Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Agricultural Life Cycle Assessment
2.3. Unexpected Output Super Efficiency SBM Model
3. Results
3.1. Comprehensive Index of the Rice Environmental Impacts
3.1.1. Classification and Characterization
3.1.2. Standardization and Weighted Evaluation
3.2. Eco-Efficiency of Rice Production
3.3. Sensitivity Analysis
3.4. Ways to Improve the Eco-Efficiency of Rice Production
4. Discussion
4.1. Characteristics of the Eco-Efficiency of Rice Production
4.2. Improvement Potential of the Eco-Efficiency of Rice Production
4.3. Uncertainty in the Eco-Efficiency of Rice Production
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Unit | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Gross income | yuan | 27,996.95 | 35,981.48 | 1404.00 | 330,000.00 |
Irrigation cost | yuan | 913.21 | 1957.38 | 40.00 | 20,000.00 |
Compound fertilizer cost | yuan | 2369.89 | 3080.81 | 96.00 | 30,000.00 |
Nitrogen fertilizer cost | yuan | 98.81 | 358.69 | 0.00 | 4130.00 |
Urea cost | yuan | 331.07 | 595.53 | 0.00 | 6000.00 |
Pesticides cost | yuan | 1641.04 | 2166.38 | 80.00 | 17,280.00 |
Seed cost | yuan | 2657.95 | 3458.42 | 0.00 | 28,000.00 |
Electricity cost | yuan | 363.47 | 520.46 | 18.96 | 4680.00 |
Labor cost | yuan | 436.95 | 1524.04 | 0.00 | 18,200.00 |
Tillage and land preparation cost | yuan | 1409.23 | 1969.34 | 72.00 | 20,000.00 |
Seeding cost | yuan | 308.97 | 851.25 | 0.00 | 12,000.00 |
Harvesting cost | yuan | 1516.47 | 2043.44 | 0.00 | 20,000.00 |
Total cost of rice | yuan | 12,047.04 | 16,103.65 | 554.16 | 150,000.00 |
Net profit | yuan | 15,949.90 | 20,822.52 | 849.84 | 170,000.00 |
Yield | ton | 11.91 | 15.17 | 0.60 | 130.00 |
Net income per ton | yuan | 1311.63 | 277.91 | 318.17 | 1962.38 |
N | Mean | S.D. | S.E. | Min | Max | ||
---|---|---|---|---|---|---|---|
production (ton) | Low-efficiency group | 322 | 9.459 | 8.698 | 0.485 | 1.000 | 88.500 |
Medium-efficiency group | 7 | 23.691 | 16.375 | 6.189 | 2.700 | 42.000 | |
High-efficiency group | 41 | 29.157 | 33.143 | 5.176 | 0.600 | 130.000 | |
Total | 370 | 11.911 | 15.171 | 0.789 | 0.600 | 130.000 | |
sown area (hm2) | Low-efficiency group | 322 | 0.929 | 0.829 | 0.046 | 0.107 | 7.867 |
Medium-efficiency group | 7 | 2.159 | 1.591 | 0.601 | 0.200 | 4.000 | |
High-efficiency group | 41 | 2.783 | 3.423 | 0.535 | 0.053 | 13.333 | |
Total | 370 | 1.158 | 1.506 | 0.078 | 0.053 | 13.333 | |
yield (ton/hm2) | Low-efficiency group | 322 | 10.215 | 1.770 | 0.099 | 5.250 | 15.000 |
Medium-efficiency group | 7 | 11.821 | 1.427 | 0.539 | 9.998 | 13.500 | |
High-efficiency group | 41 | 11.309 | 1.996 | 0.312 | 6.000 | 15.750 | |
Total | 370 | 10.366 | 1.830 | 0.095 | 5.250 | 15.750 | |
N (kg/t) | Low-efficiency group | 322 | 24.550 | 8.253 | 0.460 | 10.714 | 67.179 |
Medium-efficiency group | 7 | 23.665 | 9.349 | 3.534 | 14.353 | 37.683 | |
High-efficiency group | 41 | 19.192 | 5.085 | 0.794 | 5.442 | 29.639 | |
Total | 370 | 23.939 | 8.143 | 0.423 | 5.442 | 67.179 | |
P2O5 (kg/t) | Low-efficiency group | 322 | 8.840 | 3.908 | 0.218 | 3.214 | 30.000 |
Medium-efficiency group | 7 | 7.435 | 3.265 | 1.234 | 4.706 | 14.066 | |
High-efficiency group | 41 | 8.189 | 3.854 | 0.602 | 2.268 | 22.500 | |
Total | 370 | 8.741 | 3.892 | 0.202 | 2.268 | 30.000 | |
K2O (kg/t) | Low-efficiency group | 322 | 11.120 | 3.570 | 0.199 | 2.000 | 30.000 |
Medium-efficiency group | 7 | 9.780 | 2.493 | 0.942 | 7.529 | 14.066 | |
High-efficiency group | 41 | 10.305 | 3.073 | 0.480 | 3.628 | 22.500 | |
