Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Chemical Measurement
2.4. Statistical Methods
2.5. Sensitivity Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skakkebæk, N.E.; Lindahl-Jacobsen, R.; Levine, H.; Andersson, A.-M.; Jørgensen, N.; Main, K.M.; Lidegaard, Ø.; Priskorn, L.; Holmboe, S.A.; Bräuner, E.V.; et al. Environmental Factors in Declining Human Fertility. Nat. Rev. Endocrinol. 2022, 18, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-J.; Wang, F.; Shen, H.-M.; Kannan, K.; Guo, Y. Feminine Hygiene Products—A Neglected Source of Phthalate Exposure in Women. Environ. Sci. Technol. 2020, 54, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-J.; Kannan, K. Phthalates, Bisphenols, Parabens, and Triclocarban in Feminine Hygiene Products from the United States and Their Implications for Human Exposure. Environ. Int. 2020, 136, 105465. [Google Scholar] [CrossRef] [PubMed]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in Cosmetic and Personal Care Products: Concentrations and Possible Dermal Exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Zota, A.R.; Calafat, A.M.; Woodruff, T.J. Temporal Trends in Phthalate Exposures: Findings from the National Health and Nutrition Examination Survey, 2001-2010. Environ. Health Perspect. 2014, 122, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Kannan, K. Widespread Occurrence of Benzophenone-Type UV Light Filters in Personal Care Products from China and the United States: An Assessment of Human Exposure. Environ. Sci. Technol. 2014, 48, 4103–4109. [Google Scholar] [CrossRef]
- Kunisue, T.; Wu, Q.; Tanabe, S.; Aldous, K.; Kannan, K. Analysis of Five Benzophenone-Type UV Filters in Human Urine by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2010, 2, 707–713. [Google Scholar] [CrossRef]
- Wang, L.; Kannan, K. Characteristic Profiles of Benzonphenone-3 and Its Derivatives in Urine of Children and Adults from the United States and China. Environ. Sci. Technol. 2013, 47, 12532–12538. [Google Scholar] [CrossRef]
- Suzuki, T.; Kitamura, S.; Khota, R.; Sugihara, K.; Fujimoto, N.; Ohta, S. Estrogenic and Antiandrogenic Activities of 17 Benzophenone Derivatives Used as UV Stabilizers and Sunscreens. Toxicol. Appl. Pharmacol. 2005, 203, 9–17. [Google Scholar] [CrossRef]
- Wan, Y.; Xue, J.; Kannan, K. Occurrence of Benzophenone-3 in Indoor Air from Albany, New York, USA, and Its Implications for Inhalation Exposure. Sci. Total Environ. 2015, 537, 304–308. [Google Scholar] [CrossRef]
