The Impact of Air Pollution on Residents’ Happiness: A Study on the Moderating Effect Based on Pollution Sensitivity
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
2.1. The Effect of Objective Air Pollution on Residents’ Happiness
2.2. Moderating Effect of Air Pollution Stock Sensitivity on Air Pollution and Happiness
2.3. Moderating Effect of Air Pollution Incremental Sensitivity on Air Pollution and Happiness
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Variable Construction
3.3. Model Construction
4. Results
4.1. Baseline Regression
4.2. Test of Moderating Effect
4.3. Heterogeneity Analysis
4.4. Robustness Test
5. Discussion
5.1. Air Pollution and Happiness
5.2. Modulation of Pollution Sensitivity
6. Conclusions and Implications
6.1. Conclusions
6.2. Practical Implications
6.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, G.; Shin, K.J.; Managi, S. Variability in impact of air pollution on subjective well-being. Atmos. Environ. 2018, 183, 175–208. [Google Scholar] [CrossRef]
- Keyes, C.L.M. Social Well-Being. Soc. Psychol. Q. 1998, 61, 121–140. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Wang, Q.; Xu, B. Holistic governance strategy to reduce carbon intensity. Technol. Forecast. Soc. Chang. 2022, 179, 121600. [Google Scholar] [CrossRef]
- Ferreira, S.; Moro, M. On the Use of Subjective Well-Being Data for Environmental Valuation. Environ. Resour. Econ. 2010, 46, 249–273. [Google Scholar] [CrossRef]
- Levinson, A. Valuing public goods using happiness data: The case of air quality. J. Public Econ. 2012, 96, 869–880. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z. PM2.5 Concentrations and Subjective Well-Being: Longitudinal Evidence from Aggregated Panel Data from Chinese Provinces. Int. J. Environ. Res. Public Health 2019, 16, 1129. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Chen, L.; Fan, Y.; Liu, M.; Jiang, F. Effect of ambient air quality on subjective well-being among Chinese working adults. J. Clean. Prod. 2021, 296, 126509. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, K.; Li, R.-L.; Song, Y.; Zhang, Z.-J. Air Pollution Impairs Subjective Happiness by Damaging Their Health. Int. J. Environ. Res. Public Health 2021, 18, 10319. [Google Scholar] [CrossRef]
- Welsch, H. Preferences over Prosperity and Pollution: Environmental Valuation based on Happiness Surveys. Kyklos 2002, 55, 473–494. [Google Scholar] [CrossRef]
- Welsch, H. Environment and happiness: Valuation of air pollution using life satisfaction data. Ecol. Econ. 2005, 58, 801–813. [Google Scholar] [CrossRef]
- Welsch, H. Environmental welfare analysis: A life satisfaction approach. Ecol. Econ. 2006, 62, 544–551. [Google Scholar] [CrossRef]
- Welsch, H. Implications of happiness research for environmental economics. Ecol. Econ. 2009, 68, 2735–2742. [Google Scholar] [CrossRef]
- Luechinger, S. Life satisfaction and transboundary air pollution. Econ. Lett. 2010, 107, 4–6. [Google Scholar] [CrossRef]
- Schmitt, M. Subjective Well-Being and Air Quality in Germany. Schmollers Jahrb. 2013, 133, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Smyth, R.; Mishra, V.; Qian, X. The Environment and Well-Being in Urban China. Ecol. Econ. 2008, 68, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Li, Y.; Guan, D.; Yu, Y.; Westland, S.; Wang, D.; Meng, J.; Wang, X.; He, K.; Tao, S. A psychophysical measurement on subjective well-being and air pollution. Nat. Commun. 2019, 10, 5473. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Liao, P.S.; Shaw, D.; Lin, Y.M. Environmental Quality and Life Satisfaction: Subjective Versus Objective Measures of Air Quality. Soc. Indic. Res. 2015, 124, 599–616. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, C. The Impact of Environmental Pollution on Happiness of Chinese. Wuhan Univ. J. 2015, 68, 66–73. [Google Scholar]
