Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sulfuric Acid and Dimer Concentrations during NPF Events
3.2. Evaporation Rates of Dimer or Sulfuric Acid–Base Complex
3.3. The Effects of Amines on Sulfuric Acid Dimer Formation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.Y.; Suh, I.; Zhao, J.; Zhang, D.; Fortner, E.C.; Tie, X.; Molina, L.T.; Molina, M.J. Atmospheric new particle formation enhanced by organic acids. Science 2004, 304, 1487–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, T.; Boge, O.; Stratmann, F.; Heintzenberg, J.; Kulmala, M. Rapid formation of sulfuric acid particles at near-atmospheric conditions. Science 2005, 307, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Kulmala, M.; Riipinen, I.; Sipila, M.; Manninen, H.E.; Petaja, T.; Junninen, H.; Maso, M.D.; Mordas, G.; Mirme, A.; Vana, M.; et al. Toward direct measurement of atmospheric nucleation. Science 2007, 318, 89–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipila, M.; Berndt, T.; Petaja, T.; Brus, D.; Vanhanen, J.; Stratmann, F.; Patokoski, J.; Mauldin, R.L.; Hyvärinen, A.-P.; Lihavainen, H.; et al. The Role of Sulfuric Acid in Atmospheric Nucleation. Science 2010, 327, 1243–1246. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.J.; Chen, G.; Davis, D.D.; Mauldin, R.L.; Tanner, D.J.; Eisele, F.L.; Clarke, A.D.; Thornton, D.C.; Bandy, A.R. Measurements of enhanced H2SO4 and 3–4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res.-Atmos. 2001, 106, 24107–24117. [Google Scholar] [CrossRef]
- Kuang, C.; McMurry, P.H.; McCormick, A.V.; Eisele, F.L. Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations. J. Geophys. Res.-Atmos. 2008, 113, D10209. [Google Scholar] [CrossRef]
- Sihto, S.L.; Kulmala, M.; Kerminen, V.-M.; Dal Maso, M.; Petäjä, T.; Riipinen, I.; Korhonen, H.; Arnold, F.; Janson, R.; Boy, M.; et al. Atmospheric sulphuric acid and aerosol formation: Implications from atmospheric measurements for nucleation and early growth mechanisms. Atmos. Chem. Phys. 2006, 6, 4079–4091. [Google Scholar] [CrossRef] [Green Version]
- Riipinen, I.; Sihto, S.-L.; Kulmala, M.; Arnold, F.; Dal Maso, M.; Birmili, W.; Saarnio, K.; Teinilä, K.; Kerminen, V.-M.; Laaksonen, A.; et al. Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyyti. Atmos. Chem. Phys. 2007, 7, 1899–1914. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Eisele, F.L.; Titcombe, M.; Kuang, C.; McMurry, P.H. Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS. J. Geophys. Res.-Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Titcombe, M.; Jiang, J.; Jen, C.; Kuang, C.; Fischer, M.L.; Eisele, F.L.; Siepmann, J.I.; Hanson, D.R.; Zhao, J.; et al. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proc. Natl. Acad. Sci. USA 2012, 109, 18713–18718. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Wang, L.; Khalizov, A.F.; Zhao, J.; Zheng, J.; McGraw, R.; Molina, L.; Molina, M. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proc. Nat. Acad. Sci. USA 2009, 106, 17650–17654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Khalizov, A.; Zhang, R.; McGraw, R. Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors. J. Phys. Chem. A 2009, 113, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, R. Theoretical Investigation of Interaction of Dicarboxylic Acids with Common Aerosol Nucleation Precursors. J. Phys. Chem. A 2012, 116, 4539–4550. [Google Scholar] [CrossRef] [PubMed]
