Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Data
2.2. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model
2.3. Trajectory Clustering
3. Results and Discussion
3.1. Inter-Annual Variation in Atmospheric CO2 and CO Concentrations
3.2. Seasonal Variation in Atmospheric CO2 and CO Concentrations
3.3. Correlation Analysis of Atmospheric CO2 and CO Concentrations
3.4. Transport Pathway Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhai, P.M.; Zhou, B.Q.; Chen, Y.; Yu, R. Several new understandings in the climate change science. Adv. Clim. Change Res. 2021, 17, 629–635. [Google Scholar] [CrossRef]
- WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2020; No. 17; WMO: Geneva, Switzerland, 2021.
- Caesar, L.; McCarthy, G.D.; Thornalley, D.J.R.; Cahill, N.; Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 2021, 14, 118–120. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.L.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Crutzen, P. A discussion of chemistry of some minor constituents in stratosphere and troposphere. Pure Appl. Geophys. 1973, 106, 1385–1399. [Google Scholar] [CrossRef]
- Thompson, A.M. The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes. Science 1992, 256, 1157–1168. [Google Scholar] [CrossRef]
- Mickley, L.J.; Murti, P.P.; Jacob, D.J.; Jacob, J.A.; Logan, D.M.; Koch, D. RindRadiative forcing from tropospheric ozone calculated with a unifified chemistry-climate model. J. Geophys. Res. 1999, 104, 30153–30172. [Google Scholar] [CrossRef]
- Duncan, B.N.; Logan, J.A.; Bey, I.; Megretskaia, I.A.; Yantosca, R.M.; Novelli, P.C.; Jones, N.B.; Rinsland, C.P. Global budget of CO, 1988–1997: Source estimates and validation with a global model. J. Geophys. Res. 2007, 112, D22301. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Inc.: New York, NY, USA, 2008; p. 1326. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 2008, 35, L08806. [Google Scholar] [CrossRef]
- Quéré, C.L.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Zheng, B. Global carbon budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Marland, G. China’s uncertain CO2 emissions. Nat. Clim. Chang. 2012, 2, 645–646. [Google Scholar] [CrossRef]
- Lin, J.; Pan, D.; Davis, S.J.; Zhang, Q.; He, K.B.; Wang, C.; Streets, D.G.; Wuebbles, D.J.; Guan, D.B. China’s international trade and air pollution in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 1736–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.X.; Zhou, L.X.; Masarie, K.A.; Xu, L.; Rella, C.W. Study of atmospheric CH4 mole fractions at three WMO/GAW stations in China. J. Geophys. Res. Atmos. 2013, 118, 4874–4886. [Google Scholar] [CrossRef]
- Liu, L.X.; Zhou, L.X.; Zhang, X.C.; Zhang, X.; Wen, M.; Zhang, F.; Yao, B.; Fang, S. The characteristics of atmospheric CO2 concentration variation of four national background stations in China. Sci. China Earth Sci. 2009, 52, 1857–1863. [Google Scholar] [CrossRef]
- Xia, L.J.; Liu, L.X. Data selection and variation characteristics of atmospheric CH4 observed at Shangdianzi station in Beijing. China Environ. Sci. 2017, 37, 4044–4051. [Google Scholar] [CrossRef]
- Fang, S.X.; Tans, P.P.; Dong, F.; Zhou, H.; Luan, T. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China. Atmos. Environ. 2016, 131, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, J.G.; Liu, Y.F.; Liang, X.; Yang, S.Q.; Xian, Y. Concentration Variation Characteristics of Atmospheric Greenhouse Gases at Waliguan and Shangdianzi in China. Earth Sci. 2021, 46, 2984–2998. [Google Scholar] [CrossRef]
- Liu, S.; Fang, S.X.; Liang, M.; Ma, Q.; Feng, Z. Study on CO data filtering approaches based on observations at two background stations in China. Sci. Total Environ. 2019, 691, 675–684. [Google Scholar] [CrossRef]
