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Abstract: The aim of this study was to quantify the effect of radius over horizontal curve sections on
driving workload (DW). Twenty-five participants participated in the driving simulation experiments
and completed five driving scenes. The NASA-TLX scale was used to measure the mental demand,
physical demand, and temporal demand in various scenes, which were applied to assess subjective
workload (SW). Objective workload (OW) assessment methods were divided into three types, in
which the eye tracker was used to measure the blink frequency and pupil diameter, and the electro-
cardiograph (ECG) was used to measure the heart rate and the heart rate variability. Additionally,
the simulator was used to measure the lateral position and the steering wheel angle. The results
indicate that radius is negatively correlated with DW and SW, and the SW in a radius of 300 m is
approximately twice that in a radius of 550 m. Compared with the ECG, the explanatory power
of the OW can be increased to 0.974 by combining eye-movement, ECG, and driving performance.
Moreover, the main source of the DW is the maneuver stage, which accounts for more than 50%.
When the radius is over 550 m, the DW shows few differences in the maneuver stage. These findings
may provide new avenues of research to harness the role of DWs in optimizing traffic safety.

Keywords: traffic safety; driving workload; human model of information processing; horizontal
curve section; ECG indexes; NASA-TLX scale

1. Introduction

Sharp curve sections are accident-prone [1], and more than 60% of traffic accidents
are due to an improper DW caused by horizontal curve sections [2,3]. Based on the Yerkes–
Dodson law [4], Reid proposed that there is an optimal workload level in any driving task
and that a workload that is too high or too low leads to poor performance [5]. When a
driver encounters a sharp curve, the driver is forced to bear a high workload and is prone
to make emergency steering and braking errors. Therefore, verifying the influence of the
radius on the DW is necessary, which helps to compensate for the lack of human factor
consideration in circular curve design [6].

The methods of measuring DW mainly include scale measurements, physiological
measurements, and performance measurements. Lateral position (LP) is a key indicator of
driving behavior. Fu [7] found that the mutation of spatial curvature is positively correlated
with the maximum LP. Because of the difficulty of selecting experimental sections, the
results made it impossible to ignore the influence of gradient change. A simulation study of
the radius-only variable by Lin [8] reported that the radius potentially represented negative
safety implications for driving performance, and the influence was that the standard
deviation of the LP increased by the radius reduction. Portera and Xu observed that
the lateral motion also worked worse along curved sections [9,10]. However, Wu [11]
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demonstrated an inconspicuous correlation between the radius and the standard deviation
of the LP because a lower speed limit in the experiments stabilized the steering control.
Thus, the driving behavior was significantly dependent on the speed, and other studies
on workload have shown that the radius has a similar negative influence on the steering
wheel angle (SWA) [12] and lateral acceleration [13,14]. In particular, Peter and Easa [15,16]
indicated an essential point as their study reported that the main disadvantage of the
horizontal curve section is the disorientation caused by increasing centripetal force, and the
disorientation results in a significant increase in the standard deviation of the LP, which
leads to accident rates of more than 40% [17].

A study reported that the change in driving behavior may not easily explain the mental
workload of driving [18]. Then, the scale measurement attempted to detect the mental
workload. Commonly used scale measurement methods include the National Aeronau-
tics and Space Administration Task Load Index (NASA-TLX) [19], Subjective Workload
Assessment Technique [20], and Workload Profile [21]. The NASA-TLX is considered to be
one of the most systematic assessments of mental workload [22] and can measure SW in
various aspects, such as mental demand, physical demand, temporal demand, performance,
frustration level, and effort. Furthermore, the NASA-TLX has been shown to lead to success
in driving. Xie [23] indicated that drivers who experienced a sharp curve scored higher on
the NASA-TLX. However, the participants were of a similar age. Therefore, participants
aged from 21 to 24 and from 29 to 33 were invited to participate in field experiments at a
uniform speed. An interesting result is that the SW is higher for young drivers in general,
especially on curved sections [24].

The main physiological indexes used to measure driving workload include eye-
movement [25–28], electroencephalogram [29,30], ECG [31], and electromyographic sig-
nals [18]. Not every index is sensitive to changes in the radius, with evidence suggesting
that eye-movement is significantly affected by radius [32]. The smaller the radius displayed
to a driver at a given time, the larger the pupil diameter (PD) for the driving process [33,34].
At the same time, the radius also influenced the characteristics of ECG, such as heart rate
(HR) and heart rate variability (HRV) [35]. The horizontal curve section presents more
complex curvature variations, which require drivers to leverage more attention resources
for lane-keeping. This undoubtedly increased the changes in HR and HRV. Such a complex
curve scene will lead to a higher workload and lower blinking frequency, as shown in
field driving conditions [36]. However, this research is limited in that the results failed to
quantize the relationship between DW and radius. Furthermore, Zheng [37] developed a
quantitative model between the growth of HR (GRHR), speed, and the radius from 200 m
to 2000 m in the field of driving. The model showed that a radius of 500 m is the threshold
for a significant negative effect on drivers’ physiology. It is difficult to collect complete
and continuous data on physiological measurements in both field driving and simulation
driving [38].