- Song, Y.; Zhou, A.; Zhang, M.; Wang, H. Assessing the effects of haze pollution on subjective well-being based on Chinese General Social Survey. J. Clean. Prod. 2019, 235, 574–582. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, W. Perceived Air Pollution, Income and Happiness. J. Financ. Econ. 2020, 46, 126–140. [Google Scholar]
- Li, Z.; Folmer, H.; Xue, J. To what extent does air pollution affect happiness? The case of the Jinchuan mining area, China. Ecol. Econ. 2014, 99, 88–99. [Google Scholar] [CrossRef]
- Liang, Y.; Shin, K.J.; Managi, S. Subjective Well-being and Environmental Quality: The Impact of Air Pollution and Green Coverage in China. Ecol. Econ. 2018, 153, 124–138. [Google Scholar]
- Song, Y.; Zhou, A.; Zhang, M. Exploring the effect of subjective air pollution on happiness in China. Environ. Sci. Pollut. Res. 2020, 27, 43299–43311. [Google Scholar] [CrossRef]
- Rehdanz, Y.; Maddison, D. Local environmental quality and life-satisfaction in Germany. Ecol. Econ. 2007, 64, 787–797. [Google Scholar] [CrossRef]
- MacKerron, G.; Mourato, S. Life satisfaction and air quality in London. Ecol. Econ. 2009, 68, 1441–1453. [Google Scholar] [CrossRef]
- Matthew, E.K.; Sun, W.; Zheng, S. Clean air as an experience good in urban China. Ecol. Econ. 2022, 192, 107254. [Google Scholar]
- Nam, K.-M.; Zhang, X.; Zhong, M.; Saikawa, E.; Zhang, X. Health effects of ozone and particulate matter pollution in China: A province-level CGE analysis. Ann. Reg. Sci. 2019, 63, 269–293. [Google Scholar] [CrossRef]
- Shan, S.; Ju, X.; Wei, Y.; Wang, Z. Effects of PM25 on People’s Emotion: A Case Study of Weibo (Chinese Twitter) in Beijing. Int. J. Environ. Res. Public Health 2021, 18, 5422. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2016, 72, 1065–1075. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Sarkodie, A.S.; Strezov, V. A review on Environmental Kuznets Curve hypothesis using bibliometric and meta-analysis. Sci. Total Environ. 2019, 649, 128–145. [Google Scholar] [CrossRef]
- Diener, E.; Seligman, M.E.P. Beyond Money: Toward an Economy of Well-Being. Psychol. Sci. Public Interest 2004, 5, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jin, J. Does happiness data say urban parks are worth it? Landsc. Urban Plan. 2018, 178, 1–11. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, S.; Zhao, M.; Wu, H.; Guo, Y.; Li, Y. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 2019, 6, 28–39. [Google Scholar] [CrossRef]
- Wu, N.; Liu, Z. Higher education development, technological innovation and industrial structure upgrade. Technol. Forecast. Soc. Chang. 2021, 162, 120400. [Google Scholar] [CrossRef]
- Clark, A.; Frijters, P.; Shields, M.A. Relative Income, Happiness, and Utility: An Explanation for the Easterlin Paradox and Other Puzzles. J. Econ. Lit. 2008, 46, 95–144. [Google Scholar] [CrossRef] [Green Version]
- Proto, E.; Rustichini, A. A reassessment of the relationship between GDP and life satisfaction. PLoS ONE 2013, 8, e79358. [Google Scholar] [CrossRef] [Green Version]
- Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.V.; Dentener, F.; Dingenen, R.; Estep, K.; Amini, H.; Apte, J.; et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Guan, D.; Jiang, X.; Peng, L.; Schroeder, H.; Zhang, Q. Assessment of socioeconomic costs to China’s air pollution. Atmos. Environ. 2016, 139, 147–156. [Google Scholar] [CrossRef]
- Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2017, 39, 10384–10389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadley, M.B.; Vedanthan, R.; Fuster, V. Air pollution and cardiovascular disease: A window of opportunity. Nat. Rev. Cardiol. 2018, 15, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lu, M.; Lu, J.; Chao, L.; An, Z.; Liu, Y.; Xu, D.; Wu, W. Acute effect of ambient air pollution on hospitalization in patients with hypertension: A time-series study in shijiazhuang, china. Ecotoxicol. Environ. Saf. 2019, 170, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Lin, W.; Taqi, S.A.; Phillips, F. The impact of wind and non-wind factors on PM2.5 levels. Technol. Forecast. Soc. Chang. 2020, 154, 119960. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Nazar, W.; Niedoszytko, M. Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases. Int. J. Environ. Res. Public Health 2022, 19, 895. [Google Scholar] [CrossRef]
- Li, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzerall, D.L. Reduction of solar photovoltaic resources due to air pollution in China. Proc. Natl. Acad. Sci. USA 2017, 114, 11867–11872. [Google Scholar] [CrossRef] [Green Version]
- Klerck, D.; Sweeney, J.C. The effect of knowledge types on consumer-perceived risk and adoption of genetically modified foods. Psychol. Mark. 2007, 24, 171–193. [Google Scholar] [CrossRef]
- Gu, D.; Huang, N.; Zhang, M.; Wang, F. Under the Dome: Air Pollution, Wellbeing, and Pro-Environmental Behaviour Among Beijing Residents. J. Pac. Rim Psychol. 2015, 9, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Yim, M.S.; Vaganov, P.A. Effects of education on nuclear risk perception and attitude: Theory. Prog. Nucl. Energy 2003, 42, 221–235. [Google Scholar] [CrossRef]
- Ward-Caviness, C.K.; Russell, A.G.; Weaver, A.M.; Slawsky, E.; Kraus, W.E. Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution. Aging 2020, 12, 24141–24155. [Google Scholar] [CrossRef] [PubMed]
- Liobikien, G.; Juknys, R. The role of values, environmental risk perception, awareness of consequences, and willingness to assume responsibility for environmentally-friendly behaviour: The lithuanian case. J. Clean. Prod. 2015, 112, 3413–3422. [Google Scholar] [CrossRef]
- Kim, S.G.; Cho, S.H.; Lambert, D.M.; Roberts, R.K. Measuring the value of air quality: Application of the spatial hedonic model. Air Qual. Atmos. Health 2010, 3, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yuan, Z.; Maddock, J.E.; Zhang, P.; Jiang, Z.; Lee, T.; Zou, J.J.; Lu, Y. Air quality and environmental protection concerns among residents in Nanchang, China. Air Qual. Atmos. Health: Int. J. 2014, 7, 441–448. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Anaya-Boig, E.; Avila-Palencia, I.; Brand, C.; de Nazelle, A.; Gaupp-Berghausen, M.; Götschi, T.; Nieuwenhuijsen, M.; Orjuela, J.P.; et al. Concern over health effects of air pollution is associated to NO2 in seven European cities. Air Qual. Atmos. Health 2018, 11, 591–599. [Google Scholar] [CrossRef]
- Rafael, D.T.; Robert, J.M.; Andrew, J.O. The Macroeconomics of Happiness. Rev. Econ. Stat. 2003, 85, 809–827. [Google Scholar]
