Assessment of Physical Fitness and Risk Factors for the Occurrence of the Frailty Syndrome among Social Welfare Homes’ Residents over 60 Years of Age in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Measurement Tools
2.4. Statistical Methods
3. Results
3.1. Descriptive Data
3.2. Main Results
4. Discussion
4.1. Key Results and Interpretation
4.2. Strenghts of the Study
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, J.; Xie, B.; Liu, B.; Wang, J. Multi-dimensional frailty and its risk factors among older residents in long-term care facilities in Shanghai, China. Int. J. Nurs. Sci. 2021, 5, 298–303. [Google Scholar] [CrossRef]
- Kojima, G. Frailty as a Predictor of Nursing Home Placement Among Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. J. Geriatr. Phys. Ther. 2018, 41, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dou, Q.; Zhang, W.; Wang, C.; Xie, X.; Yang, Y.; Zeng, Y. Frailty as a predictor of all-cause mortality among older nursing home residents: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2019, 20, 657–663.e4. [Google Scholar] [CrossRef] [PubMed]
- Ebina, J.; Ebihara, S.; Kano, O. Similarities, differences and overlaps between frailty and Parkinson’s disease. Geriatr. Gerontol. Int. 2022, 22, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Główny Urząd Statystyczny. Zakłady Stacjonarne Pomocy Społecznej w 2020 r. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjo8rOn19T2AhUq-yoKHfg-Dq0QFnoECAgQAQ&url=https%3A%2F%2Fstat.gov.pl%2Fobszary-tematyczne%2Fwarunki-zycia%2Fubostwo-pomoc-spoleczna%2Fzaklady-stacjonarne-pomocy-spolecznej-w-2020-roku%2C18%2C5.html&usg=AOvVaw1r_ncUfCl3q2AFj-4DIyeW (accessed on 20 March 2022).
- Honinx, E.; Van Dop, N.; Smets, T.; Deliens, L.; Van Den Noortgate, N.; Froggatt, K.; Gambassi, G.; Kylänen, M.; Onwuteaka-Philipsen, B.; Szczerbińska, K.; et al. PACE. Dying in long-term care facilities in Europe: The PACE epidemiological study of deceased residents in six countries. BMC Public Health 2019, 19, 1199. [Google Scholar] [CrossRef] [Green Version]
- Eurostat Statistics Explained. Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing (accessed on 20 March 2022).
- Piotrowicz, J.; Soll, A.; Kielar, U.; Zwiefka, A.; Guligowska, A.; Pigłowska, M.; Kostka, T.; Kurpas, D. ICT and environmental support for patients with frailty syndrome: CareWell Project, Focus Project and SUNFRA IL Project. Med. Sci. Pulse 2017, 11, 37–43. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for Europe. Physical Activity Strategy for the WHO European Region 2016–2025. Available online: https://www.euro.who.int/en/publications/abstracts/physical-activity-strategy-for-the-who-european-region-20162025 (accessed on 20 March 2022).
- Rohrmann, S. Epidemiology of Frailty in Older People. Adv. Exp. Med. Biol 2020, 1216, 21–27. [Google Scholar]
- Manfredi, G.; Midão, L.; Paúl, C.; Cena, C.; Duarte, M.; Costa, E. Prevalence of frailty status among the European elderly population: Findings from the Survey of Health, Aging and Retirement in Europe. Geriatr. Gerontol. Int. 2019, 19, 723–729. [Google Scholar] [CrossRef]
- Muszalik, M.; Kotarba, A.; Borowiak, E.; Puto, G.; Cybulski, M.; Kȩdziora-Kornatowska, K. Socio-Demographic, Clinical and Psychological Profile of Frailty Patients Living in the Home Environment and Nursing Homes: A Cross-Sectional Study. Front. Psychiatry 2021, 12, 736804. [Google Scholar] [CrossRef]
- Kojima, G. Prevalence of frailty in nursing homes: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2015, 16, 940.e5. [Google Scholar] [CrossRef]
- Fried, L.P.; Cohen, A.A.; Xue, Q.L.; Walston, J.; Bandeen-Roche, K.; Varadhan, R. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 2021, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; El Assar, M.; Álvarez-Bustos, A.; Rodríguez-Mañas, L. Physical activity and exercise: Strategies to manage frailty. Redox Biol. 2020, 35, 101513. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Motta, F.; Sica, A.; Selmi, C. Frailty in Rheumatic Diseases. Front. Immunol. 2020, 11, 576134. [Google Scholar] [CrossRef]
- Liotta, G.; Gilardi, F.; Orlando, S.; Rocco, G.; Proietti, M.G.; Asta, F.; De Sario, M.; Michelozzi, P.; Mancinelli, S.; Palombi, L.; et al. Cost of hospital care for the older adults according to their level of frailty. A cohort study in the Lazio region, Italy. PLoS ONE 2019, 14, e0217829. [Google Scholar] [CrossRef]