While these studies have revealed the variation rules of driving performance, sub-
jective score, and physiological indexes in the horizontal curve sections, few researchers
have attempted to accurately determine DW. Waard [39] analyzed a combination of the
above indexes using a driving simulator, and the results primarily demonstrated that the
sensitivities of each index varied with task difficulty. Therefore, a single-index approach to
assessing DW is incomplete and inaccurate.

Workload is typically defined as the difference between the perceived effort and actual
effort, including subjective and objective aspects [40]. The absence of any aspect can lead
to a lack of credibility in workload measurement [41]. Accordingly, Hancock [42] claimed
that workload is the product of an operator mobilizing attention resources to meet task
demands. When the task demands exceed the available resources, operators need to adjust
their strategies or the performance will inevitably deteriorate. However, resources are not
fixed and depend on individual ability. In addition, the operator will make a subjective
assessment of the resources needed for a task [43], that is, SW.
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With the contemporary rapid development of human factor research, attention re-
sources are multidimensional because they differ in the processes of information acquisition,
decision-making, and response [44]. Similarly, workload has multidimensional properties.
Based on the above opinions, many studies have innovatively combined the human model
of information processing (HMP) to realize workload models related to human–computer
interactions, such as aircraft [45] and roads [46]. For example, the queueing network model
of DW [47] proposed that the quantitative approach is more accurate when the DW is con-
centrated in the perceptual, cognitive, or maneuver stage. A key limitation of this study is
that the results were obtained by the NASA-TLX, which was used to assess SW rather than
DW. Therefore, how to significantly extend the HMP to cover DW requires further research.

In summary, from the theory of the HMP, this research intends to evaluate the driving
workload over curve sections by following key steps. (1) The NASA-TLX scale is used to
measure the mental demand, physical demand, and temporal demand in various scenes
to assess the SW. (2) The OW assessment methods are divided into three types, in which
an eye tracker is used to measure the blink frequency (BF) and PD; an ECG is used to
measure the HR and root mean square of successive differences between adjacent RR
intervals (RMSSD); and a simulator is used to measure the LP and SWA. (3) By arranging
the standard value, which is the mean index of the straight-line section, the SW and OW
are integrated. (4) The weight of driving workload from each stage (SDW) (the visual–
perceptual, cognition, and maneuver stages) was determined by classification algorithms.
A machine-learning-based workload modeling approach was proposed by dynamically
monitoring drivers’ psychological and physiological indicators. Such an approach may
improve the sustainability and resilience of drivers and intelligent transportation systems.
It may also help to build interdisciplinary intelligence systems for digital health.

The rest of this paper is organized as follows. First, the DW definition and modeling
method, including the driving simulation experiments and data processing, are presented
in Section 2. Then, we measure the SW, OW, SDW, and DW at each stage in Section 3. The
research is discussed in Section 4 and summarized in Section 5.

2. Materials and Methods
2.1. Experimental Design

The experiments were designed on a driving simulator. Driving simulators are safe
and effective platforms that combine an ECG module, eye-movement module, and behavior
output [48]. Current evidence suggests that simulation driving data differ from field driving
data, but the regularity may be similar [49,50]. In other words, the data collected by a
driving simulator lack absolute validity but have relative validity. Therefore, this research
selected the radius as a variable to verify the driving simulation validity; the radius was
taken as variable for the selection of field test roads.

2.2. Experimental Scenes

This study determined the radius as an independent variable to improve subjects’
capture of curve changes. Fitzpatrick [51] indicated that the effect on driving behavior, such
as speed selection, is less when the radius is greater than 550 m. To exclude the influence of
circular curve length and superelevation on the experimental results, the radius (300 m,
550 m) was taken as the research object. The circular curve length was set to approximately
260–280 m to meet the requirement of 3 s of travel, and the maximum superelevation was
set to 8%.

For the distance before entering a curve, drivers can perceive the curve visually and
adjust their driving behavior. A dynamic vision study [52] found that the driver’s gaze
distance is approximately 377 m, and the deepest vision distance is 500 m when the speed
is 80 km/h. Therefore, this paper selects 500 m before the clothoid to the end of the clothoid
as the horizontal curve section. In addition, the research set five scenarios by selecting a
flat terrain area in eastern China on UC-win/Road modeling software. A relevant study
reported that speed and heart rate growth rate were highly correlated [53]. The section



Int. J. Environ. Res. Public Health 2022, 19, 7063 4 of 18

type is a two-way four-lane highway with a design speed of 80 km/h and a speed limit of
80 km/h. The specific parameters of the driving simulation model are shown in Table 1.

Table 1. Design index of the simulation model over a horizontal curve section.

Radius (m) Average
Gradient (%)

Curve Length
(m)

Straight Line
Length (m)

Section Length
(m) Curve Type Turing Mode

∞ 1.00 0 1280 1280 Straight-Line -
300 1.00 775 500 1275 Basic Curve Turn Right
400 1.00 778 500 1278 Basic Curve Turn Right
500 1.00 774 500 1274 Basic Curve Turn Right
550 1.00 776 500 1276 Basic Curve Turn Right

Note: basic curve is the combination of straight-line–clothoid–circular curve–clothoid–straight-line.