- Goudarzi, G.; Daryanoosh, S.M.; Godini, H.; Hopke, P.K.; Sicard, P.; De Marco, A.; Rad, H.D.; Harbizadeh, A.; Jahedi, F.; Mohammadi, M.J.; et al. Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah. Public Health 2017, 148, 109–116. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Lee, J.T. Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008–2016. Int. J. Environ. Res. Public Health 2019, 16, 1866. [Google Scholar] [CrossRef] [Green Version]
- Haans, R.F.J.; Pieters, C.; He, Z.-L. Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Lind, J.T.; Mehlum, H. With or Without U? The Appropriate Test for a U-Shaped Relationship. Oxf. Bull. Econ. Stat. 2010, 72, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Frijters, P.; Beatton, T. The mystery of the U-shaped relationship between happiness and age. J. Econ. Behav. Organ. 2012, 82, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.A.; Gentzler, A.L. Age Differences in Subjective Well-Being across Adulthood: The Roles of Savoring and Future Time Perspective. Int. J. Aging Hum. Dev. 2014, 78, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Waite, L.J.; Lehrer, E. The benefits from marriage and religion in the United States: A comparative analysis. Popul. Dev. Rev. 2003, 29, 255–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; Matsumoto, D. Gender differences in judgments of multiple emotions from facial expressions. Emotion 2004, 4, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Rosip, J.C.; Hall, J.A. Knowledge of nonverbal cues, gender, and nonverbal decoding accuracy. J. Nonverbal Behav. 2004, 28, 267–286. [Google Scholar] [CrossRef]
- Wei, X.; Huang, S.; Stodolska, M.; Yu, Y. Leisure time, leisure activities, and happiness in china. J. Leis. Res. 2015, 47, 556–576. [Google Scholar] [CrossRef]
- Sujarwoto, S.; Tampubolon, G.; Pierewan, A.C. Individual and Contextual Factors of Happiness and Life Satisfaction in a Low Middle Income Country. Appl. Res. Qual. Life 2018, 13, 927–945. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.L.; Song, Y.; Zhang, Z.J. The role of environmental tax in alleviating the impact of environmental pollution on residents’ happiness in China. Int. J. Environ. Res. Public Health 2019, 16, 4574. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Dong, G.; Zhang, W.; Li, J. The Influence of Air Pollution on Happiness and Willingness to Pay for Clean Air in the Bohai Rim Area of China. Int. J. Environ. Res. Public Health 2022, 19, 5534. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guan, D.B.; Tao, S.; Wang, X.J.; He, K.B. A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. J. Clean. Prod. 2018, 184, 959–968. [Google Scholar] [CrossRef]
- Ambrey, C.L.; Fleming, C.M.; Chan, A.C. Estimating the cost of air pollution in South East Queensland: An application of the life satisfaction non-market valuation approach. Ecol. Econ. 2014, 97, 172–181. [Google Scholar] [CrossRef]
- Cunado, J.; de Gracia, F.P. Environment and Happiness: New Evidence for Spain. Soc. Indic. Res. 2013, 112, 549–567. [Google Scholar] [CrossRef]
- Ferreira, S.; Akay, A.; Brereton, F.; Cunado, J.; Martinsson, P.; Moro, M.; Ningal, T.F. Life satisfaction and air quality in Europe. Ecol. Econ. 2013, 88, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Messabia, N.; Beauvoir, E. Haitian Cooperative of Savings and Credits: Social and Community Dimensions of Success. In The International Conference on Global Economic Revolutions; Musleh Al-Sartawi, A.M.A., Ed.; Springer: Cham, Switzerland, 2021; pp. 32–41. [Google Scholar]