- Dedeyne, L.; Deschodt, M.; Verschueren, S.; Tournoy, J.; Gielen, E. Effects of multi-domain interventions in (pre)frail elderly on frailty, functional, and cognitive status: A systematic review. Clin. Interv. Aging 2017, 12, 873–896. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowska, A.; Sebastjan, A.; Kołodziej, M.; Kozieł, S.; Tomczak, M.; Ignasiak, Z. Functional capacity and risk of frailty syndrome in 85-year-old and older women living in nursing homes in Poland. Anthropol. Rev. 2021, 84, 395–404. [Google Scholar] [CrossRef]
- Rizka, A.; Indrarespati, A.; Dwimartutie, N.; Muhadi, M. Frailty among Older Adults Living in Nursing Homes in Indonesia: Prevalence and Associated Factors. Ann. Geriatr. Med. Res. 2021, 25, 93–97. [Google Scholar] [CrossRef]
- Kojima, G.; Tanabe, M. Frailty is Highly Prevalent and Associated with Vitamin D Deficiency in Male Nursing Home Residents. J. Am. Geriatr. Soc. 2016, 64, e33–e35. [Google Scholar] [CrossRef]
- Arnljots, R.; Thorn, J.; Elm, M.; Moore, M.; Sundvall, P.D. Vitamin D deficiency was common among nursing home residents and associated with dementia: A cross sectional study of 545 Swedish nursing home residents. BMC Geriatr. 2017, 17, 229. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Puts, M.; Jiang, F.; Zhou, C.; Tang, S.; Chen, S. Physical frailty and its associated factors among elderly nursing home residents in China. BMC Geriatr. 2020, 20, 294. [Google Scholar] [CrossRef] [PubMed]
- Kendhapedi, K.K.; Devasenapathy, N. Prevalence and factors associated with frailty among community-dwelling older people in rural Thanjavur district of South India: A cross-sectional study. BMJ Open 2019, 9, e032904. [Google Scholar] [CrossRef] [PubMed]
- Niederstrasser, N.G.; Rogers, N.T.; Bandelow, S. Determinants of frailty development and progression using a multidimensional frailty index: Evidence from the English Longitudinal Study of Ageing. PLoS ONE 2019, 14, e0223799. [Google Scholar] [CrossRef] [PubMed]
- Travers, J.; Romero-Ortuno, R.; Bailey, J.; Cooney, M.-T. Delaying and reversing frailty: A systematic review of primary care interventions. Br. J. Gen. Pract. 2019, 69, e61–e69. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.-J.; Su, S.-C.; Chen, C.-W.; Kang, Y.-W.; Hu, M.-H.; Hsu, L.-L.; Wu, S.-Y.; Chen, L.; Chang, H.-Y.; Chuang, S.-Y.; et al. Individualized home-based exercise and nutrition interventions improve frailty in older adults: A randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 119. [Google Scholar] [CrossRef] [Green Version]
- Apóstolo, J.; Cooke, R.; Bobrowicz-Campos, E.; Santana, S.; Marcucci, M.; Cano, A.; Vollenbroek-Hutten, M.; Germini, F.; D’Avanzo, B.; Gwyther, H.; et al. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 140–232, Erratum in JBI Database Syst. Rev Implement. Rep. 2018, 16, 1282–1283. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, 85–94. [Google Scholar] [CrossRef]
- Zasadzka, E.; Pawlaczyk, M. Short Physical Performance Battery test as a tool useful for the assessment of physical function in elderly. Gerontol. Pol. 2013, 4, 148–153. [Google Scholar]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 322, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Bandinelli, S.; Lauretani, F.; Boscherini, V.; Gandi, F.; Pozzi, M.; Corsi, A.M.; Bartali, B.; Lova, R.M.; Guralnik, J.M.; Ferrucci, L. A randomized, controlled trial of disability prevention in frail older patients screened in primary care: The FRASI study. Design and baseline evaluation. Aging Clin. Exp. Res. 2006, 18, 359–366. [Google Scholar] [CrossRef]
- Vasunilashorn, S.; Coppin, A.K.; Patel, K.V.; Lauretani, F.; Ferrucci, L.; Bandinelli, S.; Guralnik, J.M. Use of the short physical performance battery score to predict loss of ability to walk 400 meters: Analysis from the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Da Camara, S.M.; Alvarado, B.E.; Guralnik, J.M.; Guerra, R.O.; Maciel, A.C. Using the short physical performance battery to screen for frailty in young-old adults with distinct socioeconomic conditions. Geriatr. Gerontol. Int. 2013, 13, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Subra, J.; Gillette-Guyonnet, S.; Cesari, M.; Oustric, S.; Vellas, B.; Platform, T. The integration of frailty into clinical practice: Preliminary results from the Gerontopole. J. Nutr. Health Aging 2012, 16, 714–720. [Google Scholar] [CrossRef]
- R Core Teem R: A language and Environment for Statistical Computing. R Foundation For Statistical Computing: Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 13 January 2022).
