Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Geographic Data
2.2.2. Designed Rainfall Events
2.3. Overall Workflow
2.4. Model Description
2.5. Model Setup
2.5.1. Setup of Hydrological Model
2.5.2. Setup of 1D Pipe Network Hydraulic Model
2.5.3. 1D–2D Model Coupling
2.6. Model Validation
3. Results
3.1. Simulation Results of Historical Rainfalls
3.2. Simulation Results of Designed Rainfalls
3.2.1. Different Return Periods
3.2.2. Different Rainfall Peak Position Coefficients
3.2.3. Different Rainfall Durations
4. Discussion
4.1. Urban Inundation under Historical Rainfall
4.2. Urban Inundation Projections under Different Designed Rainfalls
4.3. Limitations
5. Conclusions
- (1)
- The simulation results of the 1D–2D coupled model were acceptable. The validation results of two historical rainfalls showed that the NSE values were all above 0.82, the R2 values were all above 0.87, and the relative errors were all ±20%. Meanwhile, the simulating depth was consistent with the observed depth. These results indicated that the coupled model could accurately simulate the inundation situation in the study area.
- (2)
- Scenario analysis demonstrated that with the increase in the return period, rainfall peak position coefficient, and rainfall duration, the maximum inundation depth and inundation extent increased. The increased inundation area was mainly concentrated in the south of the study area. Combined with the change in the inundation of the local area, inundation mainly occurred in areas with low terrain (such as AFR), lack of drainage network (such as MXR), and narrow pipe diameter (such as WSS). Rainfall patterns also affected inundation, as in the case of AFR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013–The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 9781107057999. [Google Scholar]
- Karamouz, M.; Hosseinpour, A.; Nazif, S. Improvement of Urban Drainage System Performance under Climate Change Impact: Case Study. J. Hydrol. Eng. 2011, 16, 395–412. [Google Scholar] [CrossRef]
- Kong, F.; Sun, S. Better Understanding Insurance Mechanism in Dealing with Climate Change Risk, with Special Reference to China. Int. J. Environ. Res. Public Health 2021, 18, 2996. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yu, D.; Yin, Z.; Wang, J.; Xu, S. Multiple Scenario Analyses of Huangpu River Flooding Using a 1D/2D Coupled Flood Inundation Model. Nat. Hazards 2013, 66, 577–589. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H. Urban Stormwater Inundation Simulation Based on SWMM and Diffusive Overland-Flow Model. Water Sci. Technol. 2017, 76, 3392–3403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, W.; Cai, K.; Gao, X.; Zhang, X.; Liu, J.; Wang, Z.; Li, D. Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China. Int. J. Environ. Res. Public Health 2019, 16, 4442. [Google Scholar] [CrossRef]
- Nimmo, J.R. The Processes of Preferential Flow in the Unsaturated Zone. Soil Sci. Soc. Am. J. 2021, 85, 1–27. [Google Scholar] [CrossRef]
- De Carlo, L.; Perkins, K.; Caputo, M.C. Evidence of Preferential Flow Activation in the Vadose Zone via Geophysical Monitoring. Sensors 2021, 21, 1358. [Google Scholar] [CrossRef]
- Scaini, A.; Hissler, C.; Fenicia, F.; Juilleret, J.; Iffly, J.F.; Pfister, L.; Beven, K. Hillslope Response to Sprinkling and Natural Rainfall Using Velocity and Celerity Estimates in a Slate-Bedrock Catchment. J. Hydrol. 2018, 558, 366–379. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban Flood Impact Assessment: A State-of-the-Art Review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Zheng, Z.; Gao, J.; Ma, Z.; Wang, Z.; Yang, X.; Luo, X.; Jacquet, T.; Fu, G. Urban Flooding in China: Main Causes and Policy Recommendations. Hydrol. Process. 2016, 30, 1149–1152. [Google Scholar] [CrossRef]
- YNET. Typhoon “Fireworks” Caused Direct Economic Losses of 3.35 Billion Yuan to 2.711 Million People in 4 Provinces and Cities. Available online: https://t.ynet.cn/baijia/31182698.html (accessed on 28 February 2022).