- Abadli, R.D. Sustainable Energy-Water-Environment Nexus in Deserts; Essam, H., Veronica, B., Marc, V., Eds.; Springer: Cham, Switzerland, 2022; pp. 765–771. [Google Scholar]
Variable | Variable Description | Mean | Standard | Min | Max |
---|---|---|---|---|---|
Individual Level Variables | |||||
Happiness | Ordinal variable 1–5 | 3.858 | 0.914 | 1.000 | 5.000 |
Age | Continuous variable | 45.374 | 14.281 | 11.000 | 96.000 |
Age-squared/100 | Continuous variable | 22.628 | 12.516 | 1.212 | 92.163 |
Gender | Male = 0, female = 1 | 0.537 | 0.497 | 0.000 | 1.000 |
Education level | Ordinal variable 1–8 | 3.273 | 1.403 | 1.000 | 8.000 |
Marital status | Married = 1, other = 0 | 0.808 | 0.386 | 0.000 | 1.000 |
Religious belief | Yes = 1, No = 0 | 0.121 | 0.333 | 0.000 | 1.000 |
Pension | Yes = 1, No = 0 | 0.647 | 0.484 | 0.000 | 1.000 |
Medical insurance | Yes = 1, No = 0 | 0.892 | 0.311 | 0.000 | 1.000 |
Personal income (Log) | Continuous variable (Yuan) | 10.000 | 1.247 | 4.606 | 14.952 |
Household registration | Rural = 1, urban = 0 | 0.702 | 0.462 | 0.000 | 1.000 |
Social trust | Ordinal variable 1–5 | 3.658 | 0.856 | 1.000 | 5.000 |
Healthy | Ordinal variable 1–5 | 3.697 | 1.000 | 1.000 | 5.000 |
City Level Variables | |||||
The population density (Log) | Total population/area (Person/square kilometer) | 6.353 | 0.637 | 2.892 | 7.824 |
GDP per capital (Log) | Continuous variable (Yuan/person) | 11.153 | 0.463 | 10.081 | 11.968 |
Public expenditure ratio | Fiscal expenditure/GDP (%) | 0.164 | 0.051 | 0.089 | 1.702 |
PM10 | Continuous variable (µg/m3) | 90.268 | 28.962 | 39.000 | 164.000 |
Pollution stock sensitivity | Continuous variable | −0.094 | 0.368 | −0.904 | 0.981 |
Pollution incremental sensitivity | Continuous variable | −0.013 | 0.323 | −0.897 | 0.872 |
Variables | Happiness | ||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
PM10 | 0.001 ** | 0.008 ** | 0.003 *** |
(0.001) | (0.003) | (0.001) | |
PM102 | −3.342 × 10−5 ** | ||
(1.623 × 10−5) | |||
PM10 (PM10 > PM10 *) | −0.007 *** | ||
(0.002) | |||
Age | −0.066 *** | −0.066 *** | −0.066 *** |
(0.007) | (0.007) | (0.007) | |
Age squared/100 | 0.072 *** | 0.072 *** | 0.072 *** |
(0.008) | (0.008) | (0.008) | |
Gender | 0.119 *** | 0.118 *** | 0.119 *** |
(0.027) | (0.027) | (0.027) | |
Married | 0.310 *** | 0.311 *** | 0.310 *** |
(0.043) | (0.043) | (0.043) | |
Household registration | −0.049 | −0.048 | −0.046 |
(0.034) | (0.034) | (0.034) | |
Religious belief | 0.0423 | 0.049 | 0.049 |
(0.0390) | (0.039) | (0.039) | |
Personal income (Log) | 0.042 *** | 0.042 *** | 0.043 *** |
(0.015) | (0.015) | (0.015) | |
Pension | 0.032 | 0.034 | 0.032 |
(0.031) | (0.031) | (0.031) | |
Medical insurance | 0.097 ** | 0.100 ** | 0.101 ** |
(0.043) | (0.043) | (0.043) | |
Social trust | 0.170 *** | 0.169 *** | 0.168 *** |
(0.016) | (0.016) | (0.016) | |
Education level | 0.069 *** | 0.068 *** | 0.069 *** |
(0.014) | (0.014) | (0.014) | |
Healthy | 0.256 *** | 0.255 *** | 0.254 *** |
(0.014) | (0.014) | (0.014) | |
GDP per capital (Log) | 0.042 | 0.037 | 0.032 |
(0.039) | (0.039) | (0.039) | |
Public expenditure ratio | 0.351 | 0.376 | 0.325 |
(0.274) | (0.274) | (0.274) | |
Public expenditure ratio | −0.044 * | −0.030 | −0.029 |
(0.024) | (0.025) | (0.025) | |
Observations | 7143 | 7143 | 7143 |
Pseudo R2 | 0.042 | 0.043 | 0.043 |
Variables | Happiness | |||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |
PM10 | 0.009 *** | 0.009 *** | −0.006 * | −0.005 * |
(0.003) | (0.003) | (0.003) | (0.003) | |
PM102 | −3.622 × 10−5 ** | −3.373 × 10−5 ** | ||
(1.701 × 10−5) | (1.362 × 10−5) | |||
Stock sensitivity | −0.049 | 0.675 ** | ||
(0.040) | (0.296) | |||
Stock sensitivity × PM10 | 0.023 *** | −0.020 *** | ||
(0.007) | (0.007) | |||
Stock sensitivity × PM102 | −1.223 × 10−4 *** | |||
(3.642 × 10−5) | ||||
Incremental sensitivity | −0.014 | 0.233 | ||
(0.037) | (0.288) | |||
Incremental sensitivity × PM10 | 0.037 *** | −0.012 * | ||
(0.008) | (0.007) | |||
Incremental sensitivity × PM102 | −1.952 × 10−4 *** | |||
(4.304 × 10−5) | ||||
Individual characteristic variables | Control | Control | Control | Control |
Urban characteristic variables | Control | Control | Control | Control |
Observations | 7143 | 7143 | 1912 | 1912 |
Pseudo R2 | 0.014 | 0.014 | 0.049 | 0.023 |
Variables | Low Age | High Age | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
PM10 | 0.011 ** | 0.014 *** | 0.012 *** | 0.013 *** | −0.001 | 0.003 |
(0.004) | (0.004) | (0.004) | (0.005) | (0.005) | (0.004) | |
PM102 | −4.774 × 10−5 ** | −6.323 × 10−5 *** | −4.437 × 10−5 ** | −5.562 ** | 5.233 × 10−6 | 1.456 × 10−6 |
(2.992 × 10−5) | (2.282 × 10−5) | (2.116 × 10−5) | (2.563 × 10−5) | (2.601 × 10−5) | (2.181 × 10−5) | |
Stock sensitivity | 0.129 ** | −0.226 *** | ||||
(0.057) | (0.058) | |||||
Stock sensitivity × PM10 | 0.028 *** | 0.020 * | ||||
(0.010) | (0.011) | |||||
Stock sensitivity × PM102 | −1.463 × 10−4 *** | −9.733 × 10−5 * | ||||
(5.142 × 10−5) | (2.602 × 10−5) | |||||
Incremental sensitivity | 0.086 | −0.259 *** | ||||
(0.056) | (0.057) | |||||
Incremental sensitivity × PM10 | 0.045 *** | 0.059 *** | ||||
(0.012) | (0.013) | |||||
Incremental sensitivity × PM102 | −2.402 × 10−4 *** | −2.942 × 10−4 *** | ||||
(6.353 × 10−5) | (6.803 × 10−5) | |||||
Individual characteristic variables | Control | Control | Control | Control | Control | Control |
Urban characteristic variables | Control | Control | Control | Control | Control | Control |
Observations | 3421 | 3421 | 3421 | 3722 | 3722 | 3722 |
Pseudo R2 | 0.020 | 0.020 | 0.023 | 0.017 | 0.010 | 0.015 |
Variables | Male | Female | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
PM10 | 0.016 *** | 0.0145 *** | 0.019 *** | 0.010 ** | 0.003 | 0.009 * |
(0.005) | (0.005) | (0.004) | (0.004) | (0.005) | (0.005) | |
PM102 | −7.482 × 10−5 *** | −6.223 × 10−5 ** | −8.932 × 10−5 *** | −4.152 × 10−5 * | −1.312 × 10−5 | −4.804 × 10−5 * |
(2.501 × 10−5) | (2.572 × 10−5) | (2.403 × 10−5) | (2.311 × 10−5) | (2.293 × 10−5) | (2.761 × 10−5) | |
Stock sensitivity | −0.052 | −0.047 | ||||
(0.059) | (0.055) | |||||
Stock sensitivity × PM10 | 0.005 | 0.039 *** | ||||
(0.010) | (0.010) | |||||
Stock sensitivity × PM102 | −2.437 × 10−5 | −2.023 × 10−4 *** | ||||
(5.368 × 10−5) | (4.972 × 10−5) | |||||
Incremental sensitivity | 0.014 | 0.076 | ||||
(0.062) | (0.060) | |||||
Incremental sensitivity × PM10 | −0.007 | 0.061 *** | ||||
(0.014) | (0.014) | |||||
Incremental sensitivity × PM102 | 2.923 × 10−5 | −2.993 × 10−4 *** | ||||
(7.154 × 10−5) | (7.142 × 10−5) | |||||
Individual characteristic variables | Control | Control | Control | Control | Control | Control |
Urban characteristic variables | Control | Control | Control | Control | Control | Control |
Observations | 3365 | 3365 | 3365 | 3778 | 3778 | 3778 |
Pseudo R2 | 0.016 | 0.015 | 0.010 | 0.016 | 0.014 | 0.041 |
Variables | Low Income | High Income | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