- Guede Rojas, F.A.; Chirosa, L.J.; Fuentealba, S.; Vergara, C.A.; Ulloa, D.L.; Salazar, S.E.; Márquez, H.A.; Barboza, P.A. Anthropometric characteristics and functional fitness of Chilean community-dwelling older adults. Nutr. Hosp. 2017, 34, 1319–1327. [Google Scholar] [PubMed]
- De Amorim, J.S.C.; Da Silva, S.L.A.; Viana, J.U.; Trelha, C.S. Factors associated with the prevalence of sarcopenia and frailty syndrome in elderly university workers. Arch. Gerontol. Geriatr. 2019, 82, 172–178. [Google Scholar] [CrossRef]
- Fisher, K.L.; Harrison, E.L.; Bruner, B.G.; Lawson, J.A.; Reeder, B.A.; Ashworth, N.L.; Sheppard, M.S.; Chad, K.E. Predictors of Physical Activity Levels in Community-Dwelling Older Adults: A Multivariate Approach Based on a Socio-Ecological Framework. J. Aging Phys. Act. 2018, 26, 114–120. [Google Scholar] [CrossRef]
- Furtado, H.L.; Sousa, N.; Simao, R.; Pereira, F.D.; Vilaca-Alves, J. Physical exercise and functional fitness in independently living vs. institutionalized eldery women: A comparison of 60-to 79-year-old city dwellers. Clin. Interv. Aging 2015, 10, 795–801. [Google Scholar]
- Barber, S.E.; Forster, A.; Birch, K.M. Levels and Patterns of Daily Physical Activity and Sedentary Behavior Measured Objectively in Older Care Home Residents in the United Kingdom. J. Aging Phys. Activ. 2005, 23, 133–143. [Google Scholar] [CrossRef]
- Mudrak, J.; Stochl, J.; Slepicka, P.; Elavsky, S. Physical activity, self efficacy and quality of life in older Czech adults. Eur. J. Ageing 2016, 13, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Drygas, W.; Kwaśniewska, M.; Szcześniewska, D.; Kozakiewicz, K.; Głuszek, J.; Wiercińska, E.; Wyrzykowski, B.; Kurjata, P. Ocena poziomu aktywności fizycznej dorosłej populacji Polski. Wyniki programu WOBASZ. Kardiol. Pol. 2005, 63, 6. [Google Scholar]
- Furtado, G.; Patrıcio, M.; Loureiro, M.; Teixeira, A.N.; Ferreira, J.P. Physical Fitness and Frailty Syndrome in Institutionalized Older Women. Percept. Mot. Ski. 2017, 124, 754–776. [Google Scholar] [CrossRef] [PubMed]
- Skalska, A. Frailty—Zespół słabości. Geriatr. Opieka Długoterminowa 2016, 4, 1–4. [Google Scholar]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.M.; Kennedy, C.C.; Karampatos, S.; Ioannidis, G.; Misiaszek, B.; Marr, S.; Patterson, C.; Woo, T.; Papaioannou, A. Measuring frailty in clinical practice: A comparison of physical frailty assessment methods in a geriatric out-patient clinic. BMC Geriatr. 2017, 17, 264. [Google Scholar] [CrossRef] [Green Version]
- Danilovich, M.K.; Diaz, L.; Johnson, C.; Holt, E.; Ciolino, J.D. Evaluating frailty in Medicaid Home and Community-based Services clients: A feasibility and comparison study between the SHARE-FI and SPPB. Pilot Feasibility Stud. 2019, 5, 48. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, I.; Mañas, A.; Losa-Reyna, J.; Alegre, L.M.; Rodríguez-Mañas, L.; García-García, F.J.; Ara, I. Relationship between Physical Performance and Frailty Syndrome in Older Adults: The Mediating Role of Physical Activity, Sedentary Time and Body Composition. Int. J. Environ. Res. Public Health 2021, 18, 203. [Google Scholar] [CrossRef]