- Fang, S.X.; Pieter, P.T.; Steinbacher, M.; Zhou, L.X.; Luan, T.; Li, Z. Observation of atmospheric CO2 and CO at Shangri-La station: Results from the only regional station located at southwestern China. Tellus B Chem. Phys. Meteorol. 2016, 68, 28506. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.X.; Bösch, H.; O’Dell, C.W.; Tang, X.P.; Yang, D.X.; Liu, L.X.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- Ballantyne, A.P.; Alden, C.B.; Miller, J.Á.; Tans, P.Á.; White, J.W.C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 2012, 488, 70–72. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zhuang, X.C. Characterization of aerosol concentrations at the Akedala background station in Xinjiang. Environ. Sci. Technol. 2021, 44, 1–12. [Google Scholar] [CrossRef]
- Li, S.T.; Li, X.; Zhong, Y.T.; Wang, D.D.; Lu, H.; Wang, N. Characteristics of O3 concentration in Akedala and analysis of meteorological factors in 2017-2018. Desert Oasis Meteorol. 2020, 14, 115–122. [Google Scholar] [CrossRef]
- Zhao, Q.W. Study on the Characteristics and Sources of Reactive Gas Concentrations at the Akedala Atmospheric Background Station; Xinjiang University: Ürümqi, China, 2021. [Google Scholar] [CrossRef]
- Wang, H.Q.; He, Q.; Tao, L.; Chen, F.; Liu, X.C.; Zhong, Y.T.; Yang, F. Characteristics and source of black carbon aerosols at Akedala station, Central Asia. Meteorol. Atmos. Phys. 2012, 118, 189–197. [Google Scholar] [CrossRef]
- Xu, X.B.; Tang, J. Scientific demonstration of candidate site of new atmospheric background station. Annu. Rep. CAMS 2004, 34–35. [Google Scholar]
- Zhao, C.L.; Tans, P.P.; Thoning, K.W. A manometric system for absolute calibrations of CO2 in dry air. J. Geophys. Res. 1997, 102, 5885–5894. [Google Scholar] [CrossRef]
- Zhao, Q.W.; He, Q.; Wang, H.Q.; Jin, L.L.; Li, H.L.; Wang, J.L. Identification of transport pathways and potential source areas of NO2 in Akedala. Acta Sci. Circumstantiae 2021, 41, 874–885. [Google Scholar] [CrossRef]
- Meng, F.; Wang, J.; Li, T.; Fang, C.X. Pollution Characteristics, Transport Pathways, and Potential Source Regions of PM2.5 and PM10 in Changchun City in 2018. Int. J. Environ. Res. Public Health 2020, 17, 6585. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.B.; Dan, L.; Tong, J.H. Characteristics and causes analysis of a persistent air pollution process in Haikou City in autumn 2017. Environ. Chem. 2021, 40, 1048–1058. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- China Meteorological Administration. China Climate Bulletin (China); China Meteorological Administration: Beijing, China, 2020.
- Xinjiang Bureau of Statistics. Xinjiang Statistical Yearbook (China); Xinjiang Bureau of Statistics: Xinjiang, China, 2020.
- Wang, H.; Ma, J.; Shen, Y.; Wang, Y. Assessment of ozone variations and meteorological influences at a rural site in Northern Xinjiang. Bull. Environ. Contam. Toxicol. 2015, 94, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.X.; Zhou, L.X.; Vaughn, B.; Miller, J.B.; Brand, W.A.; Rothe, M.; Xia, L. Background Variations of Atmospheric CO2 and Carbon Stable Isotopes at Waliguan and Shangdianzi Stations in China. J. Geophys. Res. Atmos. 2014, 119, 5602–5612. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, L.X.; Novelli, P.C.; Worthy, D.E.J.; Zellweger, C.; Klausen, J.; Ernst, M.; Steinbacher, M.; Cai, Y.X.; Xu, L.; et al. Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China. Atmos. Chem. Phys. 2011, 11, 5195–5206. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.W.; Hong, D.Z.; Wang, D.D.; Lin, Y. Analysis of CO concentration characteristics and transmission path of Akdala atmospheric observatory. Environ. Sci. Technol. 2020, 43, 115–121. [Google Scholar] [CrossRef]
- Shao, M.; Ren, X.R.; Wang, H.X.; Zeng, L.M.; Zhang, Y.H.; Tang, X.Y. Quantitative relationship between production and removal of OH and HO2 radicals in urban atmosphere. Chin. Sci. Bull. 2004, 49, 2253–2258. [Google Scholar] [CrossRef]
- Daniel, J.S.; Solomon, S. On the climate forcing of carbon monoxide. J. Geophys. Res. Atmos. 1998, 103, 13249–13260. [Google Scholar] [CrossRef]
- Houweling, S.; Roeckmann, T.; Aben, I.; Keppler, F.; Krol, M.; Meirink, J.F.; Dlugokencky, E.J.; Frankenberg, C. Atmospheric constraints on global emissions of methane from plants. Geophys. Res. Lett. 2006, 33, L15821. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.X.; Tang, J.; Wen, Y.P.; Li, J.; Yan, P.; Zhang, X. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China. Tellus Ser. B 2003, 55, 145–158. [Google Scholar] [CrossRef]