To ensure the reliability of the driving simulation, the experimental scene has no input
of traffic flow other than the test vehicle. Speed limit signs were set on the right side of the
road, and the location was 200 m away from the beginning of the section. The layout and
setting of road signs and markings were set according to the Specification for Layout of
Highway Traffic Signs and Markings (2009) in China. The weather for all scenarios was
clear and well lit, as shown in Figure 1. With a similar driving scene, a horizontal curve
section with a radius of 500 m in central China was selected for the field experiment to
verify the relative validity of the simulation results.
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Figure 1. The experimental scenes.

A field investigation was carried out on Xian-Xun freeway. We selected one curve
section with radius of 500 m. The simulated road was established according to real road
parameters, and the side environment of the simulation road is consistent with the actual
road. Meanwhile, the experiment time was taken during the week between 9:00 AM and
11:00 AM to ensure that the test vehicle was not affected by traffic flow.

2.3. Participants

Twenty-five participants (12 males and 13 females), ranging in age from 30 to 55 years
(mean = 42; SD = 6.8), were recruited for this research. All were social workers with a
high educational degree and good physical health. These participants had valid driving
experience of 7 to 16 years (mean = 12.4; SD = 8.2), with an average of 20,000 km or more
driven per year. According to the Logarithmic visual acuity chart (4.0–5.2) implemented in
2012 in China, the corrected visual acuity of the participants was 5.0 or high. Prior to the
experiment, none of the participants had experienced a driving simulator and Xian-Xun
freeway, and all participants signed an informed consent form.

2.4. Experimental Equipment

The driving simulation system enables six degrees of freedom of motion in space (the
six degrees of freedom are vertical motion, lateral motion, longitudinal motion, tilting,
rolling, and swinging, that is, translation in X, Y, and Z direction and rotation around X,
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Y, and Z direction), which maximally simulates the field of driving scene “vehicle–road–
driver” and can quickly collect vehicle motion information, including speed, acceleration,
and lateral position. The driving simulator consists of three independent identical screens
(screen size: 961 mm × 567 mm × 55 mm) and provides the participants with a 130-degree
horizontal view and a 40-degree vertical view, as shown in Figure 2.
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A Passat was selected as the field test car, and vehicle parameters were set in the
UC-win/Road software in accordance with the Passat applied in the field test.

The MP160 multiple electroconductive physiological recorder was used for real-time
acquisition of the participants’ ECGs. The recorder was used in conjunction with Acq-
Knowledge 5.0 to analyze the driver’s ECG. The sampling frequency was set to 1000 HZ.

The SMI eye tracker was used to capture the participants’ eye-movements in combina-
tion with the Iview to collect high-precision data, such as PD. The sampling frequency was
250 HZ. Begaze 3.7 was used to analyze the eye-movement indexes.

The WTRTK-4G High-precision positioning sensors were used to obtain the LP in real
time and save it through the matched software CP210X tools in the computer.

The HWT101DT attitude angle sensor was used for real-time acquisition of the vehicles’
SWA. The data were saved by the supporting software MiniIMU tools in the computer.

2.5. Experimental Procedure

The simulation experiment was divided into 3 phases, including the preparation phase,
pre-experimental phase, and experimental phase. In the preparation phase, the researchers
calibrated the experimental equipment, the simulation models were imported and cali-
brated into the 5 experimental scenes, and the participant’s heart rate was measured at rest.
In the pre-experimental phase, the participants traveled for 5 min on a nonexperimental
scene to familiarize themselves with the driving simulation. Before the experimental phase,
the participants were informed of test precautions and driving requirements, including
maintaining a lane of driving without answering the phone, chatting, and other behaviors
unrelated to driving tasks. In the experimental phase, all participants were required to drive
five scenes for approximately 20 min. The ECG was equipped with electrode sheets, and the
SMI was equipped with eyeglasses. The participants were allowed to stop the experiment
when they felt uncomfortable. Between each experimental scene, the participant had a
10-min rest period without ECG or SMI to eliminate discomfort. At the same time, the
participants were asked to complete the NASA-TLX scale and ensure that their heart rates
returned to baseline. Then, the participants were assisted in wearing and commissioning
the experimental equipment for 3 min.

This process was repeated for the other four experimental scenes. Once a participant
had completed all experimental scenes, the next participant was prepared to enter the
experimental area. This process was continued until all participants had completed all
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experimental tasks. The experimental procedures of the field test were the same as those of
the simulation test.

2.6. Driving Workload Indexes and Evaluation Method
2.6.1. Proposing Definition of Driving Workload

The controversial point of these studies is that the definition of workload is hard to
agree on, and different definitions will result in different indicators. According to the
driving characteristics, the HMP was applied in this paper. The HMP has three stages:
perceptual, cognitive, and maneuver stages, and each stage was affected by attention
resources. However, the resources in each task were limited due to the task demand. If
one stage took up more resources, others took less [54]. Since DW reflects the perception
and effort of information processing throughout each stage, DW may be simplified to the
difference between task demands and attention resources.

The definition of DW in this study is the difference between task demands (SW)
and attention resources (OW) caused by visual–perceptual (VP), cognition (C), and the
maneuver stage (M). SW is composed of three aspects: VP demands, C demands, and M
demands. Similarly, OW is composed of VP resources, C resources, and M resources. The
DW based on the definition can be quantitative, as shown in (1).