- Zota, A.R.; Phillips, C.A.; Mitro, S.D. Recent Fast Food Consumption and Bisphenol A and Phthalates Exposures among the U.S. Population in NHANES, 2003-2010. Environ. Health Perspect. 2016, 124, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Wong, L.Y.; Ye, X.; Reidy, J.A.; Needham, L.L. Concentrations of the Sunscreen Agent Benzophenone-3 in Residents of the United States: National Health and Nutrition Examination Survey 2003–2004. Environ. Health Perspect. 2008, 116, 893–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Alomirah, H.; Cho, H.S.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Kannan, K. Occurrence of Phthalate Metabolites in Human Urine from Several Asian Countries. Environ. Sci. Technol. 2011, 45, 3138–3144. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Chahoud, I.; Heindel, J.J.; Padmanabhan, V.; Paumgartten, F.J.R.; Schoenfelder, G. Urinary, Circulating, and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol, A. Environ. Health Perspect. 2010, 118, 1055–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, Y.; Mutsuga, M.; Kato, T.; Iida, M.; Tanamoto, K. Estrogenic and Anti-Androgenic Activities of Benzophenones in Human Estrogen and Androgen Receptor Mediated Mammalian Reporter Gene Assays. J. Health Sci. 2005, 51, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Molina-Molina, J.-M.; Escande, A.; Pillon, A.; Gomez, E.; Pakdel, F.; Cavailles, V.; Olea, N.; Ait-Aissa, S.; Balaguer, P. Profiling of Benzophenone Derivatives Using Fish and Human Estrogen Receptor-Specific in Vitro Bioassays. Toxicol. Appl. Pharmacol. 2008, 232, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Buck Louis, G.M.; Sundaram, R.; Sweeney, A.M.; Schisterman, E.F.; Maisog, J.; Kannan, K. Urinary Bisphenol A, Phthalates, and Couple Fecundity: The Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil. Steril. 2014, 101, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Specht, I.O.; Bonde, J.P.; Toft, G.; Lindh, C.H.; Jönsson, B.A.G.; Jørgensen, K.T. Serum Phthalate Levels and Time to Pregnancy in Couples from Greenland, Poland and Ukraine. PLoS ONE 2015, 10, e0120070. [Google Scholar] [CrossRef]
- Hauser, R.; Gaskins, A.J.; Souter, I.; Smith, K.W.; Dodge, L.E.; Ehrlich, S.; Meeker, J.D.; Calafat, A.M.; Williams, P.L.; EARTH Study Team. Urinary Phthalate Metabolite Concentrations and Reproductive Outcomes among Women Undergoing in Vitro Fertilization: Results from the EARTH Study. Environ. Health Perspect. 2016, 124, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Jukic, A.M.; Calafat, A.M.; McConnaughey, D.R.; Longnecker, M.P.; Hoppin, J.A.; Weinberg, C.R.; Wilcox, A.J.; Baird, D.D.; Calafat, A.M.; McConnaughey, D.R.; et al. Urinary Concentrations of Phthalate Metabolites and Bisphenol A and Associations with Follicular-Phase Length, Luteal-Phase Length, Fecundability, and Early Pregnancy Loss. Environ. Health Perspect. 2016, 124, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Philips, E.M.; Kahn, L.G.; Jaddoe, V.W.V.; Shao, Y.; Asimakopoulos, A.G.; Kannan, K.; Steegers, E.A.P.; Trasande, L. First Trimester Urinary Bisphenol and Phthalate Concentrations and Time to Pregnancy: A Population-Based Cohort Analysis. J. Clin. Endocrinol. Metab. 