- Li, H.L.; He, Q.; Liu, X.C. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere 2020, 11, 1183. [Google Scholar] [CrossRef]
- Zhao, Q.; He, Q.; Jin, L.L.; Wang, J.L. Potential Source Regions and Transportation Pathways of Reactive Gases at a Regional Background Site in Northwestern China. Adv. Meteorol. 2021, 2021, 9933466. [Google Scholar] [CrossRef]
- Li, N.; Bai, L.; Yang, Q.B.; Xie, M.H.; Zhou, C.; Zhang, L.L. Economic Development and Pollution Reduction Potential of the North Slope of Tianshan Economic Zone and Industrial Green Development Strategy. Environ. Sci. Res. 2020, 33, 503–510. [Google Scholar] [CrossRef]
- Andrew, R.; Peters, G. The Global Carbon Project’s Fossil CO2 Emissions Dataset; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
Season | Clusters | Source Area of Air Masses | Percentage of Trajectories (%) | CO2 (ppm) | CO (ppb) |
---|---|---|---|---|---|
Spring | 1 | Eastern Kazakhstan, Hebukesai’er, Fuhai | 34.03 | 404.32 ± 3.01 | 152.65 ± 18.33 |
2 | Southern Russia, Northeast Kazakhstan, Buerjin, Habahe | 4.86 | 405.20 ± 7.32 | 148.26 ± 19.26 | |
3 | Southern Russia, Altay, Beitun | 18.19 | 408.27 ± 10.33 | 161.53 ± 20.57 | |
4 | Southeastern Kazakhstan, Hebukesai’er | 39.03 | 403.40 ± 5.17 | 138.88 ± 13.14 | |
5 | Altai Mountain, Fuhai, Olgii, Fuyun, Qinghe | 3.89 | 408.14 ± 7.86 | 158.27 ± 19.57 | |
Summer | 1 | Southeastern Kazakhstan, Habahe, Buerjin, Beitun | 27.15 | 388.89 ± 5.83 | 134.92 ± 14.22 |
2 | Southern Russia, Habahe | 22.98 | 386.61 ± 7.07 | 127.83 ± 13.18 | |
3 | Karamay, Alashankou, Tacheng | 24.06 | 389.77 ± 7.62 | 139.51 ± 19.37 | |
4 | Southern Russia, Northeast Kazakhstan, Buerjin, Habahe | 2.28 | 386.33 ± 1.93 | 138.65 ± 18.88 | |
5 | Northeastern Kazakhstan, Fuhai | 23.52 | 387.79 ± 5.05 | 107.85 ± 12.79 | |
Autumn | 1 | Southern part of the Junggar Basin], Tianshan North Slope Economic Belt, Fuhai | 9.52 | 402.60 ± 8.76 | 140.34 ± 16.71 |
2 | Eastern Kazakhstan, Alashankou, Karamay, Tacheng | 17.64 | 403.27 ± 10.51 | 139.16 ± 18.28 | |
3 | Northern Altai Mountains, Southern Russia, | 22.97 | 401.60 ± 8.03 | 119.97 ± 13.72 | |
4 | Southern Russia, Altai Mountain, Qinghe, Fuyun, Fuhai | 8.82 | 391.31 ± 5.42 | 116.71 ± 15.81 | |
5 | Eastern Kazakhstan, Nur Sultan, Buerjin | 41.04 | 400.47 ± 8.60 | 139.37 ± 17.55 | |
Winter | 1 | Hovd, Olgii, Fuyun | 34.41 | 412.05 ± 6.99 | 227.93 ± 20.34 |
2 | Tianshan North Slope Economic Belt, Northern part of the Junggar Basin | 13.58 | 403.29 ± 8.05 | 207.96 ± 18,33 | |
3 | Southern Russia, Altai Mountain, Qinghe, Fuyun, Fuhai | 12.23 | 408.02 ± 6.68 | 219.16 ± 19.99 | |
4 | Eastern Kazakhstan, Hebukesai’er, Fuhai | 20.03 | 412.33 ± 9.00 | 235.25 ± 24.75 | |
5 | Northeastern Kazakhstan, Karamay, Tacheng | 19.76 | 409.58 ± 9.83 | 228.19 ± 24.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; He, Q.; Lu, Z.; Zhao, Q.; Wang, J. Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China. Int. J. Environ. Res. Public Health 2022, 19, 6948. https://doi.org/10.3390/ijerph19116948
Zhao Z, He Q, Lu Z, Zhao Q, Wang J. Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China. International Journal of Environmental Research and Public Health. 2022; 19(11):6948. https://doi.org/10.3390/ijerph19116948
Chicago/Turabian StyleZhao, Zhujun, Qing He, Zhongqi Lu, Quanwei Zhao, and Jianlin Wang. 2022. "Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China" International Journal of Environmental Research and Public Health 19, no. 11: 6948. https://doi.org/10.3390/ijerph19116948
APA StyleZhao, Z., He, Q., Lu, Z., Zhao, Q., & Wang, J. (2022). Analysis of Atmospheric CO2 and CO at Akedala Atmospheric Background Observation Station, a Regional Station in Northwestern China. International Journal of Environmental Research and Public Health, 19(11), 6948. https://doi.org/10.3390/ijerph19116948