- Elm, J.; Kurten, T.; Bilde, M.; Mikkelsen, K.V. Molecular interaction of pinic acid with sulfuric acid: Exploring the thermodynamic landscape of cluster growth. J. Phys. Chem. A 2014, 118, 7892–7900. [Google Scholar] [CrossRef]
- Elm, J.; Myllys, N.; Olenius, T.; Halonen, R.; Kurtén, T.; Vehkamäki, H. Formation of atmospheric molecular clusters consisting of sulfuric acid and C8H12O6 tricarboxylic acid. Phys. Chem. Chem. Phys. 2017, 19, 4877–4886. [Google Scholar] [CrossRef] [Green Version]
- Mutzel, A.; Poulain, L.; Berndt, T.; Iinuma, Y.; Rodigast, M.; Böge, O.; Richters, S.; Spindler, G.; Sipilä, M.; Jokinen, T.; et al. Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. Environ. Sci. Technol. 2015, 49, 7754–7761. [Google Scholar] [CrossRef]
- Bianchi, F.; Garmash, O.; He, X.; Yan, C.; Iyer, S.; Rosendahl, I.; Xu, Z.; Rissanen, M.P.; Riva, M.; Taipale, R.; et al. The role of highly oxygenated molecules (HOMs) in determining the composition of ambient ions in the boreal forest. Atmos. Chem. Phys. 2017, 17, 13819–13831. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Kurten, T.; Riva, M.; Mohr, C.; Rissanen, M.P.; Roldin, P.; Berndt, T.; Crounse, J.D.; Wennberg, P.O.; Mentel, T.F.; et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem. Rev. 2019, 119, 3472–3509. [Google Scholar] [CrossRef] [Green Version]
- Zha, Q.; Yan, C.; Junninen, H.; Riva, M.; Sarnela, N.; Aalto, J.; Quéléver, L.; Schallhart, S.; Dada, L.; Heikkinen, L.; et al. Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmos. Chem. Phys. 2018, 18, 17437–17450. [Google Scholar] [CrossRef] [Green Version]
- Lehtipalo, K.; Yan, C.; Dada, L.; Bianchi, F.; Xiao, M.; Wagner, R.; Stolzenburg, D.; Ahonen, L.R.; Amorim, A.; Baccarini, A.; et al. Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Sci. Adv. 2018, 4, eaau5363. [Google Scholar] [CrossRef] [Green Version]
- Brean, J.; Beddows, D.C.S.; Shi, Z.; Temime-Roussel, B.; Marchand, N.; Querol, X.; Alastuey, A.; Minguillón, M.C.; Harrison, R.M. Molecular insights into new particle formation in Barcelona, Spain. Atmos. Chem. Phys. 2020, 20, 10029–10045. [Google Scholar] [CrossRef]
- Elm, J.; Kubecka, J.; Besel, V.; Jääskeläinen, M.J.; Halonen, R.; Kurtén, T.; Vehkamäki, H. Modeling the formation and growth of atmospheric molecular clusters: A review. J. Aerosol Sci. 2020, 149, 105621. [Google Scholar] [CrossRef]
- Jokinen, T.; Sipila, M.; Junninen, H.; Ehn, M.; Lönn, G.; Hakala, J.; Petäjä, T.; Mauldin, R.L.; Kulmala, M.; Worsnop, D.R. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 2012, 12, 4117–4125. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Smith, J.N.; Eisele, F.L.; Chen, M.; Kuang, C.; McMurry, P.H. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos. Chem. Phys. 2011, 11, 10823–10836. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhao, J.; Chen, M.; Eisele, F.L.; Scheckman, J.; Williams, B.J.; Kuang, C.; McMurry, P.H. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions during Nucleation Events. Aerosol Sci. Technol. 2011, 45, II–V. [Google Scholar] [CrossRef]
- Peng, C.; Deng, C.J.; Lei, T.; Zheng, J.; Zhao, J.; Wang, D.; Wu, Z.; Wang, L.; Chen, Y.; Liu, M.; et al. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. J. Environ. Sci. 2022, in press. [CrossRef]