- Carneiro, J.A.; Cardoso, R.R.; Durães, M.S.; Guedes, M.C.A.; Santos, F.L.; Costa, F.M.D.; Caldeira, A.P. Frailty in the elderly: Prevalence and associated factors. Rev. Bras. Enferm. 2017, 70, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.K.; Wolinsky, F.D.; Andresen, E.M.; Malmstrom, T.K.; Miller, J.P. Adverse outcomes and correlates of change in the Short Physical Performance Battery over 36 months in the African American health project. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556, Erratum in Clin. Interv. Aging 2014, 9, 979. [Google Scholar]
- Delbari, A.; Zanjari, N.; Momtaz, Y.A.; Rahim, F.; Saeidimehr, S. Prevalence of frailty and associated socio-demographic factors among community-dwelling older people in southwestern Iran: A cross-sectional study. J. Diabetes Metab. Disord. 2021, 20, 601–610. [Google Scholar] [CrossRef]
- Kidd, T.; Mold, F.; Jones, C.; Ream, E.; Grosvenor, W.; Sund-Levander, M.; Tingström, P.; Carey, N. What are the most effective interventions to improve physical performance in pre-frail and frail adults? A systematic review of randomised control trials. BMC Geriatr. 2019, 19, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walston, J.; Buta, B.; Xue, Q.-L. Frailty screening and interventions: Considerations for clinical practice. Clin. Geriatr. Med. 2018, 34, 25–38. [Google Scholar] [CrossRef] [PubMed]
- National Researcher Council. Preparing for an Aging World: The Case for Cross-National Research; National Academies Press: Washington, DC, USA, 2001.
- Silva, M.F.; Petrica, J.; Serrano, J.; Paulo, R.; Ramalho, A.; Lucas, D.; Ferreira, J.P.; Duarte-Mendes, P. The Sedentary Time and Physical Activity Levels on Physical Fitness in the Elderly: A Comparative Cross Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 3697. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, V.D.; Tribess, S.; Meneguci, J.; Sasaki, J.E.; Garcia-Meneguci, C.A.; Carneiro, J.A.O.; Virtuoso, J.S., Jr. Association between frailty and the combination of physical activity level and sedentary behavior in older adults. BMC Public Health 2019, 19, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riebe, D.; Blissmer, B.J.; Greaney, M.L.; Garber, C.E.; Lees, F.D.; Clark, P.G. The relationship between obesity, physical activity, and physical function in older adults. J. Aging Health 2009, 21, 1159–1178. [Google Scholar] [CrossRef] [PubMed]
- Brach, J.S.; Simonsick, E.M.; Kritchevsky, S.; Yaffe, K.; Newman, A.B. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J. Am. Geriatr. Soc. 2004, 52, 502–509. [Google Scholar] [CrossRef]
- Simons, R.; Andel, R. The effects of resistance training and walking on functional fitness in advanced old age. J. Aging Health 2006, 18, 91–105. [Google Scholar] [CrossRef]
- Kehler, D.S.; Theou, O. The impact of physical activity and sedentary behaviors on frailty levels. Mech. Ageing Dev. 2019, 180, 29–41. [Google Scholar] [CrossRef]
