of
the industrial structure optimization (LS) on carbon emissions decoupling (FCO2) is also
positively significant at the 1% significance level, indicating that the industrial structure
optimization also has a significant positive effect on carbon emissions decoupling. Based
on the test results, it can be concluded that the digital economy has a positive impact on
carbon emissions decoupling through industrial structure optimization, which plays a
partial mediating role between the digital economy and carbon emissions decoupling. The
results of the mediating effect test verified H2 of this paper.

The above test shows that the mechanism of the digital economy promoting carbon
emissions decoupling is achieved through optimizing the industrial structure. This mecha-
nism can be explained separately from the two core components of the digital economy.
On the one hand, industrial digitization in the digital economy promotes the integration
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of digital technology and traditional industries through technological empowerment, and
the tertiary industry is the fastest to integrate with digital technology. According to the
statistics from the China Academy of Information and Communications Technology, in
2018, the digital economy accounted for 35.9%, 18.3%, and 7.3% of the added value of
China’s service industry, industry, and agriculture, respectively, and the digitization de-
gree of the service industry continues to lead the way [60]. This integration with digital
technologies has brought about an increase in output and efficiency, which has greatly
contributed to the scale growth of the service industry, thus driving the optimization of the
industrial structure. On the other hand, the internal structure of digital industrialization
in the digital economy is undergoing a continuous “softening” process. According to the
data, in 2018, the software and information technology service industry and the Internet
industry grew the fastest in terms of digital industrialization, with revenue increasing by
14.2% and 20.3% year-on-year, respectively [60]. This “softening” phenomenon in digital
industrialization shows that various new business models centered on the service industry
continue to develop and produce substitution effects on old industries, indicating a process
of industrial structure optimization. Based on the above two aspects, it can be seen that
these two core components of the digital economy can promote the optimization and
upgrading of industrial structure, and the relatively low-emission tertiary industry has
gradually increased in terms of its share of economic growth. Correspondingly, the role of
high-emission enterprises in the secondary industry in terms of economic growth has been
gradually replaced [61], so the decoupling of economic growth and carbon emissions has
been significantly promoted under this mechanism.

5.1.2. The Moderating Effect Analysis of Digital Economy Network Centrality

In order to further study whether the above-mentioned mechanism of the digital
economy promoting carbon emissions decoupling is affected by digital economy net-
work centrality, based on H3, this paper introduces network centrality variables and their
respective interaction terms with the digital economy in Formula (18) to test the possi-
ble moderating effect of digital economy network centrality. The model set is shown in
Formulas (20) and (21):

LSit = c + α0DEit + α1inter1 + α2DCit + αXit + ui + ε′it (20)

LSit = c′ + α′0DEit + α′1inter2 + α′2CCit + α′Xit + ui + ε′it (21)

where DC and CC are the degree of centrality and the closeness centrality of the digital
economy, respectively; inter1 represents the interaction term between the degree of central-
ity and the digital economy; inter2 stands for the interaction term between the closeness
centrality and the digital economy. The meanings of other variables are the same as those
in the previous models. The parameter estimation results for Formulas (20) and (21) are
shown in Table 9.

In Table 9, Column (1) presents the moderating effect results of the degree of centrality,
while Column (2) shows the moderating effect test results of the closeness centrality. It
can be seen from the results that the regression coefficients of the interaction terms inter1
and inter2 are all significant at the 1% significance level, and the signs are all positive,
indicating that both the degree of centrality (DC) and the closeness centrality (CC) of
the digital economy network have significant positive moderating effects on the digital
economy, promoting industrial structure optimization. The above empirical results verify
H3 of this paper.

The above regression results show that the impact mechanism of the digital economy
on carbon emissions decoupling is also related to the network centrality of the digital
economy: the greater the degree and closeness centrality of the digital economy network,
the stronger the impact mechanism of the digital economy on carbon emissions decoupling.
It can be explained by the definition of the two kinds of network centrality.
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Firstly, since the degree of centrality measures the number of other nodes directly
connected to a node, in the digital economy network, the higher the degree of centrality
of a node, the more nodes there are that have strong digital economy connections with
it. This means that the node’s digital economy has a stronger ability to radiate outward,
attracting more digital economy-related enterprises to engage in production activities at
this node. According to the externality theory, this attraction produces a “snowball effect”;
that is, more and more enterprises are willing to come together to share the benefits of the
diversification and specialization of economic activities [62]. Most enterprises related to the
digital economy are technology-intensive enterprises, so the snowballing agglomeration of
these enterprises can directly promote the industrial structure optimization of the nodes,
transforming the industrial structure from a resource-labor-intensive one to a technology-
intensive one.