2018, 103, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Rosen, E.M.; Barrett, E.S.; Nguyen, R.H.N.; Bush, N.; McElrath, T.F.; Swan, S.H.; Sathyanarayana, S. Joint Impact of Phthalate Exposure and Stressful Life Events in Pregnancy on Preterm Birth. Environ. Int. 2019, 133, 105254. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, P.; Gustafsson, J.A. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor Beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Slama, R.; Ballester, F.; Casas, M.; Cordier, S.; Eggesbo, M.; Iniguez, C.; Nieuwenhuijsen, M.; Philippat, C.; Rey, S.; Vandentorren, S.; et al. Epidemiologic Tools to Study the Influence of Environmental Factors on Fecundity and Pregnancy-Related Outcomes. Epidemiol. Rev. 2014, 36, 148–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hipwell, A.E.; Kahn, L.G.; Factor-Litvak, P.; Porucznik, C.A.; Siegel, E.L.; Fichorova, R.N.; Hamman, R.F.; Klein-Fedyshin, M.; Harley, K.G. Program Collaborators for Environmental Influences on Child Health Outcomes Exposure to Non-Persistent Chemicals in Consumer Products and Fecundability: A Systematic Review. Hum. Reprod. Update 2019, 25, 51–71. [Google Scholar] [CrossRef]
- Kim, Y.R.; Pacella, R.E.; Harden, F.A.; White, N.; Toms, L.-M.L. A Systematic Review: Impact of Endocrine Disrupting Chemicals Exposure on Fecundity as Measured by Time to Pregnancy. Environ. Res. 2019, 171, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Green, M.P.; Harvey, A.J.; Finger, B.J.; Tarulli, G.A. Endocrine Disrupting Chemicals: Impacts on Human Fertility and Fecundity during the Peri-Conception Period. Environ. Res. 2021, 194, 110694. [Google Scholar] [CrossRef]
- Radke, E.G.; Glenn, B.S.; Braun, J.M.; Cooper, G.S. Phthalate Exposure and Female Reproductive and Developmental Outcomes: A Systematic Review of the Human Epidemiological Evidence. Environ. Int. 2019, 130, 104580. [Google Scholar] [CrossRef]
- Cedars, M.I.; Taymans, S.E.; DePaolo, L.V.; Warner, L.; Moss, S.B.; Eisenberg, M.L. The Sixth Vital Sign: What Reproduction Tells Us about Overall Health. Proceedings from a NICHD/CDC Workshop. Hum. Reprod. Open 2017, 2017, hox008. [Google Scholar] [CrossRef]
- Thomsen, A.M.L.; Riis, A.H.; Olsen, J.; Jönsson, B.A.G.; Lindh, C.H.; Hjollund, N.H.; Jensen, T.K.; Bonde, J.P.; Toft, G. Female Exposure to Phthalates and Time to Pregnancy: A First Pregnancy Planner Study. Hum. Reprod. 2017, 32, 232–238. [Google Scholar] [CrossRef]
- Vélez, M.P.; Arbuckle, T.E.; Fraser, W.D. Female Exposure to Phenols and Phthalates and Time to Pregnancy: The Maternal-Infant Research on Environmental Chemicals (MIREC) Study. Fertil. Steril. 2015, 103, 1011–1020.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck Louis, G.M.; Kannan, K.; Sapra, K.J.; Maisog, J.; Sundaram, R. Urinary Concentrations of Benzophenone-Type Ultraviolet Radiation Filters and Couples’ Fecundity. Am. J. Epidemiol. 