- Billot, M.; Calvani, R.; Urtamo, A.; Sánchez-Sánchez, J.L.; Ciccolari-Micaldi, C.; Chang, M.; Roller-Wirnsberger, R.; Wirnsberger, G.; Sinclair, A.; Vaquero-Pinto, N.; et al. Preserving Mobility in Older Adults with Physical Frailty and Sarcopenia: Opportunities, Challenges, and Recommendations for Physical Activity Interventions. Clin. Interv. Aging 2020, 15, 1675–1690. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Ingles, M.; Salvador-Pascual, A.; Cominetti, M.R.; Gomez-Cabrera, M.C.; Viña, J. Sarcopenia, frailty and their prevention by exercise. Free Radic. Biol. Med. 2019, 132, 42–49. [Google Scholar] [CrossRef]
- Gabrylewicz, T.; Mandecka, M. Effects of physical activity on cognitive functions in older adults and the course of Alzheimer’s disease. Aktualn. Neurol. 2013, 13, 56–61. [Google Scholar]
- Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: A randomized controlled trial. BMC Geriatr. 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagovska, M.; Olekszyova, Z. Relationships between balance control and cognitive functions, gait speed, and activities of daily living. Z. Gerontol. Geriatr. 2016, 49, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Grabovac, I.; Dorner, T.E. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass-a narrative review. Wien. Klin. Wochenschr. 2019, 131, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.L.; Clemes, S.A.; Griffiths, P.L. UK adults exhibit higher step counts in summer compared to winter months. Ann. Hum. Biol. 2008, 35, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, A.; Ihira, H.; Makino, K.; Saitoh, S.; Ohnishi, H.; Furuna, T. Physical activity changes in the winter in older persons living in northern Japan: A prospective study. BMC Geriatr. 2015, 15, 43. [Google Scholar] [CrossRef] [Green Version]
- Raciborski, F.; Pinkas, J.; Jankowski, M.; Sierpiński, R.; Zgliczyński, W.S.; Szumowski, Ł.; Rakocy, K.; Wierzba, W.; Gujski, M. Dynamics of the coronavirus disease 2019 outbreak in Poland: An epidemiological analysis of the first 2 months of the epidemic. Pol. Arch. Intern. Med. 2020, 130, 615–621. [Google Scholar]
Parametr | Gender | p | |||
---|---|---|---|---|---|
Women (N = 115) | Men (N = 83) | Total (N = 198) | |||
Age [years] | M ± SD | 77.83 ± 10.17 | 72.27 ± 9.39 | 75.5 ± 10.21 | p < 0.001 * |
Me | 80 | 69 | 78 | ||
Q1–Q3 | 70.5–86 | 64.5–80.5 | 66–84 | ||
Number of chronic diseases | M ± SD | 2.75 ± 1.09 | 2.3 ± 0.97 | 2.56 ± 1.06 | p = 0.001 * |
Me | 3 | 2 | 2 | ||
Q1–Q3 | 2–3 | 2–3 | 2–3 | ||
Education | No | 4 (3.48%) | 2 (2.41%) | 6 (3.03%) | p = 0.022 * |
Primary | 53 (46.09%) | 28 (33.73%) | 81 (40.91%) | ||
Vocational | 13 (11.30%) | 25 (30.12%) | 38 (19.19%) | ||
Secondary | 38 (33.04%) | 24 (28.92%) | 62 (31.31%) | ||
High | 7 (6.09%) | 4 (4.82%) | 11 (5.56%) | ||
Prior work | Physical | 68 (59.13%) | 67 (80.72%) | 135 (68.18%) | p = 0.007 * |
Combination of physical and mental | 15 (13.04%) | 7 (8.43%) | 22 (11.11%) | ||
Mental | 22 (19.13%) | 8 (9.64%) | 30 (15.15%) | ||
No | 10 (8.70%) | 1 (1.20%) | 11 (5.56%) | ||
Physical activity | No | 41 (35.65%) | 32 (38.55%) | 73 (36.87%) | p = 0.275 |