Total | 370 | 11.004 | 3.508 | 0.182 | 2.000 | 30.000 | |
Pesticide (kg/t) | Low-efficiency group | 322 | 1.197 | 0.332 | 0.019 | 0.650 | 2.686 |
Medium-efficiency group | 7 | 0.985 | 0.172 | 0.065 | 0.722 | 1.253 | |
High-efficiency group | 41 | 1.028 | 0.260 | 0.041 | 0.684 | 1.625 | |
Total | 370 | 1.174 | 0.328 | 0.017 | 0.650 | 2.686 |
References
- Available online: https://data.stats.gov.cn/easyquery.htm?cn=E0103 (accessed on 8 July 2022).
- Li, G.H. High quality and high efficiency fertilization of rice. J. Integr. Agr. 2021, 20, 1435–1437. [Google Scholar] [CrossRef]
- Available online: http://www.moa.gov.cn/xw/bmdt/202101/t20210119_6360102.htm (accessed on 8 July 2022).
- Available online: http://www.xinhuanet.com/politics/19cpcnc/2017-10/27/c_1121867529.htm (accessed on 8 July 2022).
- Sun, W.L.; Wang, R.B.; Jiang, Q.; Huang, S.N. Study on connotation and evaluation of the agricultural green development. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 14–21. [Google Scholar]
- Fan, M.S.; Shen, J.B.; Yuan, L.X.; Jiang, R.F.; Chen, X.P.; Davies, W.J.; Zhang, F.S. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Song, M.Y.; Yu, X.M.; Bai, J.H.; Jia, J.X.; Liu, M.D. Ecological and environmental impact of rice production in Shenyang, China. J. Agro-Environ. Sci. 2018, 37, 1793–1801. [Google Scholar]
- Li, Z.J.; Meng, Y.S.; Zheng, M.L.; Wang, H.H.; Chen, F.R.; Hu, H.X.; Ma, Y.H. Spatial variability and ecological health risk assessment of heavy metals in farmland soil-rice system in a watershed of China. J. Agro-Environ. Sci. 2021, 40, 957–968+908. [Google Scholar]
- Hu, N.J.; Chen, Q.; Zhu, L.Q. Life cycle environmental impact assessment on rice-winter wheat rotation system in the middle and lower reaches of Yangtze River: A case study of Nanjing, Jiangsu province. Resour. Environ. Yangtze Val. 2019, 28, 1111–1120. [Google Scholar]
- Liang, L.; Chen, Y.Q.; Gao, W.S. Assessment of the environmental impacts of two rice production patterns using life cycle assessment. J. Agro-Environ. Sci. 2009, 28, 1992–1996. [Google Scholar]
- Feng, H.; Huang, J.F.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield. Acta Agron. Sin. 2019, 45, 1250–1259. [Google Scholar]
- Li, R.N.; Li, Y.E.; Wang, B.; Wan, Y.F.; Li, J.L.; Ma, P.; Weng, S.M.; Qin, X.B.; Gao, Q.Z. Pattern selection of water and nitrogen practices to reduce greenhouse gas emission and increase profit in a double rice system. Trans. Chin. Soc. Agric. Eng. 2020, 36, 105–113. [Google Scholar]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Mousavi, A.S.H.; Hermansen, J.E. Potential greenhouse gas emission reductions in soybean farming: A combined use of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Ullah, A.; Perret, S.R.; Gheewala, S.H.; Soni, P. Eco-efficiency of cotton-cropping systems in Pakistan: An integrated approach of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 134, 623–632. [Google Scholar] [CrossRef]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Ma, L.; Dong, L.Q.; Tian, C.H.; Li, Y.D.; Sun, F.Y. Experimental study on yield and economic benefit of rice crab ecological cultivation. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 38–48. [Google Scholar]
- Villano, R.; Fleming, E. Technical inefficiency and production risk in rice farming: Evidence from central Luzon Philippines. Asian Econ. J. 2006, 20, 29–46. [Google Scholar] [CrossRef]
- Wu, X.Q.; Xu, Y.C.; Lu, G.F. The evaluation of agricultural eco-efficiency: A case of rice pot-experiment. Acta Ecol. Sin. 2009, 29, 2481–2488. [Google Scholar]
