Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Fpeak (N): F(3, 24) = 38.505, p < 0.001), with an R2 of 0.828;
- Fmean (N): F(2, 25) = 58.31, p < 0.001), with an R2 of 0.823.
- Fpeak (N): F(2, 25) = 21.321, p < 0.001), with an R2 of 0.630;
- Fmean (N): F(2, 25) = 14.257, p < 0.001), with an R2 of 0.533.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plowman, S.A.; Smith, D.L. Exercise Physiology for Health Fitness and Performance, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 54–92. [Google Scholar]
- Blimkie, C.J.; Roache, P.; Hay, J.T.; Bar-Or, O. Anaerobic power of arms in teenage boys and girls: Relationship to lean tissue. Eur. J. Appl. Physiol. 1988, 57, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Bulbulian, R.; Jeong, J.W.; Murphy, M. Comparison of anaerobic components of the Wingate and Critical Power tests in males and females. Med. Sci. Sports Exerc. 1996, 28, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Maud, P.J.; Shultz, B.B. Gender comparisons in anaerobic power and anaerobic capacity tests. Br. J. Sports Med. 1986, 20, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Patton, J.F.; Frederick, F.A. Comparative anaerobic power of men and women. Aviat. Space Environ. Med. 1986, 57, 636–641. [Google Scholar] [PubMed]
- Nikolaidis, P. Gender differences in anaerobic power in physical education and sport science students. J. Phys. Educ. Sport 2009, 24, 140–145. [Google Scholar]
- Perez-Gomez, J.; Rodriguez, G.V.; Ara, I.; Olmedillas, H.; Chavarren, J.; González-Henriquez, J.J.; Dorado, C.; Calbet, J.A.L. Role of muscle mass on sprint performance: Gender differences? Eur. J. Appl. Physiol. 2008, 102, 685–694. [Google Scholar] [CrossRef]
- Vincent, S.; Berthon, P.; Zouhal, H.; Moussa, E.; Catheline, M.; Bentué-Ferrer, D.; Gratas-Delamarche, A. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur. J. Appl. Physiol. 2004, 91, 15–21. [Google Scholar]
- Weber, C.L.; Chia, M.; Inbar, O. Gender differences in anaerobic power of the arms and legs-a scaling issue. Med. Sci. Sports Exerc. 2006, 38, 129. [Google Scholar] [CrossRef]
- Mayhew, J.; Salm, P.C. Gender differences in anaerobic power tests. Eur. J. Appl. Physiol. 1990, 60, 133–138. [Google Scholar] [CrossRef]
- Guglielmo, L.G.A.; Denadai, B.S. Assessment of anaerobic power of swimmers: The correlation of laboratory tests on an arm ergometer with field tests in a swimming pool. J. Strength Cond. Res. 2000, 14, 395–398. [Google Scholar] [CrossRef]
- Zera, J.N.; Nagle, E.F.; Nagai, T.; Lovalekar, M.; Abt, J.P.; Lephart, S.M. Tethered swimming test: Reliability and the association with swimming performance and land-based anaerobic performance. J. Strength Cond. Res. 2021, 35, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Matković, I.; Zdravković, I. The relationship between 50 m-freestyle results and characteristics of tethered forces in male sprint swimmers: A new approach to tethered swimming test. Facta Univ. 2000, 1, 15–22. [Google Scholar]
- Kjendlie, P.L.; Thorsvald, K. A tethered swimming power test is highly reliable. Port. J. Sport Sci. 2006, 6, 231–233. [Google Scholar]
- Amaro, N.; Marinho, D.A.; Batalha, N.; Marques, M.C.; Morouço, P. Reliability of tethered swimming evaluation in age group swimmers. J. Hum. Kinet. 2014, 41, 155. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.C.; Marinho, D.A.; Neiva, H.P.; Costa, M.J. Propulsive forces in human competitive swimming: A systematic review on direct assessment methods: Propulsive forces in competitive swimming. Sports Biomech. 2021, 1–21. [Google Scholar] [CrossRef]