Rare | 35 (30.43%) | 17 (20.48%) | 52 (26.26%) | ||
Yes | 39 (33.91%) | 34 (40.96%) | 73 (36.87%) | ||
BMI [kg/m2] | M ± SD | 27.69 ± 5.63 | 26.01 ± 4.84 | 26.99 ± 5.37 | p = 0.028 * |
Me | 27.27 | 25.26 | 26.3 | ||
Q1–Q3 | 23.86–31.56 | 22.58–28.52 | 23.2–30.1 | ||
BMI interpretation | Underweight | 4 (3.48%) | 2 (2.41%) | 6 (3.03%) | p = 0.156 |
Standard | 37 (32.17%) | 37 (44.58%) | 74 (37.37%) | ||
Overweight | 37 (32.17%) | 28 (33.73%) | 65 (32.83%) | ||
Obesity | 37 (32.17%) | 16 (19.28%) | 53 (26.77%) |
Trial | N | M | SD | Me | Min | Max | Q1 | Q3 | p |
---|---|---|---|---|---|---|---|---|---|
SPPB test | 198 | 6.52 | 2.73 | 6 | 1 | 12 | 4.25 | 9 | |
Standing off a chair (A) | 198 | 1.95 | 1.2 | 2 | 0 | 4 | 1 | 3 | p < 0.001 * |
Balance test (B) | 198 | 2.13 | 1.07 | 2 | 0 | 4 | 1 | 3 | |
Walking speed at a 4 m distance (C) | 198 | 2.44 | 1.07 | 2 | 1 | 4 | 2 | 3 | C > A.B |
Frailty Syndrome Ranges | Gender | p | ||
---|---|---|---|---|
Women (N = 115) | Men (N = 83) | Total (N = 198) | ||
Frail | 66 (57.39%) | 38 (45.78%) | 104 (52.53%) | p = 0.27 |
Pre-frail | 31 (26.96%) | 29 (34.94%) | 60 (30.30%) | |
Non-frail | 18 (15.65%) | 16 (19.28%) | 34 (17.17%) |
Test | Gender | p | ||||
Women (N = 115) | Men (N = 83) | |||||
SPPB test | M ± SD | 6.28 ± 2.68 | 6.86 ± 2.78 | p = 0.128 | ||
Me | 6 | 7 | ||||
Q1–Q3 | 4–8 | 5–9 | ||||
Standing off a chair | M ± SD | 1.87 ± 1.2 | 2.06 ± 1.2 | p = 0.220 | ||
Me | 1 | 2 | ||||
Q1–Q3 | 1–3 | 1–3 | ||||
Balance test | M ± SD | 2.11 ± 1.02 | 2.16 ± 1.13 | p = 0.797 | ||
Me | 2 | 2 | ||||
Q1–Q3 | 1–3 | 1–3 | ||||
Walking speed at a 4 m distance | M ± SD | 2.29 ± 1.01 | 2.65 ± 1.12 | p = 0.022 * | ||
Me | 2 | 3 | ||||
Q1–Q3 | 1–3 | 2–4 | ||||
Test | Education | p | ||||
No, primary (N = 87) | Vocational (N = 38) | Secondary (N = 62) | High (N = 11) | |||
SPPB test | M ± SD | 6.41 ± 2.49 | 6.92 ± 2.84 | 6.71 ± 2.79 | 4.91 ± 3.56 | p = 0.304 |
Me | 6 | 7 | 6 | 5 | ||
Q1–Q3 | 5–8 | 5–9 | 5–9 | 2–7.5 | ||
Standing off a chair | M ± SD | 1.93 ± 1.14 | 2.05 ± 1.18 | 2.03 ± 1.28 | 1.27 ± 1.27 | p = 0.212 |
Me | 2 | 2 | 2 | 1 | ||
Q1–Q3 | 1–3 | 1–3 | 1–3 | 0.5–1.5 | ||
Balance test | M ± SD | 2.1 ± 1.01 | 2.26 ± 1.08 | 2.19 ± 1.04 | 1.55 ± 1.51 | p = 0.356 |
Me | 2 | 2 | 2 | 2 | ||
Q1–Q3 | 1–3 | 2–3 | 1–3 | 0–2 | ||
Walking speed at a 4 m distance | M ± SD | 2.36 ± 1.03 | 2.66 ± 1.07 | 2.48 ± 1.1 | 2.09 ± 1.14 | p = 0.352 |
Me | 2 | 3 | 2.5 | 2 | ||
Q1–Q3 | 2–3 | 2–4 | 2–3 | 1–3 | ||
Test | Prior Work | p | ||||
Physical (N = 135) | Combination of Physical and Mental(N = 22) | Mental (N = 30) | No (N = 11) | |||
SPPB test | M ± SD | 6.53 ± 2.5 | 6.55 ± 2.65 | 6.47 ± 3.69 | 6.55 ± 3.01 | p = 0.997 |
Me | 6 | 6 | 6 | 6 | ||
Q1–Q3 | 5–8 | 5–9 | 3–10 | 4.5–9 | ||
Standing off a chair | M ± SD | 1.98 ± 1.15 | 1.86 ± 1.17 | 1.87 ± 1.48 | 2 ± 1.26 | p = 0.811 |
Me | 2 | 1 | 1 | 2 | ||
Q1–Q3 | 1–3 | 1–2 | 1–3 | 1–2.5 | ||
Balance test | M ± SD | 2.1 ± 1.01 | 2.23 ± 1.11 | 2.17 ± 1.26 | 2.27 ± 1.27 | p = 0.934 |
Me | 2 | 2 | 2 | 2 | ||
Q1–Q3 | 1–3 | 2–3 | 1–3 | 1–3.5 | ||
Walking speed at a 4 m distance | M ± SD | 2.46 ± 1.02 | 2.45 ± 1.1 | 2.4 ± 1.3 | 2.27 ± 1.01 | p = 0.949 |