- Yin, J.; Yu, D.; Wilby, R. Modelling the Impact of Land Subsidence on Urban Pluvial Flooding: A Case Study of Downtown Shanghai, China. Sci. Total Environ. 2016, 544, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying Dominant Factors of Waterlogging Events in Metropolitan Coastal Cities: The Case Study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Hou, J.; Xu, Z.; Jing, H.; Gong, J.; Zuo, D.; Li, B.; Yang, S.; Kang, Y.; Wang, R. A GPU-Accelerated Hydrodynamic Model for Urban Rainstorm Inundation Simulation: A Case Study in China. KSCE J. Civ. Eng. 2022, 26, 1494–1504. [Google Scholar] [CrossRef]
- Cen, G.P.; Zhan, D.J.; Hong, J.N. Urban Storm Pipeline Calculation Model. China Water Wastewater 1993, 9, 37–40. [Google Scholar] [CrossRef]
- Zhou, Y.W.; Zhao, H.B. A Study On Urban Storm Runoff Model. China Water Wastewater 1997, 13, 4–6+2. [Google Scholar] [CrossRef]
- Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A New Applications Manual for the Storm Water Management Model (SWMM). Environ. Model. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- Gong, Y.; Li, X.; Zhai, D.; Yin, D.; Song, R.; Li, J.; Fang, X.; Yuan, D. Influence of Rainfall, Model Parameters and Routing Methods on Stormwater Modelling. Water Resour. Manag. 2018, 32, 735–750. [Google Scholar] [CrossRef]
- Innovyze. InforWorks ICM Product Information-Overview. Available online: https://www.innovyze.com/en-us/products/infoworks-icm (accessed on 26 January 2022).
- Liu, Z.; Cai, Y.; Wang, S.; Lan, F.; Wu, X. Small and Medium-Scale River Flood Controls in Highly Urbanized Areas: A Whole Region Perspective. Water 2020, 12, 182. [Google Scholar] [CrossRef]
- Samantaray, D.; Chatterjee, C.; Singh, R.; Gupta, P.K.; Panigrahy, S. Flood Risk Modeling for Optimal Rice Planning for Delta Region of Mahanadi River Basin in India. Nat. Hazards 2015, 76, 347–372. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Liang, C.M.; Liu, J. Review on Urban Storm Water Models. Eng. J. Wuhan Univ. 2018, 51, 95–105. [Google Scholar] [CrossRef]
- Wang, H.C.; Chen, J.G.; Zhang, S.H.; Lai, H.L.; Su, D.B. Application Status and Comparative Analysis of Urban Storm Water Models. Water Resour. Hydropower Eng. 2011, 42, 10–13. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, Z.; Hong, S.; Song, S. Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City. Math. Probl. Eng. 2017, 2017, 5659197. [Google Scholar] [CrossRef]
- Yu, H.; Huang, G.; Wu, C. Application of the Stormwater Management Model to a Piedmont City: A Case Study of Jinan City, China. Water Sci. Technol. 2014, 70, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Patro, S.; Chatterjee, C.; Mohanty, S.; Singh, R.; Raghuwanshi, N.S. Flood Inundation Modeling Using MIKE FLOOD and Remote Sensing Data. J. Indian Soc. Remote Sens. 2009, 37, 107–118. [Google Scholar] [CrossRef]
- Sidek, L.M.; Jaafar, A.S.; Majid, W.H.A.W.A.; Basri, H.; Marufuzzaman, M.; Fared, M.M.; Moon, W.C. High-resolution Hydrological-hydraulic Modeling of Urban Floods Using Infoworks Icm. Sustainability 2021, 13, 10259. [Google Scholar] [CrossRef]