- Mohammadi, A.; Rafifiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Hong, M.Y.; Zheng, L.N. Regional differences and spatiotemporal and characteristics of agricultural eco-efficiency in China. Stat. Decis. 2020, 36, 56–61. [Google Scholar]
- Cui, Y.C.; Han, Y.L.; Lyu, N.; Zhu, H.H. Agricultural ecological efficiency measurement based on super efficiency SBM model. Stat. Decis. 2020, 36, 87–90. [Google Scholar]
- Finkbeiner, M.; Inaba, A.; Tan, R.B.H.; Christiansen, K.; Klüppel, H.J. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Available online: http://www.hubei.gov.cn/hbgk/zrdl/201203/t20120328_342614.shtml (accessed on 8 July 2022).
- Wang, M.M.; Liu, Y.; Gao, Q.Z.; Liu, D.P. The spatial and temporal analysis of the comparative advantage of different rice planting pattern in Hubei Province. Econ. Geogr. 2017, 37, 137–144. [Google Scholar]
- Qin, P.C.; Wan, Q.S.; Deng, H.; Liu, M. Fine climatic regionalization of rice cultivated patterns in Hubei Province. Hubei Agric. Sci. 2016, 55, 4150–4153. [Google Scholar]
- Zhou, X.S.; Ma, W.L.; Li, G.C.; Qiu, H.G. Farm Machinery Use and Maize Yields in China: An Analysis Accounting for Selection Bias and Heterogeneity. Aust. J. Agric. Resour. Econ. 2020, 64, 1282–1307. [Google Scholar] [CrossRef]
- Ke, H.X.; Shen, H. Statistical in Survey Research, Basics, 3rd ed.; China Communication University Press: Beijing, China, 2015. [Google Scholar]
- Wang, B.Y.; Zhang, W.G. Inter-provincial differences and influencing factors of agricultural eco-efficiency in China: Based on panel data analysis of 31 provinces from 1996 to 2015. Chin. Rural Econ. 2018, 1, 46–62. [Google Scholar]
- Chen, J.Q.; Xin, M.; Ma, X.J.; Chang, B.S.; Zhang, Z.Y. Chinese agricultural eco-efficiency measurement and driving factors. China Environ. Sci. 2020, 40, 3216–3227. [Google Scholar]
- Liang, L. Environmental Impact Assessment of Circular Agriculture Based on Life Cycle Assessment: Methods and Case Studies; China Agricultural University: Beijing, China, 2009. [Google Scholar]
- Wang, L. Research on the Nutrient Flow and Management Strategies of Chemical Fertilizer Industry System in China; Huazhong Agricultural University: Wuhan, China, 2008. [Google Scholar]
- Tian, Y.H.; Yin, B.; He, F.Y.; Zhang, Q.M.; Zhu, Z.L. Nitrogen loss with runoff in rice season in the Taihu Lake region, China. Acta Pedol. Sin. 2007, 6, 1070–1075. [Google Scholar]
- Yin, J.; Fei, L.J.; Tian, J.C.; Wang, Y.F.; Han, B.F.; Zhang, X.K.; Mian, S.P. Research advance of nitrogen fertilizer losses from paddy field. Trans. Chin. Soc. Agric. Eng. 2005, 21, 189–191. [Google Scholar]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Ji, X.H.; Zheng, S.X.; Liu, Q.; Lu, Y.H. Effect of organic manure application on runoff phosphorus loss from rice-rice field in the middle reaches of the Yangtze River. J. Hunan Agric. Univ. (Nat. Sci.) 2006, 32, 283–287. [Google Scholar]
- Van Calker, K.J.; Berentsen, P.B.M.; De Boer, I.M.J.; Giesen, G.W.J.; Huirne, R.B.M. An LP-Model to analyze economic and ecological sustainability on Dutch dairy farms: Model presentation and application for experimental farm “de marke”. Agric. Syst. 2004, 82, 139–160. [Google Scholar] [CrossRef]
- Ni, R.X. Study on Inventory and Changes of Input/Output Balance of Heavy Metals in Farmland in China and Heavy Metals Pollution Risk Assessment; Chinese Academy of Agricultural Sciences: Beijing, China, 2017. [Google Scholar]