DWi = SWi −OWi (1)

where i represents the processing of VP, C, and M. DWi is the SDW of each stage, and the
dimension is 1. The scores of SWi and OWi represent the SW and OW of each stage, and
their dimension is 1.

2.6.2. Subjective Workload Indexes

Three indicators were used to evaluate SW, including mental demand, physical de-
mand, and temporal demand, all of which were collected by the NASA-TLX scale. One
report demonstrated that the NASA-TLX shows a higher sensitivity in assessing SW [55].
The scale consists of six parameters of demand, which are composed of mental demand
(MD), physical demand (PD), temporal demand (TD), performance, frustration level, and
effort. The score of any aspect ranges from 0 to 100. Except for the performance, the greater
the score of other parameters, the greater the demand. The scores of MD, TD, and PD
represent the VP demands, C demands, and M demands, respectively.

2.6.3. Objective Workload Indexes

OW is the attention resources in the driving process, assessed by eye-movement,
ECG, and performance. This study attempted to apply physiological measurements and
performance measurements in assessing OW.

(1) Physiological indicators
Based on the correlation between mental workload and ECG, including HR and

RMSSD [12,56], the drivers had to perform mental calculations during the cognitive stage.
Therefore, HR and RMSSD are devoted to assessing the OW of the cognitive stage. Research
on driving has indicated that HR varies greatly with individuals and relates to age, gender,
and health [57]. To reveal the effect on individuals, GRHR was replaced to characterize the
effects of driving tasks, as illustrated in Equation (2).

GRHR = (HR− HRrest)/HRrest ∗ 100 (2)

where GRHR is the percentage of HR increment relative to the resting state, %. HRrest is
HR in the rest state.
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RMSSD indicates the root mean square of successive differences between adjacent RR
intervals, which is a common time-domain index of HRV, as shown in Equation (3).

RMSSD =

√
∑i=n−1

i=1 D2
i

n− 1
(3)

where Di is the length of RRi and RRi+1 between two adjacent heartbeats. Di = RRi−RRi+1.
indicates the number of normal heartbeats.

Eye-movement is highly related to the visual perception of drivers. Related research
has shown that BF and PD reflect the visual perception of a horizontal curve section [27].
Similar to the GRHR, the same quantitative method was applied to PD and BF. They are
defined as the pupil diameter growth rate (GRPD) and the blink frequency growth rate
(GRBF) as follows:

GRPD = (PD− PDrest)/PDrest ∗ 100 (4)

GRBF = (BF− BFrest)/BFrest ∗ 100 (5)

where PD represents the pupil diameter in mm. BF is the blink frequency per minute.
PDrest and BFrest indicate the pupil diameter and blink frequency in the resting state.

(2) Driving performance
Current research has reported that LP and SWA are directly related to driving per-

formance in horizontal curve sections, which are commonly used to reflect the maneuver
workload on drivers [58,59]. Thus, two indicators are used to evaluate the maneuver
resources of OW, including SWA and LP, as follows.

SWA = Deg ∗ SWAmax/2 (6)

LP = |DRB − DC−RB| (7)

where SWAmax represents the maximum SWA: 900◦. DRB is the lateral distance of the
vehicle to the right boundary of the road derived from the driving simulator; DC−RB is the
distance between the center and right boundary of the driving lane, and the value is set to
3.9367 m.

2.6.4. Establishing Workflow of Driving Workload

According to the complexity of the experimental scene, the quantitative model of DW
assumed a significant difference in the DW level of different experimental scenes. Addi-
tionally, it is necessary to prove the same difference in eye-movement, ECG, and driving
performance because of the large dimension difference in indicators and the limited atten-
tion resources. The key methods of DW modeling are the correlation strategy of SW and
OW, as well as the strategy of effectively quantifying SDW distribution problems in visual–
perceptual, cognitive, and maneuver stages. The specific modeling framework is shown in
Figure 3. Modeling framework for the evaluation method of the driving workload.

Before quantitating the driving workload, the data preprocessing was used for feature
selection and feature extraction. In this study, it was conducted as follows.

(1) Pearson correlation analysis
Pearson correlation analysis was used in this study because the data redundancy

caused by strong correlation features can reduce model accuracy. The purpose is to analyze
the correlation between the OW indicators to screen DW evaluation indicators.

(2) the analysis of variance (ANOVA)
ANOVA was used to determine the magnitude of the influence of a variable on the

results. The Mann–Whitney (M–W) test and Kolmogorov–Smirnov (K–S) test were used in
this study to analyze the differences in distribution between simulator data and field data.
To verify the validity of the sample, the Friedman test was used to analyze the subjective
and objective data variability between individuals. The joint hypotheses F test and the
Kruskal–Wallis H test were applied to analyze the effect of radius on GRHR, GRPD, and LP.
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Figure 3. Modeling framework for the evaluation method of the driving workload.

Since then, the mean values of MD, TD, and PD were devoted to quantitate SW of
each stage, and the standard deviations of GRPD, GRHR, and LP were devoted to calculate
OW of each stage. By arranging the standard value, which is the mean index of the straight-
line section, the SW and OW were integrated to evaluate SDW. Finally, the classification
algorithms were used to determine the weight of each stage of DW in this study. To avoid
errors by absolute numerical difference, all data were standardized by the extreme value
processing method.