- Petaja, T.; Sipila, M.; Paasonen, P.; Nieminen, T.; Kurtén, T.; Ortega, I.K.; Stratmann, F.; Vehkamäki, H.; Berndt, T.; Kulmala, M. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere. Phys. Rev. Lett. 2011, 106, 228302. [Google Scholar] [CrossRef]
- Kurten, T.; Loukonen, V.; Vehkamaki, H.; Kulmala, M. Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 2008, 8, 4095–4103. [Google Scholar] [CrossRef] [Green Version]
- Loukonen, V.; Kurten, T.; Ortega, I.K.; Vehkamäki, H.; Pádua, A.A.H.; Sellegri, K.; Kulmala, M. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water—A computational study. Atmos. Chem. Phys. 2010, 10, 4961–4974. [Google Scholar] [CrossRef] [Green Version]
- Erupe, M.E.; Viggiano, A.A.; Lee, S.H. The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos. Chem. Phys. 2011, 11, 4767–4775. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Schobesberger, S.; Kuerten, A.; Ortega, I.K.; Kupiainen-Määttä, O.; Praplan, A.P.; Adamov, A.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature 2013, 502, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jen, C.N.; McMurry, P.H.; Hanson, D.R. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine. J. Geophys. Res.-Atmos. 2014, 119, 7502–7514. [Google Scholar] [CrossRef]
- Jen, C.N.; Bachman, R.; Zhao, J.; McMurry, P.H.; Hanson, D.R. Diamine-sulfuric acid reactions are a potent source of new particle formation. Geophys. Res. Lett. 2016, 43, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Praplan, A.P.; Sarnela, N.; Dommen, J.; Kürten, A.; Ortega, I.K.; Schobesberger, S.; Junninen, H.; Simon, M.; Tröstl, J.; et al. Insight into Acid-Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environ. Sci. Technol. 2014, 48, 13675–13684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuerten, A.; Jokinen, T.; Simon, M.; Sipilä, M.; Sarnela, N.; Junninen, H.; Adamov, A.; Almeida, J.; Amorim, A.; Bianchi, F.; et al. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. Proc. Natl. Acad. Sci. USA 2014, 111, 15019–15024. [Google Scholar] [CrossRef] [Green Version]
- Kuerten, A.; Li, C.; Bianchi, F.; Curtius, J.; Dias, A.; Donahue, N.M.; Duplissy, J.; Flagan, R.C.; Hakala, J.; Jokinen, T.; et al. New particle formation in the sulfuric acid-dimethylamine-water system: Reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmos. Chem. Phys. 2018, 18, 845–863. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.L.; Wexler, A.S.; Clegg, S.L. Atmospheric amines—Part I. A review. Atmos. Environ. 2010, 45, 524–546. [Google Scholar] [CrossRef]
- Ge, X.L.; Wexler, A.S.; Clegg, S.L. Atmospheric amines—Part II. Thermodynamic properties and gas/particle partitioning. Atmos. Environ. 2010, 45, 561–577. [Google Scholar] [CrossRef]
- Yao, L.; Garmash, O.; Bianchi, F.; Zheng, J.; Yan, C.; Kontkanen, J.; Junninen, H.; Mazon, S.B.; Ehn, M.; Paasonen, P.; et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science 2018, 361, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ning, A.; Zhong, J.; Zhang, H.; Liu, L.; Zhang, Y.; Zhang, X.; Zeng, X.C.; He, H. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. Chemosphere 2020, 245, 125554. [Google Scholar] [CrossRef]
- Brean, J.; Dall’Osto, M.; Simo, R.; Shi, Z.; Beddows, D.C.S.; Harrison, R.M. Open ocean and coastal new particle formation from sulfuric acid and amines around the Antarctic Peninsula. Nat. Geosci. 2021, 14, 383. [Google Scholar] [CrossRef]