- Peng, X.Y.; Wu, X.H.; Wu, F.Q.; Wang, X.Q.; Tong, X.G. Life cycle assessment of winter wheat-summer maize rotation system in Guanzhong region of Shaanxi province. J. Agro-Environ. Sci. 2015, 34, 809–816. [Google Scholar]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.L.; Li, X.Y.; Jorge, R.M. The effect of crop diversity on agricultural eco-efficiency in China: A blessing or a curse? J. Clean. Prod. 2020, 276, 124243. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Breedveld, L.; Huppes, G.; De Koning, A.; Van Oers, L.; Suh, S. Normalization figures for environmental life-cycle assessment the Netherlands (1997/1998), western Europe (1995) and the world (1990 and 1995). J. Clean. Prod. 2003, 11, 737–748. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Fang, Y.L.; Zeng, X.L. Evaluation and improvement of agricultural eco-efficiency in China. J. Agric. Resour. Environ. 2021, 38, 135–142. [Google Scholar]
- Lin, Y.; Ma, J. Calculation of economic level of chemical fertilizer application in grain production of farmers: A case study of wheat farmers in North China Plain. J. Agrotech. Econ. 2013, 1, 25–31. [Google Scholar]
- Luan, H.; Qiu, H.G. Fertilizer overuse in China: Empirical evidence from farmers in four provinces. Agric. Sci. Technol. 2013, 14, 193–196. [Google Scholar]
- Zhang, Y.H.; Peng, C.; Zhang, C. Nitrogen application and grain production efficiency of farmers: Evidence from national rural fixed observation point data. J. Manag. World 2019, 35, 109–119. [Google Scholar]
- Zhang, L.X.; Huang, J.K.; Qiao, F.B.; Rozelle, S. Economic evaluation and analysis of farmers’ use of chemical fertilizer. In Policy for Reducing Non-Point Pollution from Crop Production in China; Zhu, Z.L., Norse, D., Sun, B., Eds.; China Environmental Science Press: Beijing, China, 2006. [Google Scholar]
- Wu, L. Nitrogen Fertilizer Demand and Greenhouse Gas Mitigation Potential under Nitrogen Limiting Condition for Chinese Agriculture Production; Beijing Agricultural University: Beijing, China, 2014. [Google Scholar]
- Available online: https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 8 July 2022).
- Song, J.F.; Chen, X.N. Eco-efficiency of grain production in China based on water footprints: A stochastic frontier approach. J. Clean. Prod. 2019, 236, 117685. [Google Scholar] [CrossRef]
- Chen, Z.D.; Xu, C.C.; Ji, L.; Fang, F.P. A multi-objective DEA model to assess the eco-efficiency of major cereal crops production within the carbon and nitrogen footprint in China. Res. Sq. 2020. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K. Eco-Efficiency Assessment of Intensive Rice Production in Japan: Joint application of life cycle assessment and data envelopment analysis. Sustainability 2019, 11, 5368. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Lan, Y. Spatial and temporal patterns of carbon footprints of grain crops in China. J. Clean. Prod. 2017, 146, 218–227. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.B.; Zhang, F.S.; Li, Y.E.; Zhang, W.F. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126–4136. [Google Scholar] [CrossRef] [Green Version]
- Cherry, M.L.; Akane, N.; Seiji, H. Eco-efficiency assessment of material use: The case of phosphorus fertilizer usage in Japan’s rice sector. Sustainability 2017, 9, 1562. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Liao, J.J.; Zhao, Y.; Chen, T.Q.; Feng, Z.; Zhao, H.F.; Wu, K.N. Study on agroecological efficiency of Chinese regions based on improvement of ecosystem services. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 200–209. [Google Scholar]