- Dos Santos, K.B.; Pereira, G.; Papoti, M.; Bento, P.C.B.; Rodacki, A. Propulsive force asymmetry during tethered-swimming. Int. J. Sports Med. 2013, 34, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Williams, M.M.; Vickovic, M.M.; Handcock, P.J. Muscle power predicts freestyle swimming performance. Br. J. Sports Med. 1992, 26, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.A.; Williams, M.M. Relationship between upper body anaerobic power and freestyle swimming performance. Int. J. Sports Med. 1991, 12, 1–5. [Google Scholar] [CrossRef]
- Loturco, I.; Barbosa, A.C.; Nocentini, R.K.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Abad, C.C.C.; Figueiredo, P.; Nakamura, F.Y. A correlational analysis of tethered swimming, swim sprint performance and dry-land power assessments. Int. J. Sports Med. 2016, 37, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Morouço, P.; Keskinen, K.L.; Vilas-Boas, J.P.; Fernandes, R.J. Relationship between tethered forces and the four swimming techniques performance. J. Appl. Biomech. 2011, 27, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Morouço, P.G.; Marinho, D.A.; Keskinen, K.L.; Badillo, J.J.; Marques, M.C. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance. J. Strength Cond. Res. 2014, 28, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.B.; Bento, P.C.; Pereira, G.; Rodacki, A.L. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J. Strength Cond. Res. 2016, 30, 2500–2507. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Cortesi, M.; Zamparo, P. The relationship between power generated by thrust and power to overcome drag in elite short distance swimmers. PLoS ONE 2016, 11, e0162387. [Google Scholar] [CrossRef] [PubMed]
- Truijens, M.; Toussaint, H. Biomechanical aspects of peak performance in human swimming. Anim. Biol. 2005, 55, 17–40. [Google Scholar] [CrossRef]
- Morouço, P.; Sacadura, J.; Amaro, N.; Matos, R. Evaluation of age group swimmers: A in field proposal. Open Sports Sci. J. 2010, 3, 38–40. [Google Scholar] [CrossRef] [Green Version]
- Morouço, P.G.; Marinho, D.A.; Izquierdo, M.; Neiva, H.; Marques, M.C. Relative contribution of arms and legs in 30 s fully tethered front crawl swimming. BioMed Res. Int. 2015, 2015, 563206. [Google Scholar] [CrossRef]
- Oliveira, M.; Henrique, R.S.; Queiroz, D.R.; Salvina, M.; Melo, W.V.; Dos Santos, M.A.M. Anthropometric variables, propulsive force and biological maturation: A mediation analysis in young swimmers. Eur. J. Sport Sci. 2021, 21, 507–514. [Google Scholar] [CrossRef]
- Silva, A.F.; Figueiredo, P.; Ribeiro, J.; Alves, F.; Vilas-Boas, J.P.; Seifert, L.; Fernandes, R.J. Integrated analysis of young swimmers’ sprint performance. Mot. Control 2019, 23, 354–364. [Google Scholar] [CrossRef]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the physical activity readiness questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar]
- McCrory, M.A.; Gomez, T.D.; Bernauer, E.M.; Molé, P.A. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med. Sci. Sports Exerc. 1995, 27, 1686–1691. [Google Scholar]
- Bar-Or, O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.F.; Duggan, A. An evaluation of tests of anaerobic power. Aviat. Space Environ. Med. 1987, 58, 237–242. [Google Scholar]
- Nagle, J.A.; McMillan, J.; Munkasy, B.A.; Joyner, A.B.; Roorda, A.; Scott, M.K.; Rossi, S.J. Changes in Swim Performance and Perceived Stress and Recovery in Female Collegiate Swimmers Across a Competitive Season. J. Swim. Res. 2015, 23, 44–53. [Google Scholar]
- Winter, D.A. Signal Processing. In Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 14–44. [Google Scholar]
- Barbosa, T.M.; Bragada, J.A.; Reis, V.M.; Marinho, D.A.; Carvalho, C.; Silva, A.J. Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. J. Sci. Med. Sport 2010, 13, 262–269. [Google Scholar] [CrossRef]