Classification algorithms, including regression trees (RTs), Bayesian networks, logistic
regression, random forests, support vector machines (SVMs), and artificial neural networks
(ANNs), are often used to analyze the sensitivity of indicators to workload [60]. The
data in this paper present the characteristics of small volume, with more dimensions and
noise interference. SVMs can effectively solve the problem of small samples with high
dimensionality and nonlinear characteristics. ANNs are not easily affected by noise and
robustness. RTs have the characteristics of strong stability and anti-overfitting ability. This
study adopted the above three classification algorithms to analyze the OW indexes.

3. Results
3.1. Analysis of Driving Workload Evaluation Index
3.1.1. Selection of the Driving Workload Evaluation Index

Six indicators were used to evaluate OW: two items were related to ECG (GRHR,
RMSSD), two items were related to eye-movement (GRPD, GRBF), and two items were
related to driving performance (SWA, LP). Pearson correlation analysis was used to deter-
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mine the relationships between the indicators. IBM SPSS 26 software was used for data
analysis, as shown in Table 2.

Table 2. Pearson correlation coefficient of OW indicators.

Variable SWA LP GRHR RMSSD GRPD GRBF

SWA 1

LP 0.078 1

GRHR −0.372 * 0.004 1

RMSSD −0.596 ** −0.554 ** 0.566 * 1

GRPD −0.083 0.086 0.030 0.030 1

GRBF −0.206 −0.415 * −0.033 0.368 * −0.248 1
Note: * correlation is significant at the 5% level; ** correlation is significant at the 1% level.

In terms of the driving performance, the differences between the SWA and LP in
every scene were statistically significant. The SWA was significantly correlated with the
GRHR (p = −0.372) and RMSSD (p = −0.596). The LP can reflect the driving stability more
intuitively. Thus, the LP was devoted to assessing the OW of the maneuver stage. For
the ECG, the RMSSD showed a significant correlation with GRHR and was similar to LP
(p = −0.554) and SWA (p = −0.596). Compared to the RMSSD, the GRHR can reflect more
characteristics of ECG. Therefore, the GRHR was used to evaluate the OW of the cognitive
stage. For eye-movement, the GRBF was independent of GRPD but was highly correlated
with LP (p = −0.415) and RMSSD (p = 0.368). In the same way, the GRPD was applied to
assess the OW of the visual–perceptual stage.

3.1.2. Driving Simulation Validation

The purpose of this section is to judge whether the simulation results have relative
validity. This study took the horizontal curve section with a radius of 500 m as an example.
The M–W test and K–S test were used to verify the distribution between the field data
and simulation data, including the NASA-TLX scores, LP, GRHR, and GRPD. A basic
assumption in this study was that the differences between the two samples were not
significant. The results of pairwise comparisons are shown in Table 3.

Table 3. Comparison statistical test results of DW indicators.

Variable Point
M–W Test K–S Test

Variable Point
M–W Test K–S Test

p Result p Result p Result p Result

MD

ZH 0.578 Accept 0.410 Accept

LP

ZH 0.509 Accept 0.291 Accept
HY 0.667 Accept 0.935 Accept HY 0.352 Accept 0.678 Accept
QZ 0.428 Accept 0.269 Accept QZ 0.914 Accept 0.317 Accept
YH 0.101 Accept 0.729 Accept YH 0.636 Accept 0.407 Accept
HZ 0.257 Accept 0.355 Accept HZ 0.747 Accept 0.569 Accept

TD

ZH 0.700 Accept 0.889 Accept

GRHR

ZH 0.732 Accept 0.767 Accept
HY 0.481 Accept 0.194 Accept HY 0.348 Accept 0.749 Accept
QZ 0.224 Accept 0.812 Accept QZ 0.541 Accept 0.885 Accept
YH 0.151 Accept 0.854 Accept YH 0.262 Accept 0.897 Accept
HZ 0.801 Accept 0.799 Accept HZ 0.866 Accept 0.292 Accept

PD

ZH 0.992 Accept 0.870 Accept

GRPD

ZH 0.603 Accept 0.670 Accept
HY 0.182 Accept 0.513 Accept HY 0.956 Accept 0.561 Accept
QZ 0.589 Accept 0.769 Accept QZ 0.568 Accept 0.795 Accept
YH 0.984 Accept 0.645 Accept YH 0.507 Accept 0.481 Accept
HZ 0.460 Accept 0.894 Accept HZ 0.710 Accept 0.657 Accept

Note: ZH is the point where the straight line intersects the transition curve; HY is the point where the transition
curve intersects the circular curve; QZ is the middle point of the circular curve; YH is the point where the circular
curve intersects the transition curve; HZ is the point where the transition curve intersects the straight line.
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As shown in Table 3, the K–S and M–W testing results were absolutely effective
on the five characteristic points of the curve sections, all of which were consistent with
the assumption. Therefore, the results showed that the sample had a high consistency
between the driving simulator and the field scene. Applying driving simulation to study
the influence of the radius on the DW is reliable and reasonable.

Otherwise, the Friedman test was used to analyze the above indicators to exclude the
influence of individuals on the DW model. The results showed that the data of each group
followed a normal distribution (p ≈ 1).