- Werf, H. Life cycle analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 2004, 140, 13–23. [Google Scholar] [CrossRef]
- Cao, Z.h. Effect of fertilization on water quality—Effect of fertilization on environment quality (2). Soils 2003, 5, 353–363. [Google Scholar]
- Li, Q. A Study on the Extension of Fertilizer and Pesticides-Reducing Technologies in Rice—Based on the Perspective of Farmers’ Adoption Behavior; Zhejiang University: Hangzhou, China, 2019. [Google Scholar]
- Zhu, Y.C.; Li, Y.E.; Jiang, D.F.; Zou, X.X. Life cycle assessment on carbon footprint of winter wheat-summer maize cropping system based on survey data of Gaomi in Shandong province, China. J. Agric. Resour. Environ. 2017, 34, 473–482. [Google Scholar]
- Xie, Y.L.; Xu, R.Q.; Xu, Y.Y.; Zhou, G.Z.; Luo, H.G. Practice and discussion on pesticide reduction and harm control technology in paddy field in Hubei province. Hubei Plant Prot. 2017, 1, 47–49. [Google Scholar]
- Jiao, W.X.; Chen, C.; Huang, H. Analysis of the effects of paddy field cultivation patterns on farmland ecological environment. Crop Res. 2021, 35, 385–393. [Google Scholar]
- Cui, W.C.; Jiao, W.J.; Min, Q.W.; Sun, Y.H.; Liu, M.C.; Wu, M.F. Environmental impact differences in qingtian rice-fish culture system at different management scales in the context of land transfer: An empirical study with the carbon footprint method. Chin. J. Appl. Ecol. 2020, 31, 4125–4133. [Google Scholar]
- Xiao, Y. Reduction and Efficiency of Chemical Fertilizer under the Background of Agricultural Green Development in China: An Empirical Study of Henan Province; Chinese Academy of Agricultural Sciences: Beijing, China, 2018. [Google Scholar]
- Huang, T. Key points and popularization of integrated technology of pesticide reduction, damage control and efficiency increase in Rice. Agric. Eng. Technol. 2016, 36, 23. [Google Scholar]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef] [PubMed]
Variables | Definition | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Gender | Gender of respondents: female = 0; male = 1 | 0.97 | 0.17 | 0 | 1 |
Age | Age of respondents (years) | 57.88 | 8.67 | 31 | 79 |
Rice area | Rice sown area (hm2) | 1.16 | 1.51 | 0.05 | 13.33 |
Per block area | The average area of each cultivated land (hm2) | 0.13 | 0.09 | 0.01 | 1 |
Irrigation ratio | Proportion of paddy fields with irrigation condition (%) | 82.97 | 16.44 | 50 | 100 |
Per labor capital | Average labor capital input of rice (yuan) | 413.12 | 795.60 | 34.73 | 9179.57 |
Electric appliance | Quantity of electric appliances (PCs) | 3.69 | 0.65 | 1 | 4 |
Agricultural machinery | Agricultural machinery is converted by following coefficients: cars = 1, rotary cultivators, rice trans planters, harvesters and walking tractors = 1, agricultural tricycles = 0.5, electric vehicles and motorcycles = 0.3, then summed up. | 2.20 | 1.18 | 0 | 5.8 |
Market | Distance from home to the nearest market town (km) | 4.07 | 2.37 | 0.2 | 15 |
House area | Residential area (m2) | 252.55 | 246.96 | 40 | 1500 |
Labor capability | Labor capacity = whole labor × 1 + half labor × 0.5 | 2.60 | 1.02 | 0.5 | 6.5 |
Education | Average years of formal education for family labor (years) | 8.53 | 2.17 | 0 | 13.5 |
Farming cooperative | Join the agricultural cooperative: no = 0, yes = 1 | 0.11 | 0.31 | 0 | 1 |
Rice disaster insurance | Purchase rice disaster insurance or not: no = 0, yes = 1 | 0.28 | 0.45 | 0 | 1 |
Per capita income | Annual per capita income (yuan) | 24,274.99 | 21,123.41 | 1511.53 | 277,628.70 |