2014, 180, 1168–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, I.; Coskun, S.; Al-Doush, I.; Abduljabbar, M.; Al-Rouqi, R.; Al-Rajudi, T.; Al-Hassan, S. Couples Exposure to Phthalates and Its Influence on in Vitro Fertilization Outcomes. Chemosphere 2019, 226, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.T.; Collins, J.; Egozcue, J.; Evers, L.H.; Gianaroli, L.; Leridon, H.; Sunde, A.; Templeton, A.; Van Steirteghem, A.; Cohen, J.; et al. Fertility and Ageing. Hum. Reprod. Update 2005, 11, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Romero, E.; Scheringer, M. A Review of Phthalate Pharmacokinetics in Human and Rat: What Factors Drive Phthalate Distribution and Partitioning? Drug Metab. Rev. 2019, 51, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Louis, G.M.B.; Schisterman, E.F.; Sweeney, A.M.; Wilcosky, T.C.; Gore-Langton, R.E.; Lynch, C.D.; Barr, D.B.; Schrader, S.M.; Kim, S.; Chen, Z.; et al. Designing Prospective Cohort Studies for Assessing Reproductive and Developmental Toxicity during Sensitive Windows of Human Reproduction and Development—The LIFE Study. Paediatr. Perinat. Epidemiol. 2011, 25, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Alomirah, H.; Cho, H.S.; Li, Y.F.; Liao, C.; Minh, T.B.; Mohd, M.A.; Nakata, H.; Ren, N.; Kannan, K. Urinary Bisphenol A Concentrations and Their Implications for Human Exposure in Several Asian Countries. Environ. Sci. Technol. 2011, 45, 7044–7050. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B Stat. Methodol. 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Lean, S.C.; Derricott, H.; Jones, R.L.; Heazell, A.E.P. Advanced Maternal Age and Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0186287. [Google Scholar] [CrossRef] [Green Version]
- Sapra, K.J.; Barr, D.B.; Maisog, J.M.; Sundaram, R.; Buck Louis, G.M. Time-to-Pregnancy Associated With Couples’ Use of Tobacco Products. Nicotine Tob. Res. 2016, 18, 2154–2161. [Google Scholar] [CrossRef] [Green Version]
- Weisbrod, C.J.; Kunz, P.Y.; Zenker, A.K.; Fent, K. Effects of the UV Filter Benzophenone-2 on Reproduction in Fish. Toxicol. Appl. Pharmacol. 2007, 225, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Wnuk, A.; Rzemieniec, J.; Lason, W.; Krzeptowski, W.; Kajta, M. Benzophenone-3 Impairs Autophagy, Alters Epigenetic Status, and Disrupts Retinoid X Receptor Signaling in Apoptotic Neuronal Cells. Mol. Neurobiol. 2018, 55, 5059–5074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wnuk, A.; Rzemieniec, J.; Litwa, E.; Lason, W.; Kajta, M. Prenatal Exposure to Benzophenone-3 (BP-3) Induces Apoptosis, Disrupts Estrogen Receptor Expression and Alters the Epigenetic Status of Mouse Neurons. J. Steroid Biochem. Mol. Biol. 2018, 182, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Mínguez-Alarcón, L.; Gaskins, A.J.; Chiu, Y.-H.; Souter, I.; Williams, P.L.; Calafat, A.M.