3.2. Quantification of Workload in Each Stage
3.2.1. Drivers’ Subjective Workload Scores

To assess the driver’s SW, the MD, TD, and PD results of the 25 participants were
analyzed in this study, the Cronbach’s alpha test, KMO test, and Bartlett test showed that
the data of each radius were significantly different (α = 0.952 > 0.7; KMO = 0.894 > 0.6,
p < 0.05). Therefore, this research identified the mean values of the MD, TD, and PD as the
SW of the perceptual, cognitive, and maneuver stages (SWi), respectively. As shown in
Table 4, the lower SW is represented by the lower score.

Table 4. Subjective workload over different radii.

Horizontal Curve (m) 300 400 500 550 ∞

SWVP 21.800 16.200 13.800 9.600 6.800
SWC 21.600 18.600 14.400 8.400 6.200
SWM 26.000 21.400 15.800 13.400 8.000

As observed from the SW scores, when the radius increases, the SW score reduces
synchronously in each stage, and the lower SW scores are mainly concentrated on the
straight-line section.

3.2.2. Drivers’ Objective Workload Scores

Nonparametric tests were used for the mean values of PD, HR, and LP, which indicated
that the LP and PD complied with a normal distribution. Testing by joint hypotheses F
methods, the LP showed a significant difference, where F (−10.31, 3.80) = 5.172 and p < 0.05.
The interaction between the LP and the radius was statistically significant, where F (2.90,
2.94) = 16.339 and p < 0.05. The cases that did not meet the normal distribution were
analyzed by the Kruskal–Wallis H test. The results show that the HR complies with the
same difference (H = 79.313, p < 0.05) of different radii.

Assessing the OW is another key step in quantifying the DW. The linear influence
factor (LIFij, where j represents the radius of 300 m, 400 m, 500 m, 500 m, 550 m, and ∞)
was devoted to quantitatively measure the OW, which indicated the effect of the radius on
the OW. The factor was defined with the standard deviation of the GRPD, GRHR, and LP,
as illustrated in Table 5.

Table 5. Linear influence factor over different radii.

Horizontal Curve (m) 300 400 500 550 ∞

LIFVPj 1.086 1.045 1.061 1.046 0.742
LIFCj 1.121 0.963 0.757 0.443 0.354
LIFMj 3.915 2.150 1.861 1.380 0.749

As shown in Table 5, similar to the SW, the straight line has the least influence on
the OW. A key strategy in DW modeling is relating OW to SW. Therefore, the SW of the
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straight-line section in this study was defined as a standard value. The OW quantitative
model was proposed in Equation (8).

OWi =
LIFij

LIFistandard

SWistandard (8)

Combining Equation (8) and the linear influence factor results, the results of the OW
are shown in Table 6. A lower score represents less effort put into driving.

Table 6. Objective workload over different radii.

Horizontal Curve (m) 300 400 500 550 ∞

OWVP 9.953 9.580 9.727 9.587 6.800
OWC 19.634 16.867 13.251 7.766 6.200
OWM 41.820 28.964 18.876 14.738 8.000

3.2.3. Workload of Each Stage over Horizontal Curve Sections

According to the definition of the DW in Section 2.6.1 (Equation (1)), the SDWs of
different stages in the horizontal curve sections are summarized in Table 7. When the SDW
score is lower, the difference between the SW and OW is smaller. Naturally, drivers are in
a more relaxed driving experience. Meantime, the DW of standard section (straight-line
section) is defined as 0.

Table 7. SDW over different radii.

Horizontal Curve (m) 300 400 500 550

DWVP 11.847 6.620 4.073 0.013
DWC 1.197 1.733 1.149 0.634
DWM 15.820 7.564 3.076 1.338

3.3. Driving Workload Evaluation Model on Horizontal Curve Sections

To determine the weight of each stage of DW in this study, 129,575 OW samples
extracted in the repeated experiment of Section 2.4 were analyzed. Eighty percent of the
items were randomly selected as the training set, and the others were selected as the testing
set. The ANNs adopted the Levenberg–Marquardt function, and the number of hidden
layer neurons was two. The sigmoid kernel function was used in the SVM. The Gini
function was used to optimize the RTs with the minimum samples contained in the leaf
node. The results of the classification algorithm are shown in Table 8.

Table 8. Accuracy of three classification algorithms under different feature inputs.

Data Set Algorithm GRHR GRPD LP GRHR +
GRPD

GRHR +
LP

GRPD +
LP

GRHR +
GRPD + LP

Training Set
ANNs 0.585 0.257 0.542 0.654 0.686 0.618 0.783
SVM 0.719 0.468 0.856 0.892 0.879 0.889 0.904
RTs 0.491 0.213 782 0.881 0.912 0.946 0.974

Test Set
ANNs 0.468 0.217 0.359 0.488 0.642 0.578 0.747
SVM 0.522 0.313 0.511 0.727 0.814 0.838 0.863
RTs 0.417 0.201 0.642 0.763 0.858 0.937 0.948

Note: the accuracy is the average value of 10-fold cross-validation.