- Yin, D.; Evans, B.; Wang, Q.; Chen, Z.; Jia, H.; Chen, A.S.; Fu, G.; Ahmad, S.; Leng, L. Integrated 1D and 2D Model for Better Assessing Runoff Quantity Control of Low Impact Development Facilities on Community Scale. Sci. Total Environ. 2020, 720, 137630. [Google Scholar] [CrossRef]
- Salvadore, E.; Bronders, J.; Batelaan, O. Hydrological Modelling of Urbanized Catchments: A Review and Future Directions. J. Hydrol. 2015, 529, 62–81. [Google Scholar] [CrossRef]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood Inundation Mapping Sensitivity to Riverine Spatial Resolution and Modelling Approach. Nat. Hazards 2016, 83, 117–132. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Y.; Wang, H.; Gao, X.; Chen, Y.; Ma, L. Urban Stormwater Forecasting Model and Drainage Optimization Based on Water Environmental Capacity. Environ. Earth Sci. 2016, 75, 1094. [Google Scholar] [CrossRef]
- Pyatkova, K.; Chen, A.S.; Butler, D.; Vojinović, Z.; Djordjević, S. Assessing the Knock-on Effects of Flooding on Road Transportation. J. Environ. Manag. 2019, 244, 48–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, D.; Huang, N.; Guo, Y.; Zhang, T.; Zhang, Y. Urban Flood Risk Assessment Using Storm Characteristic Parameters Sensitive to Catchment-Specific Drainage System. Sci. Total Environ. 2019, 659, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Lin’an Release. Flood Bulletin. Available online: https://weibo.com/5181771928/Co1e0AD7W?refer_flag=1001030103_ (accessed on 28 February 2022).
- Hangzhou Daily. Lin’an Reports the Situation of Disaster Relief. Available online: http://www.hangzhou.gov.cn/art/2019/8/12/art_812262_36845347.html (accessed on 12 August 2019).
- Peng, H.Q.; Liu, Y.; Wang, H.W.; Ma, L.M. Assessment of the Service Performance of Drainage System and Transformation of Pipeline Network Based on Urban Combined Sewer System Model. Environ. Sci. Pollut. Res. 2015, 22, 15712–15721. [Google Scholar] [CrossRef] [PubMed]
- Zhejiang Provincial Department of Housing and Urban-Rural Development. Announcement on the Publication of the Engineering Construction Standard “Rainstorm Intensity Calculation Standard” in Zhejiang Province. Available online: http://jst.zj.gov.cn/art/2020/3/6/art_1228990170_208.html (accessed on 6 October 2020).
- Cen, G.P.; Shen, J.; Fan, R.S. Research on Rainfall Pattern of Urban Design Storm. Adv. Water Sci. 1998, 9, 42–47. [Google Scholar]
- Song, J.; Wang, J.; Xi, G.; Lin, H. Evaluation of Stormwater Runoff Quantity Integral Management via Sponge City Construction: A Pilot Case Study of Jinan. Urban Water J. 2021, 18, 151–162. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Cai, Y.; Qiu, J.; Huang, B. Impacts of Climate Change on Urban Drainage Systems by Future Short-Duration Design Rainstorms. Water 2021, 13, 2718. [Google Scholar] [CrossRef]
- EPA. Storm Water Management Model (SWMM) Version 5.1 User’s Manual. Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm-version-51-users-manual (accessed on 10 March 2022).