Me | 2 | 2 | 2.5 | 2 | ||
Q1–Q3 | 2–3 | 2–3 | 1–4 | 1.5–3 | ||
Test | Physical Activity | p | ||||
No-A (N = 73) | Rare-B (N = 52) | Yes-C (N = 73) | ||||
SPPB test | M ± SD | 5.53 ± 2.38 | 5.98 ± 2.62 | 7.89 ± 2.61 | p < 0.001 * C > B.A | |
Me | 5 | 5.5 | 8 | |||
Q1–Q3 | 4–7 | 4–8 | 6–10 | |||
Standing off a chair | M ± SD | 1.68 ± 1.12 | 1.67 ± 1.13 | 2.41 ± 1.21 | p < 0.001 * C > A.B | |
Me | 1 | 1 | 2 | |||
Q1–Q3 | 1–2 | 1–3 | 1–4 | |||
Balance test | M ± SD | 1.82 ± 0.98 | 2.02 ± 0.98 | 2.52 ± 1.11 | p < 0.001 * C > B.A | |
Me | 2 | 2 | 2 | |||
Q1–Q3 | 1–2 | 1–2 | 2–3 | |||
Walking speed at a 4 m distance | M ± SD | 2.04 ± 0.92 | 2.25 ± 1.05 | 2.97 ± 1.01 | p < 0.001 * C > B.A | |
Me | 2 | 2 | 3 | |||
Q1–Q3 | 1–3 | 1–3 | 2–4 |
Variable | Test | Spearman’s Corellation Coefficient |
---|---|---|
Age [years] | SPPB test | r = −0.213. p = 0.003 * |
Standing off a chair | r = −0.265. p < 0.001 * | |
Balance test | r = −0.041. p = 0.565 | |
Walking speed at a 4 m distance | r = −0.211. p = 0.003 * | |
Number of chronic diseases | SPPB test | r = −0.489. p < 0.001 * |
Standing off a chair | r = −0.351. p < 0.001 * | |
Balance test | r = −0.434. p < 0.001 * | |
Walking speed at a 4 m distance | r = −0.466. p < 0.001 * | |
BMI [kg/m2] | SPPB test | r = −0.074. p = 0.3 |
Standing off a chair | r = −0.041. p = 0.569 | |
Balance test | r = −0.039. p = 0.585 | |
Walking speed at a 4 m distance | r = −0.132. p = 0.063 |
SPPB Test | |||||
---|---|---|---|---|---|
Feature | Parameter | 95%CI | p | ||
Gender | Women | ref. | |||
Men | −0.104 | −0.803 | 0.596 | 0.771 | |
Age | [years] | −0.042 | −0.075 | −0.009 | 0.013 * |
Education | No, primary | ref. | |||
Vocational | 0.057 | −0.851 | 0.965 | 0.902 | |
Secondary | −0.783 | −1.803 | 0.237 | 0.134 | |
High | −1.037 | −2.893 | 0.82 | 0.275 | |
Prior work | Physical | ref. | |||
Combination of physical and mental | 1.045 | −0.252 | 2.342 | 0.116 | |
Mental | 0.924 | −0.331 | 2.178 | 0.151 | |
No | 0.101 | −1.346 | 1.548 | 0.891 | |
Number of chronic diseases | −1.071 | −1.395 | −0.747 | <0.001 * | |
BMI | [kg/m2] | 0.022 | −0.039 | 0.084 | 0.477 |
Physical activity | No | ref. | |||
Rare | 0.704 | −0.107 | 1.514 | 0.091 | |
Yes | 2.3 | 1.553 | 3.047 | <0.001 * |
Standing Off a Chair | |||||
Feature | Parameter | 95%CI | p | ||
Gender | Women | ref. | |||
Men | 0.083 | −0.197 | 0.362 | 0.563 | |
Age | [years] | −0.015 | −0.028 | −0.002 | 0.03 * |
Education | No, primary | ref. | |||
Vocational | 0.078 | −0.285 | 0.441 | 0.674 | |
Secondary | −0.241 | −0.649 | 0.167 | 0.249 | |
High | −0.035 | −0.777 | 0.707 | 0.926 | |
Prior work | Physical | ref. | |||
Combination of physical and mental | 0.339 | −0.179 | 0.858 | 0.201 | |
Mental | 0.202 | −0.3 | 0.704 | 0.431 | |
No | −0.035 | −0.613 | 0.544 | 0.907 | |
Number of chronic diseases | −0.38 | −0.51 | −0.251 | <0.001 * | |
BMI | [kg/m2] | −0.002 | −0.027 | 0.023 | 0.874 |
Physical activity | No | ref. | |||
Rare | 0.313 | −0.011 | 0.637 | 0.06 | |
Yes | 0.904 | 0.605 | 1.202 | <0.001 * | |
Balance Test | |||||