Table 9. Moderating effect test results of digital economy network centrality.

Item
LS

(1) (2)

DE 0.688 −0.976
(1.490) (−1.27)

DC −1.608 ***
(−4.370)

inter1 3.766 ***
(4.370)

CC −2.945 ***
(−3.05)

inter2 7.132 ***
(3.80)

UPD −0.201 −0.174
(−1.480) (−1.32)

GCBA −0.946 −0.926
(0.880) (−0.88)

LGPC −5.596 −4.371
(−1.700) (−1.35)

STLGPC 0.275 * 0.222
(1.730) (1.42)

FDI 0.021 0.004
(0.570) (0.13)

Constant 31.003 * 24.695
(1.750) (1.42)

R2 0.723 0.740
Observations 300 300

Robust standard errors in parentheses *** p < 0.01, * p < 0.1.

Secondly, since the closeness centrality measures the ability of a node to reach other
nodes, in a digital economy network, the greater the closeness centrality of a node, the
more convenient it is for it to trade with other nodes close to it, which means lower factor
transportation costs. According to the theory of space economics, high transportation costs
promote resource dispersion, while low transportation costs promote concentration. As a
result, starting from any node in the network, the production factors of the digital economy
tend to converge on the node with a large closeness centrality. Therefore, nodes with
large closeness centrality in a network have strong resource concentration ability and can
gather more production factors of the digital economy, which creates good conditions for
the development of digital economy-related industries, thus improving the attractiveness
of the nodes to digital economy-related enterprises and promoting industrial structure
optimization.

Based on the results of the above mechanism analysis, this paper holds that the
mechanism by which the digital economy promotes carbon emissions decoupling has
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formed a mediating-effect model with moderating variables. The specific path is shown
in Figure 3.

Figure 3 shows that the digital economy can promote carbon emissions decoupling by
optimizing the industrial structure, and the network centrality of the digital economy has
a positive moderating effect on this mechanism; specifically, it has a positive moderating
effect on the digital economy, promoting industrial structure optimization.
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5.2. Heterogeneity Analysis of the Digital Economy Affecting Carbon Emissions Decoupling

In order to further study whether there is heterogeneity in the promotion effect of
the digital economy on carbon emissions decoupling in provinces with different network
centrality, this paper uses the core-periphery method in social network analysis to categorize
30 sample provinces, sorting them into the core-province group and the peripheral province
group. According to Borgatti, coreness can be regarded as a form of network centrality [63],
so this grouping method can effectively test the heterogeneity caused by different network
centralities. In the analysis results obtained in this paper, covering a total of ten years, the
provinces that have been in a core position for more than 9 years are selected as the core
group samples, and the remaining provinces are selected as the peripheral group samples.
The grouping results are shown in Table 10.

Table 10. Grouping results of the core-periphery analysis.

Core Group Peripheral Group

Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang,
Shandong, Henan, Guangdong, and Gansu

Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Fujian, Hunan, Hubei, Jiangxi,

Guangxi, Hainan, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,

Ningxia, and Xinjiang

According to the results in Table 10, the core group includes 9 provinces, while the
peripheral group includes 21 provinces. The two groups of samples are regressed using the
benchmark model, and the results are shown in Table 11.