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Dietary Folate Intake and Modification of the Association of Urinary Bisphenol A Concentrations with in Vitro Fertilization Outcomes among Women from A Fertility Clinic. Reprod. Toxicol. 2016, 65, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Vecchione, R.; Quagliariello, V.; Giustetto, P.; Calabria, D.; Sathya, A.; Marotta, R.; Profeta, M.; Nitti, S.; Silvestri, N.; Pellegrino, T.; et al. Oil/Water Nano-Emulsion Loaded with Cobalt Ferrite Oxide Nanocubes for Photo-Acoustic and Magnetic Resonance Dual Imaging in Cancer: In Vitro and Preclinical Studies. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 275–286. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K. Occurrences, Toxicities, and Ecological Risks of Benzophenone-3, a Common Component of Organic Sunscreen Products: A Mini-Review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef]
- Richardson, D.B.; Kaufman, J.S. Estimation of the Relative Excess Risk Due to Interaction and Associated Confidence Bounds. Am. J. Epidemiol. 2009, 169, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Knol, M.J.; van der Tweel, I.; Grobbee, D.E.; Numans, M.E.; Geerlings, M.I. Estimating Interaction on an Additive Scale between Continuous Determinants in a Logistic Regression Model. Int. J. Epidemiol. 2007, 36, 1111–1118. [Google Scholar] [CrossRef]
- Li, R.; Chambless, L. Test for Additive Interaction in Proportional Hazards Models. Ann. Epidemiol. 2007, 17, 227–236. [Google Scholar] [CrossRef]
Variable | Total | <35 Years | ≥35 Years | ||||
---|---|---|---|---|---|---|---|
Total | Not Pregnant | Pregnant | Not Pregnant | Pregnant | Not Pregnant | Pregnant | |
Female partners (n) | 403 | 122 | 281 | 94 | 247 | 28 | 34 |
Age (years) | 29 (6) | 30 (7) | 29 (6) | 28 (5) | 29 (4) | 37 (2) | 36 (2) |
BMI (kg/m2) | 25.8 (8.6) | 27.3 (10.4) | 25.2 (7.7) | 27.4 (9) | 24.8 (7.4) | 26.6 (11.9) | 27.3 (7.6) |
Cotinine (ng/mL) | 0.02 (0.08) | 0.05 (2.24) | 0.02 (0.03) | 0.05 (1.68) | 0.02 (0.03) | 0.09 (13.22) | 0.02 (0.04) |
Male partners (n) | 386 | 114 | 272 | 72 | 199 | 42 | 73 |
Age (years) | 32 (6) | 32 (7) | 31 (6) | 29 (5) | 30 (4) | 38 (5) | 37 (3) |
BMI (kg/m2) | 28.8 (5.9) | 29.3 (5.9) | 28.6 (5.8) | 29.8 (7.2) | 28.7 (5.8) | 28 (4.3) | 28.4 (6.4) |
Cotinine (ng/mL) | 0.04 (1.36) | 0.09 (34.02) | 0.03 (0.23) | 0.1 (3.26) | 0.04 (0.18) | 0.08 (153.94) | 0.03 (0.71) |
Total | <35 Years | ≥35 Years | ||||||
---|---|---|---|---|---|---|---|---|
Chemical (ng/mL) | %<LOQ | Total | Not Pregnant | Pregnant | Not Pregnant | Pregnant | Not Pregnant | Pregnant |
Female partners | n = 403 | n = 122 | n = 281 | n = 94 | n = 247 | n = 28 | n = 34 | |
mBzP | 4 | 3.7 (7.8) | 4.4 (8.3) | 3.4 (7.5) | 4.4 (7.9) | 3.5 (7.4) | 4.6 (8.3) | 2.9 (7.7) |
mBP | 1 | 8.0 (14.5) | 9.2 (18.5) | 7.8 (14.1) | 8.8 (17.4) | 7.8 (14.1) | 11.6 (24.6) | 8.3 (12.8) |
