Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake
Abstract
:1. Introduction
2. Methods
2.1. Strong Ground Motion Numerical Simulation
2.2. Earthquake Fatality Estimation Model
3. Case Study: 2021 Ms 6.4 Yangbi Earthquake
3.1. Background and Data
3.2. Numerical Simulation Results
3.3. Fatality Estimation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhang, Z.; Xin, D. A Composite Catalog of Damaging Earthquakes for Mainland China. Seismol. Res. Lett. 2021, 92, 3767–3777. [Google Scholar] [CrossRef]
- Tang, B.; Chen, Q.; Liu, X.; Liu, Z.; Liu, Y.; Dong, J.; Zhang, L. Rapid estimation of earthquake fatalities in China using an empirical regression method. Int. J. Disast. Risk Reduct. 2019, 41, 101306. [Google Scholar] [CrossRef]
- FEMA. HAZUS-MH 2.1 Technical Manual; Federal Emergency Management Agency: Washington, DC, USA, 2006. [Google Scholar]
- Porter, K. Cracking an Open Safe: HAZUS Vulnerability Functions in Terms of Structure-Independent Spectral Acceleration. Earthq. Spectra 2009, 25, 361–378. [Google Scholar] [CrossRef]
- Ceferino, L.; Kiremidjian, A.; Deierlein, G. Probabilistic model for regional multiseverity casualty estimation due to building damage following an earthquake. ASCE-ASME J. Risk Uncertain. Eng. Syst. 2018, 4, 04018023. [Google Scholar] [CrossRef]
- Kawasumi, H. Intensity and Magnitude of Shallow Earthquakes, Bureau Central Seism. Intern. Ser. A Trav. Sci. 1954, 19, 99–114. [Google Scholar]
- Samardjieva, E.; Badal, J. Estimation of the expected number of casualties caused by strong earthquakes. Bull. Seismol. Soc. Am. 2002, 92, 2310–2322. [Google Scholar] [CrossRef]
- Jaiswal, K.; Wald, D.J.; Hearne, M. Estimating Casualties for Large Earthquakes Worldwide Using an Empirical Approach; 2009-1136; US Geological Survey: Denver, CO, USA, 2009; p. 78. [Google Scholar]
- Jaiswal, K.; Wald, D.J. An empirical model for global earthquake fatality estimation. Earthq. Spectra 2010, 26, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Firuzi, E.; Hosseini, K.A.; Ansari, A.; Izadkhah, Y.O.; Rashidabadi, M.; Hosseini, M. An empirical model for fatality estimation of earthquakes in Iran. Nat. Hazards 2020, 103, 231–250. [Google Scholar] [CrossRef]
- Daniell, J.E.; Khazai, B.; Wenzel, F.; Vervaeck, A. The CATDAT damaging earthquakes database. Nat. Hazards Earth Syst. Sci. 2011, 11, 2235–2251. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xin, D.; Zhang, Z. A rapid-response earthquake fatality estimation model for mainland China. Int. J. Disast. Risk Re. 2021, 66, 102618. [Google Scholar] [CrossRef]
- (CIESIN), C.f.I.E.S.I.N.; (CIAT), C.I.d.A.T. Gridded Population of the World, Version 3 (GPWv3) Data Collection. Available online: http://sedac.ciesin.columbia.edu/data/collection/grump-v1 (accessed on 13 January 2022).
- Tatem, A.; Linard, C. Population mapping of poor countries. Nature 2011, 474, 36. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.N.; McKee, J.J.; Urban, M.L.; Bright, E.A.; Sims, K.M. LandScan 2018, 2018th ed.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Hu, Y. Earthquake Engineering; Seismological Press: Beijing, China, 1988. [Google Scholar]
- Wang, D.; Wang, X.; Kou, A.; Ding, X. Primary study on the quantitative relationship between the typical building structures in western China. Earthquake 2007, 27, 105–110. [Google Scholar] [CrossRef]
- Paolucci, R.; Gatti, F.; Infantino, M.; Smerzini, C.; Güney Özcebe, A.; Stupazzini, M. Broadband Ground Motions from 3D Physics-Based Numerical Simulations Using Artificial Neural Networks. Bull. Seismol. Soc. Am. 2018, 108, 1272–1286. [Google Scholar] [CrossRef]
- Infantino, M.; Mazzieri, I.; Özcebe, A.G.; Paolucci, R.; Stupazzini, M. 3D Physics-Based Numerical Simulations of Ground Motion in Istanbul from Earthquakes along the Marmara Segment of the North Anatolian Fault. Bull. Seismol. Soc. Am. 2020, 110, 2559–2576. [Google Scholar] [CrossRef]
- Stupazzini, M.; Infantino, M.; Allmann, A.; Paolucci, R. Physics-based probabilistic seismic hazard and loss assessment in large urban areas: A simplified application to Istanbul. Earthq. Eng. Struct. Dyn. 2021, 50, 99–115. [Google Scholar] [CrossRef]
- Xin, D.; Zhang, Z. On the Comparison of Seismic Ground Motion Simulated by Physics-Based Dynamic Rupture and Predicted by Empirical Attenuation Equations. Bull. Seismol. Soc. Am. 2021, 111. [Google Scholar] [CrossRef]
- Tromp, J.; Komatitsch, D.; Hjörleifsdóttir, V.; Liu, Q.; Zhu, H.; Peter, D.; Bozdag, E.; McRitchie, D.; Friberg, P.; Trabant, C. Near real-time simulations of global CMT earthquakes. Geophys. J. Int. 2010, 183, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Liang, W.-T.; Cheng, H.-W.; Tu, F.-S.; Ma, K.-F.; Tsuruoka, H.; Kawakatsu, H.; Huang, B.-S.; Liu, C.-C. Towards real-time regional earthquake simulation I: Real-time moment tensor monitoring (RMT) for regional events in Taiwan. Geophys. J. Int. 2014, 196, 432–446. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, Z.; Zhang, W.; Yu, H.; Liu, Q.; Zhang, W.; Chen, X. CGFDM3D-EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media. Seismol. Res. Lett. 2022. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophys. J. Int. 2006, 167, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Z.; Chen, X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys. J. Int. 2012, 190, 358–378. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shen, Y.; Zhao, L. Three-dimensional anisotropic seismic wave modelling in spherical coordinates by a collocated-grid finite-difference method. Geophys. J. Int. 2012, 188, 1359–1381. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-C.; Ren, H.; Zheng, X.-Z.; Li, N.; Zhang, W.; Huang, Q.; Chen, X. 2-D poroelastic wave modelling with a topographic free surface by the curvilinear grid finite-difference method. Geophys. J. Int. 2019, 218, 1961–1982. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Chen, X. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008. Sci. China Ser. D Earth Sci. 2008, 51, 1673–1682. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, Z.; Wen, J.; Zhang, W.; Chen, X. Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013, China. Earthq. Sci. 2013, 26, 191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, W.; Sun, Y.; Zhu, G.; Wen, J.; Chen, X. Preliminary simulation of strong ground motion for Yutian, Xinjiang earthquake of 12 February 2014, and hazard implication. Chin. J. Geophys. 2014, 57, 685–689. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Xu, J.; Zhang, W.; Chen, X. Preliminary simulation of strong ground motion for Ludian, Yunnan earthquake of 3 August 2014, and hazard implication. Chin. J. Geophys. 2014, 57, 3038–3041. [Google Scholar] [CrossRef]
- Hixon, R. On Increasing the Accuracy of MacCormack Schemes for Aeroacoustic Applications. AIAA Pap. 1997. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Grossman, M.; McKercher, T. Professional CUDA C Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Reuter, H.; Nelson, A.; Jarvis, A. An Evaluation of Void-Filling Interpolation Methods for SRTM Data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Shen, W.; Ritzwoller, M.H.; Kang, D.; Kim, Y.; Lin, F.-C.; Ning, J.; Wang, W.; Zheng, Y.; Zhou, L. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int. 2016, 206, 954–979. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; He, J.; Hao, J.; Yao, Z. Preliminary Result for Rupture Process of May. 21, 2021, M6.4 Earthquake, Dali, China; Institute of Qinghai-Tibet Plateau Research, Chinese Academy of Sciences: Beijing, China, 2021. [Google Scholar]
- Stidham, C.; Antolik, M.; Dreger, D.; Larsen, S.; Romanowicz, B. Three-dimensional structure influences on the strong-motion wavefield of the 1989 Loma Prieta earthquake. Bull. Seismol. Soc. Am. 1999, 89, 1184–1202. [Google Scholar]
- Cárdenas-Soto, M.n.; Chávez-García, F.J. Regional path effects on seismic wave propagation in central Mexico. Bull. Seismol. Soc. Am. 2003, 93, 973–985. [Google Scholar] [CrossRef]
- Komatitsch, D.; Liu, Q.; Tromp, J.; Suss, P.; Stidham, C.; Shaw, J.H. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull. Seismol. Soc. Am. 2004, 94, 187–206. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Meijde, M.v.d.; Werff, H.v.d.; Shafique, M. The impact of topography on seismic amplification during the 2005 Kashmir earthquake. Nat. Hazards Earth Syst. Sci. 2020, 20, 399–411. [Google Scholar] [CrossRef] [Green Version]
- GB/T 17742-2020; The Chinese Seismic Intensity Scale. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ); Standardization Administration of the People’s Republic of China (SAC): Beijing, China, 2020.
- Wang, W.; Hao, J.; Yao, Z. Preliminary result for rupture process of Apr. 20, 2013, Lushan Earthquake, Sichuan, China. Chin. J. Geophys. 2013, 56, 1412–1417. [Google Scholar] [CrossRef]
- Fu, H.; Liao, J.; Yang, J.; Wang, L.; Song, Z.; Huang, X.; Yang, C.; Xue, W.; Liu, F.; Qiao, F.; et al. The Sunway TaihuLight supercomputer: System and applications. Sci. China Inf. Sci. 2016, 59, 072001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Z.; Fu, H.; Li, Z.; Chen, X. Importance of Spatial Resolution in Ground Motion Simulations With 3-D Basins: An Example Using the Tangshan Earthquake. Geophys. Res. Lett. 2019, 46. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New improved version of Generic Mapping Tools released. Eos Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, Z.; Wang, W.; Feng, X. Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake. Int. J. Environ. Res. Public Health 2022, 19, 6820. https://doi.org/10.3390/ijerph19116820
Li Y, Zhang Z, Wang W, Feng X. Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake. International Journal of Environmental Research and Public Health. 2022; 19(11):6820. https://doi.org/10.3390/ijerph19116820
Chicago/Turabian StyleLi, Yilong, Zhenguo Zhang, Wenqiang Wang, and Xuping Feng. 2022. "Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake" International Journal of Environmental Research and Public Health 19, no. 11: 6820. https://doi.org/10.3390/ijerph19116820
APA StyleLi, Y., Zhang, Z., Wang, W., & Feng, X. (2022). Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake. International Journal of Environmental Research and Public Health, 19(11), 6820. https://doi.org/10.3390/ijerph19116820