Credit | Access to credit or not: no = 0, yes = 1 | 0.18 | 0.38 | 0 | 1 |
Subsidy | Agricultural subsidy (yuan) | 1975.02 | 1377.56 | 200 | 11,000 |
Inputs/ Outputs | Irrigation/ m3/hm2 | N/ kg/hm2 | P2O5/ kg/hm2 | K2O/ kg/hm2 | Pesticides/ kg/hm2 | Seeds/ kg/hm2 | Electricity/ kwh/hm2 | Diesel Oil/ kg/hm2 | Production/ kg/hm2 |
---|---|---|---|---|---|---|---|---|---|
Mean | 3592.68 | 241.06 | 87.34 | 111.60 | 11.79 | 31.47 | 742.08 | 54.81 | 10,375.60 |
Indicator Category | Classification Index | Variable Explanation | Remarks | Mean | SD |
---|---|---|---|---|---|
Factor of production | Land input | Rice planting area (hm2) | Reflects the actual planting area of rice production | 1.158 | 1.506 |
Labor input | Labor days of rice (man/man-day) | The total amount of labor employed in rice production is converted on a daily basis | 55.774 | 62.053 | |
Mechanical input | Total cost of rice machinery services (yuan) | The cost of agricultural machinery services represents the level of mechanization utilization. | 3234.669 | 4152.092 | |
Water input | Irrigation water consumption of rice (m3) | Total irrigation in rice production | 4184.393 | 5673.659 | |
Fertilizer input | Fertilizer application amount (kg) | The fertilizer input is one of the main pollution sources in rice systems | 1135.940 | 1553.249 | |
Pesticide input | Pesticide consumption (kg) | The pesticide input is one of the main pollution sources in rice systems | 13.432 | 18.274 | |
Energy input | Usage of agricultural gasoline and diesel oil (kg) | Agricultural gasoline and diesel inputs are pollution sources in rice systems | 47.308 | 75.963 | |
Expected output | Rice output value | Net output value of rice (yuan) * | The total output value minus the total cost of rice planting in 2020 | 15,949.901 | 20,822.520 |
Unexpected output | Comprehensive index of the rice environmental impact | Environmental load caused by the rice life cycle process involving the input and consumption of N, P2O5, K2O, pesticides, agricultural electricity, agricultural gasoline and diesel, irrigation, land use, energy consumption and seeds | The comprehensive index of the rice environmental impact was estimated with the agricultural LCA method | 22.996 | 24.572 |
Types of Ecological Environmental Impacts | Agricultural Resource System | Farming System | Value |
---|---|---|---|
Energy depletion/MJ | 2530.662 | 1736.909 | 4267.571 |
Water consumption/m3 | — | 358.171 | 358.171 |
Land use/m2 | — | 997.440 | 997.440 |
Global warming/kg CO2-eq. | 267.984 | 125.707 | 393.691 |
Acidification/kg SO2-eq. | 1.708 | 12.919 | 14.627 |
-eq | 0.304 | 3.202 | 3.506 |
Human toxicity/kg 1,4-DCB-eq. | — | 5.811 | 5.811 |
Water toxicity/kg 1,4-CDB-eq. | — | 60.707 | 60.707 |
Soil toxicity/kg 1,4-CDB-eq. | — | 53.122 | 53.122 |
Types of Environmental Impacts | Unit | Standardization Impact Index | Weighted Impact Index |
---|---|---|---|
Energy depletion | MJ/a | 0.0016 | 0.0002 |
Water resource consumption | m3/a | 0.0407 | 0.0045 |
Land resource utilization | m2/a | 0.1839 | 0.0257 |
Global warming | kgCO2-eq | 0.0573 | 0.0069 |
Environmental acidification | kgSO2-eq | 0.2799 | 0.0336 |
Eutrophication | -eq | 1.7810 | 0.1959 |
Human toxicity | kg1,4-DCB-eq | 0.0295 | 0.0035 |
Water toxicity | kg1,4-DCB-eq | 12.5687 | 1.1312 |
Soil toxicity | kg1,4-DCB-eq | 8.6943 | 0.6955 |
comprehensive index of the rice environmental impacts | 2.0971 |
Group | CRS | GRS | VRS | |||
---|---|---|---|---|---|---|