mCEPP | 2 | 14.7 (29.5) | 15.1 (38.1) | 14.7 (27.6) | 15.1 (33.8) | 14.7 (27.8) | 14.2 (43.5) | 13.2 (24.6) |
mCMHP | 1 | 11.4 (25.5) | 11.9 (26.6) | 11.2 (22.8) | 11.5 (28.2) | 11.8 (21.9) | 13.1 (20.6) | 9.7 (26.8) |
mCPP | 6 | 3.9 (8.7) | 3.6 (9.8) | 4.2 (7.5) | 3.6 (9.7) | 4.2 (7.4) | 3.7 (9.5) | 3.7 (8.1) |
mEP | 2 | 68.7 (172.0) | 89.0 (213.9) | 61.7 (156.5) | 92.9 (187.9) | 62.2 (163.7) | 61.9 (264.7) | 60.0 (111.7) |
mEHHP | 2 | 10.7 (20.9) | 10.7 (21.2) | 10.5 (20.5) | 11.3 (20.9) | 10.7 (20.3) | 7.0 (20.7) | 10.3 (24.8) |
mEOHP | 4 | 6.0 (13.2) | 5.7 (12.3) | 6.0 (13.5) | 5.7 (11.0) | 6.1 (13.9) | 5.5 (19.9) | 5.4 (10.9) |
mIBP | 4 | 4.0 (7.3) | 4.2 (9.1) | 3.9 (6.9) | 4.0 (8.9) | 4.0 (6.9) | 4.6 (10.4) | 2.1 (6.1) |
BPA | 2 | 0.4 (0.8) | 0.5 (0.9) | 0.4 (0.7) | 0.5 (0.9) | 0.4 (0.6) | 0.4 (0.9) | 0.6 (1.5) |
BP-1 | 1 | 2.5 (12.9) | 1.6 (8.4) | 2.8 (14.9) | 1.2 (6.9) | 2.8 (13.7) | 5.4 (27.7) | 3.3 (19.0) |
BP-3 | 1 | 5.1 (29.0) | 3.6 (27.0) | 6.7 (31.8) | 2.4 (15.2) | 6.8 (30.3) | 13.3 (66.7) | 5.4 (43.9) |
BP-2 | 28 | 0.05 (0.15) | 0.06 (0.18) | 0.05 (0.13) | 0.05 (0.15) | 0.05 (0.12) | 0.11 (0.2) | 0.02 (0.16) |
4OH-BP | 6 | 0.14 (0.25) | 0.14 (0.28) | 0.13 (0.24) | 0.14 (0.28) | 0.13 (0.24) | 0.16 (0.58) | 0.12 (0.22) |
BP-8 | 29 | 0.11 (0.65) | 0.10 (0.3) | 0.12 (0.94) | 0.08 (0.26) | 0.12 (0.94) | 0.16 (0.79) | 0.07 (0.87) |
Creatinine | – | 79.8 (103.0) | 88.4 (112.0) | 77.2 (99.9) | 90.1 (109.6) | 80.2 (99.7) | 82.3 (118.5) | 49.2 (72.0) |
Male partners | n = 386 | n = 114 | n = 272 | n = 72 | n = 199 | n = 42 | n = 73 | |
mBzP | 4 | 3.7 (7.1) | 4.1 (7.9) | 3.4 (6.9) | 4.8 (8.1) | 3.2 (7.0) | 3.3 (7.9) | 4.1 (6.7) |
mBP | 1 | 7.5 (12.0) | 8.0 (17.3) | 7.1 (10.7) | 8.3 (15.7) | 6.8 (10.0) | 7.4 (18.6) | 8.9 (11.6) |
mCEPP | 1 | 20.5 (37.7) | 22.5 (38.8) | 19.6 (37.5) | 22.5 (34.7) | 21.4 (37.6) | 22.4 (48.6) | 15.0 (36.0) |
mCMHP | 0 | 18.6 (40.5) | 21.1 (40.5) | 17.2 (40.0) | 18.9 (38.6) | 19.5 (40.5) | 26.5 (41.2) | 15.9 (27.9) |
mCPP | 3 | 5.6 (9.6) | 5.6 (9.0) | 5.7 (10.4) | 6.2 (8.3) | 5.6 (10.4) | 3.8 (9.0) | 5.7 (9.6) |
mEHHP | 1 | 15.4 (33.0) | 16.9 (37.2) | 15 (29.9) | 16.9 (32.2) | 16.5 (30.5) | 17.4 (38) | 11.5 (24.6) |
mEP | 1 | 97.2 (261.7) | 86.9 (239.1) | 102.1 (262.4) | 95.1 (256.7) | 98.6 (263.5) | 50.4 (232.5) | 111.7 (250.9) |
mEOHP | 2 | 7 (15.2) | 7.7 (16.7) | 6.8 (14.5) | 7.7 (14.8) | 6.9 (16.2) | 8.2 (19.1) | 6.1 (10.6) |
mIBP | 2 | 4.5 (7.3) | 4.8 (7.6) | 4.4 (7.1) | 4.5 (7.1) | 4.3 (7.2) | 5.1 (8.0) | 5.4 (6.5) |
BPA | 2 | 0.5 (0.9) | 0.4 (0.8) | 0.6 (0.9) | 0.4 (0.7) | 0.6 (0.9) | 0.4 (0.9) | 0.6 (1.3) |
BP-1 | 1 | 1.3 (8.0) | 0.6 (2.3) | 1.9 (9.9) | 0.6 (2.0) | 2.2 (10.0) | 0.7 (3.6) | 1.3 (9.5) |
BP-3 | 2 | 3.0 (16.2) | 1.7 (5.2) | 4.0 (21.5) | 1.9 (4.4) | 4.1 (24.6) | 1.4 (5.8) | 3.9 (16.0) |
BP-2 | 28 | 0.05 (0.12) | 0.05 (0.15) | 0.05 (0.11) | 0.05 (0.11) | 0.05 (0.11) | 0.03 (0.28) | 0.03 (0.13) |