In Table 11, Columns (1) and (2) are the regression results of the core group and the
peripheral group, respectively. The empirical results show that the regression coefficients
of the digital economy in the two groups are both positive and significant, and there
is an obvious phenomenon of regime transition. Specifically, in the core group, when
the transition function G(sit; c, γ ) = 0, the model is in a low regime, and the regression
coefficient of the digital economy is 0.770; then, the model begins to transition smoothly
around the threshold value DE = 0.435. When the transition function G(sit; c, γ ) = 1, the
model transitions to the high regime, and the regression coefficient of the digital economy
becomes 0.770 − 0.308 = 0.462. In the peripheral group, the threshold value is 0.531,
indicating that the digital economy development level is higher than that of the core group
when the regime transition occurs. In the low and high regimes, the regression coefficients
of the peripheral group are 0.499 and 0.499 − 0.219 = 0.280, respectively, which are both
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smaller than those of the core group, indicating that the promotion effect of the digital
economy on carbon emissions decoupling in the core group is significantly stronger than
that in the peripheral group before and after the regime transition. This empirical result
supports H4. In addition, in terms of the reduction range of the regression coefficient in
the regime transition, the reduction range of the core group is 0.308, which is greater than
that of the peripheral group, indicating that the effect of the digital economy on carbon
emissions decoupling is attenuated more than that in the peripheral group when the regime
transition took place.

Based on the above grouping regression results, it can be concluded that the promotion
effect of the digital economy on carbon emissions decoupling is heterogeneous. There are
differences in the promoting intensity between the core nodes and the peripheral nodes
in the digital economy network, and the promoting intensity of the core group is always
stronger than that of the peripheral group. This heterogeneity may be due to the fact that the
agglomeration effect of the digital economy is more obvious at those nodes located at the
core of the network. On the one hand, being affected by the agglomeration of production
factors in the digital economy, the industries at the core of the network have a higher digital
level, and the integration of digital technology and traditional production is deeper, while
its role in the upgrading and transforming of high-energy-consuming enterprises is also
more apparent. On the other hand, due to digital industrial agglomeration, the scale and
development of the digital industrialization of the node at the core of the network are larger
and faster. In addition, the polluting industries have begun to transfer to the peripheral
nodes after they are replaced in the core node; therefore, the role of the digital economy in
optimizing the industrial structure of the core node will be more obvious. Based on the
above two reasons, the digital economy of provinces at the core of the network will play a
stronger role in promoting carbon emissions decoupling.

Table 11. Heterogeneity test results.

Item

FCO2

The Core Group The Peripheral Group

Linear
(1)

Non-Linear
(2)

Linear
(1)

Non-Linear
(2)

DE 0.770 *** −0.308 ** 0.499 *** −0.219 **
(3.260) (−2.040) (5.750) (−2.310)

UPD 0.054 0.001
(1.510) (0.030)

GCBA 1.079 *** 0.110
(2.930) (0.540)

LGPC −1.660 *** −1.095 **
(−3.710) (−2.330)

STLGPC 0.107 *** 0.082 ***
(5.150) (3.640)

FDI 0.039 *** 0.002
(2.980) (0.370)

threshold1 0.435 *** 0.531 ***
(16.830) (17.630)

lngamma 2.893 *** 3.330 ***
(6.120) (5.850)

Constant 3.975 *** 2.492 ***
(65.990) (88.670)

R2 0.978 0.967
Observations 90 90 210 210

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05.

In addition, from the nonlinear characteristics of the relationship between the digital
economy and carbon emissions decoupling, it can be seen that the two groups have
undergone a regime transition after the digital economy development reached a certain
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level, and the promotion effect gradually attenuated to a lower regime, but the attenuation
range of the core group was greater than that of the peripheral group. The reason for the
difference in the regime transition range between the two groups may be that the cities that
are closer to the core of the network will bear greater carbon emissions, correspondingly,
from the digital economy. In addition to reducing carbon emissions through various
ways, the digital economy itself also brings new emissions. The continuous expansion
and operation of the digital economy infrastructure, as well as the waste generated by
emerging e-commerce platforms, have produced substantial carbon emissions. From the
perspective of the network structure, cities in the center of the digital economy network
have a digital economy agglomeration effect due to their close relationship with other nodes
in the network. This is not only from the agglomeration of industries related to the digital
economy but also the agglomeration of carbon emissions generated by them. Therefore,
when the digital economy develops to a certain stage and its promoting effect on carbon
emissions decoupling shifts to another regime, the core group will be influenced more
strongly. Provinces at the core of the digital economy network tend to have more intensive
distribution and a greater quantity of relevant infrastructures, so they consume more energy
and produce more carbon emissions. Similarly, these provinces often experience more
transactions on e-commerce platforms, so they generate more carbon emissions from waste
packaging and transportation.