- Chen, W.; Huang, G.; Zhang, H.; Wang, W. Urban Inundation Response to Rainstorm Patterns with a Coupled Hydrodynamic Model: A Case Study in Haidian Island, China. J. Hydrol. 2018, 564, 1022–1035. [Google Scholar] [CrossRef]
- Liew, Y.S.; Desa, S.M.; Md. Noh, M.N.; Tan, M.L.; Zakaria, N.A.; Chang, C.K. Assessing the Effectiveness of Mitigation Strategies for Flood Risk Reduction in the Segamat River Basin, Malaysia. Sustainability 2021, 13, 3286. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Liao, W.; Zeng, Z.; Chen, X. Scenario-Based Projections of Future Urban Inundation within a Coupled Hydrodynamic Model Framework: A Case Study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.H.; Wang, H.; Li, Z.J.; Yang, Z.Y.; Shao, W.W.; Ding, X.Y.; Weng, B.S.; Yu, Y.D.; Yan, D.Y. Urban Flood Inundation and Damage Assessment Based on Numerical Simulations of Design Rainstorms with Different Characteristics. Sci. China Technol. Sci. 2020, 63, 2292–2304. [Google Scholar] [CrossRef]
- Jiang, W.; Yu, J. Impact of Rainstorm Patterns on the Urban Flood Process Superimposed by Flash Floods and Urban Waterlogging Based on a Coupled Hydrologic–Hydraulic Model: A Case Study in a Coastal Mountainous River Basin within Southeastern China. Nat. Hazards 2022, 112, 301–326. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, M.; Wang, Z.; Lai, C. Assessment of the Vulnerability of Road Networks to Urban Waterlogging Based on a Coupled Hydrodynamic Model. J. Hydrol. 2021, 603, 127105. [Google Scholar] [CrossRef]
- Li, Y.; Hu, T.; Zheng, G.; Shen, L.; Fan, J.; Zhang, D. An Improved Simplified Urban Storm Inundation Model Based on Urban Terrain and Catchment Modification. Water 2019, 11, 2335. [Google Scholar] [CrossRef]
- Cheng, T.; Xu, Z.; Yang, H.; Hong, S.; Leitao, J.P. Analysis of Effect of Rainfall Patterns on Urban Flood Process by Coupled Hydrological and Hydrodynamic Modeling. J. Hydrol. Eng. 2020, 25, 04019061. [Google Scholar] [CrossRef]
- Mallari, K.J.B.; Arguelles, A.C.C.; Kim, H.; Aksoy, H.; Kavvas, M.L.; Yoon, J. Comparative Analysis of Two Infiltration Models for Application in a Physically Based Overland Flow Model. Environ. Earth Sci. 2015, 74, 1579–1587. [Google Scholar] [CrossRef]
Type | Format | Resolution (m) | Main Attributes | Data Source |
---|---|---|---|---|
DEM | GeoTIFF | 2 | Elevation | Surveying and mapping department of Lin’an |
UAV image | GeoTIFF | 0.5 | — | |
Land-use data | Shapefile | — | Land-use type | Meteorological department of Lin’an |
Rainfall data | Excel | — | Time and rainfall | |
Drainage system data | Shapefile | — | Pipe diameter, pipe materials | Urban management department of Lin’an |
Surface Type | Routine Model | Routine Parameter | Surface Type | Runoff Model | Runoff Coefficient | Initial Loss (m) |
---|---|---|---|---|---|---|
Road | SWMM | 0.02 | Impervious | Fixed | 0.9 | 0.0015 |
Building | SWMM | 0.02 | Impervious | Fixed | 0.8 | 0.001 |
Others | SWMM | 0.025 | Impervious | Fixed | 0.5 | 0.005 |
Water | SWMM | 0.03 | Impervious | Fixed | 1 | 0 |
Green space | SWMM | 0.2 | Pervious | Horton | – | 0.005 |
Events | Peak Flow (m3/s) | NSE | R2 | RMSE | Relative Error (%) | |
---|---|---|---|---|---|---|
Record | Simulation | |||||