- Cai, R.; Yan, C.; Worsnop, D.R.; Bianchi, F.; Kerminen, V.-M.; Liu, Y.; Wang, L.; Zheng, J.; Kulmala, M.; Jiang, J. An indicator for sulfuric acid-amine nucleation in atmospheric environments. Aerosol Sci. Technol. 2021, 55, 1059–1069. [Google Scholar] [CrossRef]
- Cai, R.; Yan, C.; Yang, D.; Yin, R.; Lu, Y.; Deng, C.; Fu, Y.; Ruan, J.; Li, X.; Kontkanen, J.; et al. Sulfuric acid-amine nucleation in urban Beijing. Atmos. Chem. Phys. 2021, 21, 2457–2468. [Google Scholar] [CrossRef]
- Yin, R.; Yan, C.; Cai, R.; Li, X.; Shen, J.; Lu, Y.; Schobesberger, S.; Fu, Y.; Deng, C.; Wang, L.; et al. Acid-Base Clusters during Atmospheric New Particle Formation in Urban Beijing. Environ. Sci. Technol. 2021, 55, 10994–11005. [Google Scholar] [CrossRef]
- Deng, C.; Fu, Y.; Dada, L.; Yan, C.; Cai, R.; Yang, D.; Zhou, Y.; Yin, R.; Lu, Y.; Li, X.; et al. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing. Environ. Sci. Technol. 2020, 54, 8547–8557. [Google Scholar] [CrossRef]
- Deng, C.; Cai, R.; Yan, C.; Zheng, J.; Jiang, J. Formation and growth of sub-3 nm particles in megacities: Impact of background aerosols. Faraday Discuss. 2021, 226, 348–363. [Google Scholar] [CrossRef]
- Yan, C.; Yin, R.; Lu, Y.; Dada, L.; Yang, D.; Fu, Y.; Kontkanen, J.; Deng, C.; Garmash, O.; Ruan, J.; et al. The synergistic role of sulfuric acid, bases, and oxidized organics governing new-particle formation in Beijing. Geophys. Res. Lett. 2021, 48, e2020GL091944. [Google Scholar] [CrossRef]
- Liu, L.; Yu, F.; Du, L.; Yang, Z.; Francisco, J.S.; Zhang, X. Rapid sulfuric acid–dimethylamine nucleation enhanced by nitric acid in polluted regions. Phys. Chem. Chem. Phys. 2021, 118, e2108384118. [Google Scholar] [CrossRef]
- Wang, M.; Kong, W.; Marten, R.; He, X.-C.; Chen, D.; Pfeifer, J.; Heitto, A.; Kontkanen, J.; Dada, L.; Kürten, A.; et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 2020, 581, 184–189. [Google Scholar] [CrossRef]
- Chee, S.; Barsanti, K.; Smith, J.N.; Myllys, N. A predictive model for salt nanoparticle formation using heterodimer stability calculations. Atmos. Chem. Phys. 2021, 21, 11637–11654. [Google Scholar] [CrossRef]
- Hanson, D.R.; McMurry, P.H.; Jiang, J.; Tanner, D.; Huey, L.G. Ambient pressure proton transfer mass spectrometry: Detection of amines and ammonia. Environ. Sci. Technol. 2011, 45, 8881–8888. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Flagan, R.C. Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol. 1990, 13, 230. [Google Scholar] [CrossRef]
- McMurry, P.H. New particle formation in the presence of an aerosol: Rates, time scales, and sub-0.01 μm size distributions. J. Colloid Interface Sci. 1983, 95, 72–80. [Google Scholar] [CrossRef]
- Ortega, I.K.; Kupiainen, O.; Kurtén, T.; Olenius, T.; Wilkman, O.; McGrath, M.J.; Loukonen, V.; Vehkamäki, H. From quantum chemical formation free energies to evaporation rates. Atmos. Chem. Phys. 2012, 12, 225–235. [Google Scholar] [CrossRef] [Green Version]
Date | [A1] (cm−3) | [A2] (cm−3) | |
---|---|---|---|
Sub-Col. | Col. | ||
24 July | (4.09 ± 2.42) × 107 | (1.86 ± 1.55) × 106 | (1.22 ± 1.13) × 106 |
25 July | (4.17 ± 2.47) × 107 | (2.09 ± 2.28) × 106 | (1.16 ± 1.60) × 106 |
3 August | (6.22 ± 3.62) × 107 | (2.97 ± 3.20) × 106 | (1.66 ± 2.24) × 106 |
6 August | (5.23 ± 4.09) × 107 | (1.81 ± 2.30) × 106 | (6.81 ± 7.30) × 105 |
7 August | (3.03 ± 2.70) × 107 | (9.61 ± 9.91) × 105 | (4.94 ± 4.23) × 105 |