PM10 | 0.012 * | −0.005 | 0.004 | 0.016 *** | 0.011 ** | 0.013 *** |
(0.006) | (0.006) | (0.006) | (0.005) | (0.005) | (0.004) | |
PM102 | −5.302 × 10−5 * | 3.301 × 10−5 | −1.023 × 10−5 | −7.183 × 10−5 *** | −5.637 × 10−5 ** | −5.588 × 10−5 ** |
(3.213 × 10−5) | (3.113 × 10−5) | (2.872 × 10−5) | (2.771 × 10−5) | (2.417 × 10−5) | (2.349 × 10−5) | |
Stock sensitivity | −0.130 ** | −0.269 *** | ||||
(0.069) | (0.058) | |||||
Stock sensitivity × PM10 | 0.027 ** | 0.030 *** | ||||
(0.012) | (0.010) | |||||
Stock sensitivity × PM102 | −1.234 × 10−4 ** | −1.683 × 10−4 *** | ||||
(6.132 × 10−5) | (5.384 × 10−5) | |||||
Incremental sensitivity | −0.036 | −0.165 *** | ||||
(0.067) | (0.056) | |||||
Incremental sensitivity × PM10 | 0.050 *** | 0.028 ** | ||||
(0.016) | (0.013) | |||||
Incremental sensitivity × PM102 | −2.418 × 10−2 *** | −1.478 × 10−4 ** | ||||
(8.266 × 10−5) | (6.658 × 10−5) | |||||
Individual characteristic variables | Control | Control | Control | Control | Control | Control |
Urban characteristic variables | Control | Control | Control | Control | Control | Control |
Observations | 3058 | 3058 | 3058 | 4085 | 4085 | 4085 |
Pseudo R2 | 0.021 | 0.021 | 0.021 | 0.020 | 0.023 | 0.022 |
Variables | Happiness | Satisfaction | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
PM10 | 0.009 *** | ||||
(0.003) | |||||
PM102 | −4.393 × 10−5 *** | ||||
(1.702 × 10−5) | |||||
SO2 | 0.015 *** | 0.017*** | |||
(0.003) | (0.003) | ||||
SO22 | −1.113 × 10−4 *** | −1.713 × 10−4 *** | |||
(3.886 × 10−4) | (3.812 × 10−5) | ||||
NO2 | 0.028 *** | 0.034 *** | |||
(0.011) | (0.011) | ||||
NO22 | −3.412 × 10−4 *** | −4.087 × 10−4 *** | |||
(1.304 × 10−4) | (1.302 × 10−4) | ||||
Individual characteristic variables | Control | Control | Control | Control | Control |
Urban characteristic variables | Control | Control | Control | Control | Control |
Pseudo R2 | 0.020 | 0.025 | 0.041 | 0.015 | 0.026 |
Observations | 6607 | 7700 | 7143 | 6607 | 7700 |
Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
OLogit | Regress | OProbit | |
PM10 | 0.014 ** | 0.007 *** | 0.009 ** |
(0.006) | (0.003) | (0.005) | |
PM102 | −6.023 × 10−5 ** | −3.022 × 10−5 ** | −3.404 × 10−5 * |
(2.852 × 10−5) | (1.323 × 10−5) | (2.062 × 10−5) | |
Observations | 7143 | 7143 | 5911 |
Pseudo R2 | 0.043 | 0.105 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Zhang, C.; Xu, B. The Impact of Air Pollution on Residents’ Happiness: A Study on the Moderating Effect Based on Pollution Sensitivity. Int. J. Environ. Res. Public Health 2022, 19, 7536. https://doi.org/10.3390/ijerph19127536
Tian X, Zhang C, Xu B. The Impact of Air Pollution on Residents’ Happiness: A Study on the Moderating Effect Based on Pollution Sensitivity. International Journal of Environmental Research and Public Health. 2022; 19(12):7536. https://doi.org/10.3390/ijerph19127536
Chicago/Turabian StyleTian, Xuan, Cheng Zhang, and Bing Xu. 2022. "The Impact of Air Pollution on Residents’ Happiness: A Study on the Moderating Effect Based on Pollution Sensitivity" International Journal of Environmental Research and Public Health 19, no. 12: 7536. https://doi.org/10.3390/ijerph19127536
APA StyleTian, X., Zhang, C., & Xu, B. (2022). The Impact of Air Pollution on Residents’ Happiness: A Study on the Moderating Effect Based on Pollution Sensitivity. International Journal of Environmental Research and Public Health, 19(12), 7536. https://doi.org/10.3390/ijerph19127536