- Seifert, L.; Barbosa, T.M.; Kjendlie, P.L. Biophysical approach to swimming: Gender effect. In Gender Gap: Causes Experiences and Effects; Davies, S.A., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2010; pp. 59–80. [Google Scholar]
- Kjendlie, P.L.; Stallman, R. Morphology and swimming performance. In The World Book of Swimming: From Science to Performance; Seifert, L., Chollet, D., Mujika, I., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 203–221. [Google Scholar]
- Morouco, P.G.; Marinho, D.A.; Amaro, N.M.; Pérez-Turpin, J.A.; Marques, M.C. Effects of dry-land strength training on swimming performance: A brief review. J. Hum. Sport Exerc. 2012, 7, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Aspenes, S.T.; Karlsen, T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012, 42, 527–543. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Harrison, A.J.; Lyons, M. The impact of resistance training on swimming performance: A systematic review. Sports Med. 2017, 47, 2285–2307. [Google Scholar] [CrossRef]
- Newton, R.U.; Jones, J.; Kraemer, W.J.; Wardle, H. Strength and power training of Australian Olympic swimmers. Strength Cond. J. 2002, 24, 7–15. [Google Scholar] [CrossRef]
Variables | Males 1 | Females 1 | Total 1 | p-Value |
---|---|---|---|---|
Age (years) | 22.54 ± 3.07 | 20.67 ± 4.46 | 21.54 ± 3.93 | 0.215 |
Weight (kg) | 77.53 ± 7.62 | 65.36 ± 8.11 | 71.01 ± 9.91 | <0.001 ** |
Body Mass Index (kg/m2) | 24.63 ± 2.45 | 23.36 ± 2.93 | 23.95 ± 2.75 | 0.229 |
Percent Body Fat (%BF) | 13.92 ± 5.13 | 25.80 ± 7.94 | 20.28 ± 8.99 | <0.001 ** |
Fat-Free Mass (FFM) (kg) | 66.49 ± 5.83 | 48.10 ± 4.71 | 56.64 ± 10.67 | <0.001 ** |
Fat Mass (FM) (kg) | 10.97 ± 4.38 | 17.25 ± 6.8 | 14.33 ± 6.54 | 0.008 * |
Males 1 | Females 1 | Total 1 | p-Value | |
---|---|---|---|---|
WAnT | ||||
Fpeak (N) | 1000.69 ± 165.88 | 724.87 ± 104.12 | 852.93 ± 193.58 | <0.001 ** |
Fmean (N) | 707.61 ± 96.54 | 443.27 ± 96.41 | 566.00 ± 164.28 | <0.001 ** |
TST | ||||
Fpeak (N) | 277.63 ± 56.72 | 193.79 ± 37.20 | 230.06 ± 65.41 | <0.001 ** |
Fmean (N) | 99.30 ± 25.59 | 73.45 ± 19.23 | 84.92 ± 25.65 | 0.005 * |
β | βstd | p-Value | |
---|---|---|---|
WAnT Fpeak | |||
Gender | −48.728 | −0.128 | 0.488 |
FFM | 18.828 | 0.466 | <0.001 ** |
%BF | 10.039 | 5.815 | 0.001 ** |
WAnT Fmean | |||
Gender | −33.299 | −0.103 | 0.559 |
FFM | 12.561 | 0.816 | <0.001 ** |
TST Fpeak | |||
Gender | 12.913 | 0.100 | 0.694 |
FFM | 5.396 | 0.880 | 0.002 * |
TST Fmean | |||
Gender | 21.996 | 0.435 | 0.136 |
FFM | 2.596 | 1.080 | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zera, J.N.; Nagle, E.F.; Connell, E.; Curtin, E.; Marget, W.; Simonson, A.P.; Nagai, T.; Abt, J.; Lephart, S. Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity. Int. J. Environ. Res. Public Health 2022, 19, 7902. https://doi.org/10.3390/ijerph19137902
Zera JN, Nagle EF, Connell E, Curtin E, Marget W, Simonson AP, Nagai T, Abt J, Lephart S. Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity. International Journal of Environmental Research and Public Health. 2022; 19(13):7902. https://doi.org/10.3390/ijerph19137902
Chicago/Turabian StyleZera, Jacquelyn N., Elizabeth F. Nagle, Emma Connell, Erin Curtin, Wilmina Marget, Anna P. Simonson, Takashi Nagai, John Abt, and Scott Lephart. 2022. "Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity" International Journal of Environmental Research and Public Health 19, no. 13: 7902. https://doi.org/10.3390/ijerph19137902
APA StyleZera, J. N., Nagle, E. F., Connell, E., Curtin, E., Marget, W., Simonson, A. P., Nagai, T., Abt, J., & Lephart, S. (2022). Gender Differences and the Influence of Body Composition on Land and Pool-Based Assessments of Anaerobic Power and Capacity. International Journal of Environmental Research and Public Health, 19(13), 7902. https://doi.org/10.3390/ijerph19137902