6. Conclusions and Policy Implications

This paper adopts the panel data of 30 provinces in China from 2010 to 2019 to investi-
gate the impact of the digital economy on carbon emissions decoupling by constructing a
PSTR model. On this basis, the specific mechanism of the digital economy affecting carbon
emissions decoupling and the heterogeneity brought by different network centralities are
explored. The following conclusions can be drawn.

First, the digital economy has a significant overall contribution to carbon emissions
decoupling, and the conclusion still holds true after a series of robustness tests. This kind
of promoting effect has nonlinear characteristics. When the digital economy develops to a
certain extent, the promoting effect gradually decays until it remains stable at a low level.

Second, the digital economy promotes carbon emissions decoupling by optimizing
the industrial structure, and the network centrality of the digital economy has a positive
moderating effect on this mechanism. Specifically, it has a positive moderating effect on the
process of the digital economy, promoting industrial structure optimization.

Third, heterogeneity exists in the role of the digital economy in promoting carbon
emissions decoupling, which is caused by the different degrees of digital economy network
centrality in various provinces. To be specific, in the network, the digital economy of
the nodes at the core position has always been stronger than the nodes at the peripheral
position in promoting carbon emissions decoupling, but the promotion effect of the core
nodes is also attenuated more strongly when the regime transition occurs.

Based on the above conclusions, this paper draws the following policy implications.
First, the government should encourage the innovative development of emerging digital
industries, give full play to the role of the digital economy in optimizing the industrial
structure, and promote the transformation and upgrading of resource- and labor-intensive
industries to technology-intensive industries, to replace high-emission industrial sectors.
Meanwhile, governments and enterprises should expand the application scope of digital
technologies to more traditional production processes, to improve production efficiency
and reduce emissions. Second, attention should be paid to the reasons for the attenuation
of the promoting effect of the digital economy on carbon emissions decoupling; namely,
the carbon emissions brought about by the digital economy’s development itself. For these
new emission problems brought by the digital economy, the relevant regulations should
be issued as soon as possible [64,65]. For example, relevant regulations should be issued
for digital economy infrastructures, such as cloud computing centers and big data centers,
to control carbon emissions, and green production and the use of clean energy should
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be encouraged [66,67]. Wastes from emerging industries, such as e-commerce, should be
properly disposed of, and recycling should be encouraged. Furthermore, the network
structure of the digital economy should be fully considered and utilized, and the emission
reduction work of each node in the network should be planned as a whole. For nodes in the
core positions in the network, on the one hand, the advantages of the agglomeration effect
of the digital economy should be fully utilized to accelerate the development of industries
related to the digital economy; on the other hand, the radiation role of the digital economy
should be given full freedom for resources to be reasonably allocated and transferred to
the peripheral nodes. For nodes at the periphery of the network, on the one hand, cross-
regional digital trade should be encouraged, and digital economy connections should be
established, with more nodes to improve their status in the network; on the other hand, the
industrial transition of core nodes should be properly handled and then converted to retain
their own developmental momentum, on the premise of controlling emissions.

Although this paper enriches the related research on the relationship between the
digital economy and carbon emissions decoupling, there is still room for improvement.
Firstly, the research in this paper is carried out within the spatial dimension of provinces, so
whether the conclusions of this paper will change when applied to other spatial dimensions
remains to be tested. Follow-up research can further test the impact of the digital economy
on the decoupling in specific spatial dimensions, such as cities and countries. Secondly,
due to the data availability, the time span of the data used in this paper is only 10 years; it
remains to be tested whether the impact of the digital economy on carbon emissions decou-
pling will still be the same for a new regime over a longer time span. Furthermore, although
the PSTR model is adopted in this paper to reasonably test the nonlinear characteristics
of the digital economy affecting carbon emissions decoupling, there may still be a better
model to better fit the relationship between them, but this depends on the development of
relevant research on the panel data nonlinear model in follow-up studies.
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