As shown in Table 8, the SVM achieved higher classification accuracy in the training
set based on the GRHR, GRPD, or LP alone, where the accuracy was 0.719, 0.468, and 0.856,
respectively. Similar results were obtained in the testing set. While the input indexes were
arranged as a pairwise combination in the GRHR, GRPD, and LP, the accuracy of the RTs
showed the highest result, where the accuracy was 0.881, 0.912, and 0.946, respectively. In
particular, the RTs achieved higher accuracy when the GRHR, GRPD, and LP were combined,
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where the accuracy was 0.974 in the training set and 0.948 in the testing set. Compared to
the input of a single indicator or a pairwise combination, the accuracy was increased by
0.761 and 0.093, respectively. The results demonstrate that the evaluation method for the
DW based on the multifeature combination, including the ECG, eye-movement, and driving
performance, significantly outperforms the method based on the above indicators alone.
In addition, compared to the ANNs and SVM, the RTs achieved higher average accuracy
based on their strong stability and anti-overfitting ability. Thus, the results of the RTs
(Figure 3) were devoted to evaluating the sensitivity of the SDW for the driving workload.

As shown in Figure 4, the sensitivity of the LP was significantly larger than those of
the GRHR and GRPD. To quantitate the sensitivity, the weights (wi) of the SDW at different
stages were proposed in this study, which were defined by Equation (9).

wi = ∑
m

n0g0 − n1g1 − n2g2

T
(9)

where n0 and g0 represent the samples and Gini coefficient of the parent node. n1 and n2
indicate the samples of subnodes. g1 and g2 indicate the Gini coefficient of the subnodes. T
is the total number of samples. m is the number of nodes. The cases with a sum of wi less
than 1 were scaled up until the results equaled 1. After calculation, the evaluation model of
driving workload was established by Equation (10) in the horizontal curve sections.

DW = 0.117DWVP + 0.336DWC + 0.547DWM (10)
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It can be determined from Equation (9) that the weights of the SDW were significantly
different in each stage, where wVP = 0.117, wC = 0.336, and wM = 0.547. The DW mainly
concentrated on the maneuver stage. The reason may be that drivers generally underesti-
mate the OW during the maneuver stage (SWM < OWM). The DWs in different horizontal
curve sections were calculated by Equation (10), which were illustrated in Figure 5.



Int. J. Environ. Res. Public Health 2022, 19, 7063 13 of 18

Figure 5 demonstrates that the DW dropped significantly with increasing radius, and
the variation range decreased with increasing radius. Where the radius is 550 m, the SDW
of the visual–perceptual stage was equal to that of the straight-line section (DWVP = 0).
The results of DWVP indicated that a radius of more than 550 m did not influence the
driver’s visual perception. However, the variation range of the SDW in the cognitive stage
was lower than that in the visual–perceptual stage. The reason mainly concentrated on
drivers’ subjective scores, which showed high accuracy in mental activities. Therefore, the
overall difference between the SW and OW in the cognitive stage was smaller. There was a
similar decrease between the DW and DWM with increasing radius. Compared to the whole
processing, the DW of the maneuver stage represented a higher drop. It is most sensitive to
the radius. Naturally, the driving performance can be considered the key indicator affected
by the radius.
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An increase in the radius on the horizontal curve sections led to an increase in the
driving workload. This would clearly increase the difference between the subjective
workload and objective workload. Compared to a radius of more than 550 m, a smaller
radius may have decreased the participants’ judging accuracy, leading to a higher difference
between the SW and OW. However, when the radius was equal to 550 m, there was
no difference between the curve section and straight-line section in the DW or DWVP.
Therefore, the radius of 550 m can be considered the critical radius affecting the driving
workload of car drivers, which is basically consistent with the hypothesis of this study.

4. Discussion

In this study, a simulator was used to analyze the impact of radius on driving workload.
In addition, the NASA-TLX score, GRPD, GRHR, and LP were combined to determine the
DW. The results showed that the main source of DW caused by the radius was the maneuver
stage, and its influence degree was more than 50%. A large radius (R ≥ 550 m) could result
in a DW that was not substantially different from that produced by the straight-line section,
which represented a smaller SW and OW. The results confirm the hypothesis of this study;
that is, drivers are in the best DW standard on the straight-line section, and they have
perfect performance and little mental pressure [61].

Obviously, a decrease in the radius on horizontal curve sections will affect drivers. In
terms of the visual–perceptual stage, the standard deviation of the GRPD increased with
a decrease in the radius. Because a smaller radius results in a narrower visual zone, the
drivers need a longer time to search for and collect information [27,28]. The mental demand
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also increased as the radius decreased, and the variation was much greater than that of
the GRPD. This process increased the difference between the SW and OW, and the driving
workload also increased [57].

The analysis results of the cognitive stage showed a similar regularity with the visual–
perceptual stage. Clearly, an increase in the radius could lead to a decrease in the LP and
GRHR, as well as in the SDW of the cognitive and maneuver stages, which is consistent with
the research results of Zheng [62]. However, the difference was greater in the maneuver
stage, and the OW of the participants was greater than the SW. This indicated that the
drivers underestimated the actual cost of the maneuver stage, possibly because the single
act of vehicle control is often considered easier than mental activity, which leads to the
underestimation of lane control workload [23,24].