Feature | Parameter | 95%CI | p | ||
Gender | Women | ref. | |||
Men | −0.107 | −0.402 | 0.188 | 0.479 | |
Age | [years] | 0.001 | −0.013 | 0.015 | 0.889 |
Education | No, primary | ref. | |||
Vocational | 0.157 | −0.226 | 0.54 | 0.422 | |
Secondary | −0.336 | −0.766 | 0.094 | 0.128 | |
High | −0.506 | −1.289 | 0.277 | 0.207 | |
Prior work | Physical | ref. | |||
Combination of physical and mental | 0.56 | 0.013 | 1.107 | 0.046 * | |
Mental | 0.468 | −0.061 | 0.997 | 0.085 | |
No | 0.221 | −0.389 | 0.831 | 0.479 | |
Number of chronic diseases | −0.421 | −0.558 | −0.285 | <0.001 * | |
BMI | [kg/m2] | 0.009 | −0.016 | 0.035 | 0.475 |
Physical activity | No | ref. | |||
Rare | 0.267 | −0.074 | 0.609 | 0.127 | |
Yes | 0.668 | 0.353 | 0.983 | <0.001 * | |
Walking Speed at a 4 m Distance | |||||
Feature | Parameter | 95%CI | p | ||
Gender | Women | ref. | |||
Men | 0.083 | −0.197 | 0.362 | 0.563 | |
Age | [years] | −0.015 | −0.028 | −0.002 | 0.03 * |
Education | No, primary | ref. | |||
Vocational | 0.078 | −0.285 | 0.441 | 0.674 | |
Secondary | −0.241 | −0.649 | 0.167 | 0.249 | |
High | −0.035 | −0.777 | 0.707 | 0.926 | |
Prior work | Physical | ref. | |||
Combination of physical and mental | 0.339 | −0.179 | 0.858 | 0.201 | |
Mental | 0.202 | −0.3 | 0.704 | 0.431 | |
No | −0.035 | −0.613 | 0.544 | 0.907 | |
Number of chronic diseases | −0.38 | −0.51 | −0.251 | <0.001 * | |
BMI | [kg/m2] | −0.002 | −0.027 | 0.023 | 0.874 |
Physical activity | No | ref. | |||
Rare | 0.313 | −0.011 | 0.637 | 0.06 | |
Yes | 0.904 | 0.605 | 1.202 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowska, A.; Szwamel, K.; Fortuna, M.; Mroczek, A.; Lepsy, E.; Katan, A. Assessment of Physical Fitness and Risk Factors for the Occurrence of the Frailty Syndrome among Social Welfare Homes’ Residents over 60 Years of Age in Poland. Int. J. Environ. Res. Public Health 2022, 19, 7449. https://doi.org/10.3390/ijerph19127449
Kaczorowska A, Szwamel K, Fortuna M, Mroczek A, Lepsy E, Katan A. Assessment of Physical Fitness and Risk Factors for the Occurrence of the Frailty Syndrome among Social Welfare Homes’ Residents over 60 Years of Age in Poland. International Journal of Environmental Research and Public Health. 2022; 19(12):7449. https://doi.org/10.3390/ijerph19127449
Chicago/Turabian StyleKaczorowska, Antonina, Katarzyna Szwamel, Małgorzata Fortuna, Agata Mroczek, Ewelina Lepsy, and Aleksandra Katan. 2022. "Assessment of Physical Fitness and Risk Factors for the Occurrence of the Frailty Syndrome among Social Welfare Homes’ Residents over 60 Years of Age in Poland" International Journal of Environmental Research and Public Health 19, no. 12: 7449. https://doi.org/10.3390/ijerph19127449
APA StyleKaczorowska, A., Szwamel, K., Fortuna, M., Mroczek, A., Lepsy, E., & Katan, A. (2022). Assessment of Physical Fitness and Risk Factors for the Occurrence of the Frailty Syndrome among Social Welfare Homes’ Residents over 60 Years of Age in Poland. International Journal of Environmental Research and Public Health, 19(12), 7449. https://doi.org/10.3390/ijerph19127449