29 May 2020 | 0.569 | 0.603 | 0.82 | 0.94 | 0.07 | 6.0 |
2 July 2020 | 1.351 | 1.150 | 0.85 | 0.87 | 0.15 | –14.9 |
Number | Position | Recorded Depth (cm) | Simulated Depth (cm) | Errors (cm) |
---|---|---|---|---|
1 | MXR | 20 | 16.9 | 3.1 |
2 | XSS | 10 | 11.7 | –1.7 |
3 | SLS | 10 | 11.3 | –1.3 |
Return Period (a) | r | Number of Overflow Nodes | Maximum Overflow Volume of Nodes (m3/s) | Maximum Inundation Depth (m) | Inundation Extent (m2) | Contribution Area of Different Inundation Depths (m2) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
≤0.2 m | 0.2–0.4 m | 0.4–0.6 m | 0.6–0.8 m | 0.8–1 m | >1 m | ||||||
1 | 0.3 | 12 | 0.5 | 0.813 | 80,781 | 75,772 | 3515 | 1161 | 309 | 24 | 0 |
0.4 | 13 | 0.5 | 0.847 | 84,453 | 78,710 | 4228 | 1115 | 376 | 24 | 0 | |
0.5 | 13 | 0.5 | 0.86 | 87,483 | 81,457 | 4511 | 1115 | 376 | 24 | 0 | |
2 | 0.3 | 16 | 0.6 | 0.946 | 100,981 | 93,347 | 5809 | 1190 | 564 | 71 | 0 |
0.4 | 18 | 0.6 | 0.978 | 103,769 | 95,645 | 6299 | 1120 | 620 | 85 | 0 | |
0.5 | 20 | 0.7 | 0.99 | 106,932 | 98,468 | 6603 | 1156 | 620 | 85 | 0 | |
5 | 0.3 | 28 | 0.7 | 1.096 | 137,329 | 126,259 | 8708 | 1147 | 710 | 157 | 48 |
0.4 | 31 | 0.8 | 1.126 | 148,234 | 136,652 | 8957 | 1710 | 710 | 134 | 71 | |
0.5 | 32 | 0.8 | 1.139 | 158,139 | 146,146 | 9368 | 1579 | 841 | 134 | 71 | |
10 | 0.3 | 36 | 0.8 | 1.203 | 188,477 | 173,377 | 11,171 | 2702 | 920 | 222 | 85 |
0.4 | 37 | 0.9 | 1.222 | 195,118 | 178,884 | 11,843 | 3084 | 1000 | 222 | 85 | |
0.5 | 44 | 0.9 | 1.235 | 201,744 | 185,235 | 11,974 | 3218 | 1010 | 155 | 152 |
Rainfall Duration (min) | Return Periods (a) | Cumulative Rainfall (mm) | Maximum Inundation Depth (m) | Inundation Extent (m2) | Proportion of Inundation Area (%) |
---|---|---|---|---|---|
60 | 1 | 40.3 | 0.803 | 78,115 | 4.13% |
2 | 45.2 | 0.864 | 99,016 | 5.24% | |
5 | 51.6 | 1.093 | 134,200 | 7.11% | |
10 | 56.4 | 1.199 | 181,229 | 9.59% | |
120 | 1 | 50.8 | 0.847 | 84,453 | 4.47% |
2 | 56.9 | 0.978 | 103,769 | 5.49% | |
5 | 65.0 | 1.126 | 148,234 | 7.84% | |
10 | 71.1 | 1.222 | 195,118 | 10.33% | |
180 | 1 | 57.3 | 0.857 | 87,236 | 4.62% |
2 | 64.2 | 0.979 | 106,455 | 5.63% | |
5 | 73.3 | 1.135 | 155,823 | 8.25% | |
10 | 80.2 | 1.229 | 201,027 | 10.64% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hou, H.; Li, Y.; Wang, L.; Fan, J.; Wang, B.; Hu, T. Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China. Int. J. Environ. Res. Public Health 2022, 19, 7210. https://doi.org/10.3390/ijerph19127210
Chen Y, Hou H, Li Y, Wang L, Fan J, Wang B, Hu T. Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China. International Journal of Environmental Research and Public Health. 2022; 19(12):7210. https://doi.org/10.3390/ijerph19127210
Chicago/Turabian StyleChen, Yan, Hao Hou, Yao Li, Luoyang Wang, Jinjin Fan, Ben Wang, and Tangao Hu. 2022. "Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China" International Journal of Environmental Research and Public Health 19, no. 12: 7210. https://doi.org/10.3390/ijerph19127210
APA StyleChen, Y., Hou, H., Li, Y., Wang, L., Fan, J., Wang, B., & Hu, T. (2022). Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China. International Journal of Environmental Research and Public Health, 19(12), 7210. https://doi.org/10.3390/ijerph19127210