The simulation results of this study especially indicated that the evaluation method
for DW based on the multifeature combination, including GRHR, GRPD, and LP, signifi-
cantly outperforms the method based on the above indicators alone or pairwise, which is
consistent with the findings of Zheng Ling [60]. The sensitivity difference in indicators can
be explained by the human model of information processing [54] in that complex driving
processing results in competition for attention resources, thus allowing drivers to mobilize
resources at different stages to deal with sudden competition. Of course, the different
indicators explain the change in attention resources (OW) at different stages. This result
shows that the definition of DW proposed in this study can be used to evaluate driving
workload more accurately.

Regarding the resources demanded by driving workload, when the radius is 550 m
or less, the DW for the maneuver stage was greater than those for the cognitive stage and
visual–perceptual stage, where the wi of the SDW is 0.547, 0.336, and 0.117. The main reason
was that the sensitivity of the indicators devoted to the SDW was related to a difference in
the radius. This is consistent with the study by Waard [39]. His study also showed that the
maximum lateral position is positively correlated with the rate of curvature change. This
indicates that the horizontal curve sections have higher requirements for vehicle control,
and drivers need to spend more attention resources on acceleration, deceleration, steering,
and other operations.

It should be noted that these findings apply specifically to free driving with a speed
limit of 80 km/h. The results may vary for other speed limits. Charlton [63] found that
the attention resources of drivers increase at a sharp curve, and higher speeds during
curve sections have higher attention resource (OW) demands. In addition, since the radius
of the horizontal curve sections was noncontinuous, it is impossible to determine the
specific threshold of the total radius of the curve sections. At the same time, physiological
measurements have their own limitations, and it is difficult to obtain 100% ECG or eye-
movement measurements. Factors other than radius can influence driving workload,
including social attributes, personality characteristics, road structure, turn mode, and
weather conditions. Therefore, it is suggested that the following studies take the above
factors into account to comprehensively analyze the workload and verify the research
results in field tests.

5. Conclusions

This paper quantifies the influence of various radii on driving workload. According to
the HMP, the definition and evaluation method of DW is proposed in this study. The key
strategy is that the NASA-TLX scores were used to express SW, and OW was represented
by a combination of ECG, eye-movement, and driving performance. The regression tree
model was used to determine the weight of SDW. Thus, the evaluation model of driving
workload on the horizontal curve section was established. The main findings are indicated
as follows:

(1) The evaluation method for DW based on the multifeature combination, including
GRHR, GRPD, and LP, significantly outperforms the method based on the above indicators
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alone or pairwise, indicating that the definition and evaluation method based on HMP
could describe driving workload more accurately in this study.

(2) Driving workload is negatively correlated with radius, and when the radius is
550 m or less, the greater the workload for drivers. This result has been confirmed in many
studies. However, this study determines DW for various radii, where the DW is 0.9 with
a radius of 550 m, close to that in the straight-line section. This indicates that a radius of
550 m is the critical radius affecting the driving workload of drivers.

(3) Driving workload occurs mainly in the maneuver stage, where the weight is 0.547.
This result indicates that the task complexity of the horizontal curve sections mainly lies
in vehicle control. In particular, drivers often underestimate the driving workload at this
stage. To avoid excessive driving workload on the drivers affecting driving performance,
the radius on the horizontal curve sections should not be less than 500 m, and the relevant
signs should aid the guidance of vehicle control in terms of speed and lane-keeping.

(4) The subjective workload with a radius of 300 m is approximately twice that with a
radius of 550 m, indicating that the influence of radius on drivers’ subjective workload is
mainly concentrated in the curved sections with a small radius of less than 400 m.

(5) Compared to SW, OW is more affected by radius. Especially for the maneuver
stage, the workload with a radius of 300 m is approximately three times that with a radius
of 550 m, and the lateral position standard deviation is also larger. This indicates that a
smaller radius causes a greater objective workload and poor driving performance, which is
difficult to regulate.

Clearly, the evaluation model and definition in this study can assess driving workload
more comprehensively and locate the key stages that cause driving workload to increase.
This method may provide a new vision for the follow-up study of workload quantification
in the human factors field. In addition, the modeling method quantified driving workload
using multiple indicators, helping to provide a basis for constructing drivers’ electronic
health records. This approach may provide a new perspective on methods for building
intelligence systems for digital health. However, due to the limitations of experimental con-
ditions, it is difficult to simultaneously analyze the influence of population characteristics,
road environment, and climate type on driving workload. This could be another direction
for future research.
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Abbreviations

HMP the Human Model of Information Processing
DW Driving Workload
SDW Driving Workload of Each Stage (visual–perceptual, cognition, maneuver)
OW Objective Workload
SW Subjective Workload
ECG Electrocardiograph
LP Lateral Position
PD the Pupil Diameter
BF the Blink Frequency
HR the Heart Rate
GRPD the Growth Rate of Pupil Diameter
GRHR the Growth Rate of Heart Rate
GRBF the Growth Rate of Blink Frequency
SWA the Steering Wheel Angle
RMSSD the Root Mean Square of Successive Differences between Adjacent RR Intervals
HRV the Heart Rate Variability
MD Mental Demand
PD Physical Demand
TD Temporal Demand
VP Visual–Perceptual Stage
M Maneuver Stage
C Cognition Stage
ANNs the Artificial Neural Networks
SVM the Support Vector Machines
RTs the Regression Trees
LIF the Linear Influence Factor
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