Households | Mean Value | Households | Mean Value | Households | Mean Value | |
High-efficiency group (EE ≥ 1) | 21 | 1.08 | 21 | 1.15 | 41 | 1.14 |
Medium-efficiency group (0.8 ≤ EE < 1) | 6 | 0.84 | 19 | 0.90 | 7 | 0.86 |
Low-efficiency group (EE < 0.8) | 343 | 0.40 | 330 | 0.42 | 322 | 0.42 |
Sample population | 370 | 0.45 | 370 | 0.48 | 370 | 0.51 |
Sum of Squares | Degree of Freedom | Mean Square | F | Significance | ||
---|---|---|---|---|---|---|
N | Between-group | 1044.55 | 2 | 522.27 | 8.18 | 0.0003 |
Within-group | 23,422.62 | 367 | 63.82 | |||
Total | 24,467.17 | 369 | ||||
P2O5 | Between-group | 27.59 | 2 | 13.79 | 0.91 | 0.4033 |
Within-group | 5561.15 | 367 | 15.15 | |||
Total | 5588.73 | 369 | ||||
K2O | Between-group | 34.84 | 2 | 17.42 | 1.42 | 0.2434 |
Within-group | 4506.67 | 367 | 12.28 | |||
Total | 4541.51 | 369 | ||||
Pesticide | Between-group | 1.30 | 2 | 0.65 | 6.20 | 0.0023 |
Within-group | 38.34 | 367 | 0.10 | |||
Total | 39.64 | 369 |
Dependent Variable | (I) ID | (J) ID | Mean Difference (I–J) | Standard Error | Significance | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||||
N | Low-efficiency group | Medium-efficiency group | 0.8848 | 3.5635 | 0.993 | −10.6468 | 12.4165 |
High-efficiency group | 5.3578 * | 0.9177 | 0.000 | 3.1132 | 7.6024 | ||
Medium-efficiency group | Low-efficiency group | −0.8848 | 3.5635 | 0.993 | −12.4165 | 10.6468 | |
High-efficiency group | 4.4730 | 3.6218 | 0.593 | −7.0035 | 15.9495 | ||
High-efficiency group | Low-efficiency group | −5.3578 * | 0.9177 | 0.000 | −7.6024 | −3.1132 | |
Medium-efficiency group | −4.4730 | 3.6218 | 0.593 | −15.9495 | 7.0035 | ||
pesticide | Low-efficiency group | Medium-efficiency group | 0.2115 * | 0.0674 | 0.048 | 0.0017 | 0.4214 |
High-efficiency group | 0.1692 * | 0.0446 | 0.001 | 0.0596 | 0.2787 | ||
Medium-efficiency group | Low-efficiency group | −0.2115 * | 0.0674 | 0.048 | −0.4214 | −0.0017 | |
High-efficiency group | −0.0424 | 0.0765 | 0.931 | −0.2561 | 0.1714 | ||
High-efficiency group | Low-efficiency group | −0.1692 * | 0.0446 | 0.001 | −0.2787 | −0.0596 | |
Medium-efficiency group | 0.0424 | 0.0765 | 0.931 | −0.1714 | 0.2561 |
Fertilizer Change Ratio | Pesticide Change Ratio | Eco-Efficiency of Rice Production Value | Eco-Efficiency of Rice Production Change Ratio | |
---|---|---|---|---|
original value | - | - | 0.5117 | - |
Scenario 1 | −50% | - | 0.5319 | 3.94% |
Scenario 2 | - | −50% | 0.522 | 2.01% |
Scenario 3 | −50% | −50% | 0.5414 | 5.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Zeng, L.; Liu, C.; Li, X.; Wang, H. Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China. Int. J. Environ. Res. Public Health 2022, 19, 8645. https://doi.org/10.3390/ijerph19148645
Huang M, Zeng L, Liu C, Li X, Wang H. Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China. International Journal of Environmental Research and Public Health. 2022; 19(14):8645. https://doi.org/10.3390/ijerph19148645
Chicago/Turabian StyleHuang, Malan, Linlin Zeng, Chujie Liu, Xiaoyun Li, and Hongling Wang. 2022. "Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China" International Journal of Environmental Research and Public Health 19, no. 14: 8645. https://doi.org/10.3390/ijerph19148645
APA StyleHuang, M., Zeng, L., Liu, C., Li, X., & Wang, H. (2022). Research on the Eco-Efficiency of Rice Production and Its Improvement Path: A Case Study from China. International Journal of Environmental Research and Public Health, 19(14), 8645. https://doi.org/10.3390/ijerph19148645