4OH-BP | 4 | 0.14 (0.25) | 0.13 (0.28) | 0.14 (0.24) | 0.11 (0.26) | 0.15 (0.25) | 0.14 (0.28) | 0.13 (0.24) |
BP-8 | 27 | 0.08 (0.44) | 0.05 (0.23) | 0.09 (0.75) | 0.04 (0.25) | 0.11 (0.58) | 0.07 (0.17) | 0.07 (0.91) |
Creatinine | – | 139.8 (129.9) | 115.2 (139.5) | 145.4 (126.7) | 114.4 (143.3) | 146.4 (120.5) | 133.9 (96.4) | 140 (123.9) |
Females | Males | |||
---|---|---|---|---|
Chemical (ng/mL) | <35 Years | ≥35 Years | <35 Years | ≥35 Years |
mBzP | 1.00 (0.82, 1.21) | 1.04 (0.70, 1.53) | 0.74 (0.60, 0.92) | 0.87 (0.67, 1.13) |
mBP | 0.95 (0.78, 1.16) | 0.89 (0.62, 1.28) | 0.78 (0.63, 0.97) | 0.90 (0.72, 1.12) |
mCEPP | 1.04 (0.88, 1.23) | 0.98 (0.70, 1.37) | 0.89 (0.75, 1.06) | 0.91 (0.70, 1.20) |
mCMHP | 1.06 (0.89, 1.26) | 1.05 (0.74, 1.50) | 0.89 (0.75, 1.06) | 0.82 (0.62, 1.07) |
mCPP | 1.30 (1.07, 1.58) | 1.26 (0.85, 1.86) | 0.97 (0.81, 1.15) | 1.08 (0.84, 1.39) |
mEP | 0.97 (0.83, 1.13) | 0.95 (0.68, 1.32) | 1.00 (0.83, 1.22) | 1.04 (0.82, 1.32) |
mEHHP | 1.03 (0.88, 1.21) | 1.09 (0.78, 1.51) | 0.93 (0.79, 1.09) | 0.92 (0.70, 1.22) |
mEOHP | 1.07 (0.91, 1.27) | 0.99 (0.70, 1.41) | 0.91 (0.77, 1.08) | 0.92 (0.69, 1.23) |
mIBP | 1.02 (0.85, 1.22) | 0.97 (0.66, 1.41) | 0.90 (0.73, 1.10) | 0.94 (0.74, 1.21) |
BPA | 1.02 (0.87, 1.20) | 1.03 (0.80, 1.34) | 1.07 (0.92, 1.23) | 1.01 (0.78, 1.32) |
BP-1 | 1.04 (0.90, 1.20) | 0.92 (0.65, 1.30) | 1.10 (0.96, 1.27) | 1.07 (0.85, 1.34) |
BP-3 | 1.06 (0.92, 1.22) | 0.86 (0.60, 1.23) | 1.10 (0.95, 1.28) | 1.07 (0.85, 1.34) |
BP-2 | 1.01 (0.87, 1.17) | 0.61 (0.36, 1.05) | 1.02 (0.85, 1.21) | 0.97 (0.75, 1.27) |
4OH-BP | 0.95 (0.82, 1.11) | 0.71 (0.46, 1.09) | 0.91 (0.77, 1.07) | 0.97 (0.78, 1.22) |
BP-8 | 1.12 (0.98, 1.27) | 0.80 (0.50, 1.20) | 1.11 (0.96, 1.27) | 1.14 (0.92, 1.42) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pollack, A.Z.; Krall, J.R.; Swan, S.H.; Louis, G.M.B. Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability? Int. J. Environ. Res. Public Health 2022, 19, 8074. https://doi.org/10.3390/ijerph19138074
Pollack AZ, Krall JR, Swan SH, Louis GMB. Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability? International Journal of Environmental Research and Public Health. 2022; 19(13):8074. https://doi.org/10.3390/ijerph19138074
Chicago/Turabian StylePollack, Anna Z., Jenna R. Krall, Shanna H. Swan, and Germaine M. Buck Louis. 2022. "Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability?" International Journal of Environmental Research and Public Health 19, no. 13: 8074. https://doi.org/10.3390/ijerph19138074
APA StylePollack, A. Z., Krall, J. R., Swan, S. H., & Louis, G. M. B. (2022). Does Older Age Modify Associations between Endocrine Disrupting Chemicals and Fecundability? International Journal of Environmental Research and Public Health, 19(13), 8074. https://doi.org/10.3390/ijerph19138074