10 August | (1.74 ± 1.60) × 107 | (4.08 ± 4.77) × 105 | (2.59 ± 3.14) × 105 |
11 August | (5.74 ± 4.11) × 107 | (1.63 ± 1.72) × 106 | (5.62 ± 7.38) × 105 |
12 August | (8.10 ± 3.87) × 107 | (5.01 ± 3.86) × 106 | (2.66 ± 2.23) × 106 |
22 August | (1.29 ± 0.81) × 108 | (3.82 ± 4.04) × 106 | (2.28 ± 3.06) × 106 |
23 August | (1.40 ± 0.76) × 108 | (2.04 ± 2.32) × 106 | (1.12 ± 1.47) × 106 |
Date | Conversion Ratio (%) | Correlation Coefficient (R2) | NPF Type |
---|---|---|---|
24 July | 7.21 | 0.76 | Plume |
25 July | 10.41 | 0.83 | Plume |
3 August | 9.12 | 0.72 | Plume |
6 August | 8.40 | 0.85 | Plume |
7 August | 5.71 | 0.93 | Regional/plume |
10 August | 3.60 | 0.79 | Plume |
11 August | 6.51 | 0.86 | Plume |
12 August | 13.66 | 0.88 | Plume |
22 August | 9.05 | 0.78 | Plume |
23 August | 6.84 | 0.73 | Plume |
Date | m (cm3 s−1) | Pearson Coeff. (R) | κ (s−1) | E2MV (s−1) * | k21[A1]/κ | ||
---|---|---|---|---|---|---|---|
24 July | 2.71 × 10−11 | 0.69 | 0.033 ± 0.006 | 0.83 | 0.48 | 1.20 | 0.37 |
25 July | 7.80 × 10−11 | 0.90 | 0.052 ± 0.011 | 0.10 | 0.06 | 0.14 | 0.22 |
3 August | 3.58 × 10−11 | 0.73 | 0.039 ± 0.007 | 0.90 | 0.06 | 1.36 | 0.47 |
6 August | 3.17 × 10−11 | 0.91 | 0.032 ± 0.013 | 1.27 | 0.42 | 1.99 | 0.45 |
7 August | 3.58 × 10−11 | 0.86 | 0.069 ± 0.031 | 0.91 | 0.28 | 1.53 | 0.17 |
10 August | 2.56 × 10−11 | 0.76 | 0.037 ± 0.007 | 1.29 | 0.49 | 2.36 | 0.13 |
11 August | 3.31 × 10−11 | 0.85 | 0.061 ± 0.024 | 0.65 | 0.21 | 1.18 | 0.25 |
12 August | 5.34 × 10−11 | 0.89 | 0.049 ± 0.012 | 0.31 | 0.08 | 0.48 | 0.45 |
22 August | - | 0.47 | 0.042 ± 0.004 | - | - | - | 0.89 |
23 August | - | 0.48 | 0.029 ± 0.005 | - | - | - | 1.37 |
Date | s (cm3 molecule−1) | Corr. Coeff. (R2) | CS1 (s−1) | CS2 (s−1) | k2 (s−1) * | ||
---|---|---|---|---|---|---|---|
24 July | 4.49 × 10−10 | 0.71 | 0.036 | 0.025 | 4.76 | 2.7 | 6.77 |
25 July | 8.17 × 10−10 | 0.91 | 0.056 | 0.040 | 1.17 | 0.94 | 1.46 |
3 August | 4.27 × 10−10 | 0.73 | 0.042 | 0.030 | 6.44 | 3.8 | 9.69 |
6 August | 3.14 × 10−10 | 0.92 | 0.035 | 0.024 | 13.12 | 4.48 | 20.3 |
7 August | 3.07 × 10−10 | 0.89 | 0.076 | 0.539 | 5.07 | 1.75 | 8.29 |
10 August | 4.11 × 10−10 | 0.78 | 0.041 | 0.029 | 6.49 | 2.58 | 11.8 |
11 August | 2.7 × 10−10 | 0.86 | 0.067 | 0.047 | 4.41 | 1.64 | 7.71 |
12 August | 5.44 × 10−10 | 0.91 | 0.053 | 0.037 | 2.55 | 0.86 | 3.81 |
22 August | - | 0.42 | 0.045 | 0.032 | - | - | - |
23 August | - | 0.44 | 0.032 | 0.023 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, K.; Mai, S.; Zhao, J. Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment. Int. J. Environ. Res. Public Health 2022, 19, 6848. https://doi.org/10.3390/ijerph19116848
Yin K, Mai S, Zhao J. Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment. International Journal of Environmental Research and Public Health. 2022; 19(11):6848. https://doi.org/10.3390/ijerph19116848
Chicago/Turabian StyleYin, Ke, Shixin Mai, and Jun Zhao. 2022. "Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment" International Journal of Environmental Research and Public Health 19, no. 11: 6848. https://doi.org/10.3390/ijerph19116848
APA StyleYin, K., Mai, S., & Zhao, J. (2022). Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment. International Journal of Environmental Research and Public Health, 19(11), 6848. https://doi.org/10.3390/ijerph19116848