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Abstract: Heavy metals (HM) can be accumulated along the food chain; their presence in food
is a global concern for human health because some of them are toxic even at low concentrations.
Unprocessed or minimally processed foods are good sources of different nutrients, so their safety
and quality composition should be guaranteed in the most natural form that is obtained for human
consumption. The objective of this scoping review (ScR) is to summarize the existing evidence about
the presence of HM content (arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), methylmercury
(MeHg), and aluminum (Al)) in unprocessed or minimally processed foods for human consumption
worldwide during the period of 2011–2020. As a second objective, we identified reported HM values
in food with respect to Food and Agriculture Organization of the United Nations (FAO) and the
World Health Organization (WHO) International Food Standards for Maximum Limits (MLs) for
contaminants in food. This ScR was conducted in accordance with the Joanna Briggs Institute (JBI)
methodology and PRISMA Extension for Scoping Reviews (PRISMA-ScR); advance searches were
performed in PubMed, ScienceDirect and FAO AGRIS (Agricultural Science and Technology Infor-
mation) databases by two reviewers who independently performed literature searches with specific
eligibility criteria. We classified individual foods in food groups and subgroups according to the
Global Individual Information Food Consumption Data Tool (FAO/WHO GIFT). We homologated all
the reported HM units to parts per million (ppm) to determine the weighted mean HM concentration
per country and food group/subgroup of the articles included. Then, we compared HM concentration
findings with FAO/WHO MLs. Finally, we used a Geographic Information System (GIS) to present
our findings. Using our search strategy, we included 152 articles. Asia was the continent with the
highest number of publications (n = 79, 51.3%), with China being the country with the largest number
of studies (n = 34). Fish and shellfish (n = 58), followed by vegetables (n = 39) and cereals (n = 38),
were the food groups studied the most. Fish (n = 42), rice (n = 33), and leafy (n = 28) and fruiting
vegetables (n = 29) were the most studied food subgroups. With respect to the HM of interest, Cd
was the most analyzed, followed by Pb, As, Hg and Al. Finally, we found that many of the HM
concentrations reported exceeded the FAO/OMS MLs established for Cd, Pb and As globally in
all food groups, mainly in vegetables, followed by the roots and tubers, and cereals food groups.
Our study highlights the presence of HM in the most natural forms of food around the world, in
concentrations that, in fact, exceed the MLs, which affects food safety and could represent a human
health risk. In countries with regulations on these topics, a monitoring system is recommended
to evaluate and monitor compliance with national standards. For countries without a regulation
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system, it is recommended to adopt international guidelines, such as those of FAO, and implement
a monitoring system that supervises national compliance. In both cases, the information must be
disseminated to the population to create social awareness. This is especially important to protect the
population from the consumption of internal production and for the international markets of the
globalized world.

Keywords: heavy metals; food contamination; unprocessed or minimally processed foods

1. Introduction

Food contamination with heavy metals (HM) is a global concern for human health [1],
as HM are non-biodegradable pollutants that can accumulate and migrate into soil en-
vironments [2]. The ingestion of food with these pollutants represents one of the most
important human exposure routes to these metals [2,3]. HM are electropositive elements
found in all ecosystems; their natural concentrations vary accordingly to the local geology,
and human activities redistribute them in areas not naturally enriched with them [4]. While
certain HM, such as nickel (Ni), iron (Fe), magnesium (Mn), copper (Cu) and zinc (Zn), in
foodstuffs at low concentrations are essential components for biological and physiological
functions and metabolic processes, including cytochrome and enzyme functions [3,5,6],
others, such as lead (Pb), cadmium (Cd), mercury (Hg), as well as other toxic elements
such as arsenic (As) and aluminum (Al) [7], are toxic even at low concentrations, and are
classified as non-essential to metabolic and biological functions [6–8]. In this study, we refer
to all these afore-mentioned toxic elements as HM. Exposure to HM is related to acute and
chronic toxic effects since they can disturb major metabolic processes through their ability
to accumulate in vital organs (e.g., liver, heart, kidney and brain) [9]. They can substitute
essential elements (e.g., calcium can be substituted by lead), or set up a biological and
antioxidant imbalance, in addition to altering hormone, enzyme and the central nervous
system functions [9]. Finally, HM exposure induces oxidative stress generation, which
may result in different kinds of cancers, neurological disorders and damage to the kidney
function as well as endocrine abnormalities [5].

HM toxicity to humans depends on different factors, such as dose, route of exposure,
chemical species and some individual characteristics (such as age, gender, and nutritional
status) [5]. Additionally, HM are widely distributed in the environment through natural
processes, and mainly through anthropogenic activities, such as industrial, domestic and
agricultural production and use, and through mining and smelting activities [5]. The
presence of these elements in the environment varies depending on natural geographic
differences, and past or current contamination [10]. In addition, the high demand for
food and population increases have released different pollutants into the environment that
contaminate the food chain through agrochemicals, municipal wastewater, raw sewage
and industrial effluents [11], or by their entry into the marine and coastal environment as a
consequence of coastal pollution [12].

Different from other pollutants, HM are unable to decompose and are non-degradable
and they can be accumulated along the food chain, becoming a threat to human health [13];
their exposure may occur through food, as well as through other important ways [1].
HM presence in food varies according to the different routes or sources of contamination,
defined as intrinsic and extrinsic factors. Intrinsic factors include the seasons, soil, water,
atmospheric deposits, animal feeding regimen [14] and volcanic and vehicle emissions [15].
Additionally, there are extrinsic factors that contribute to food contamination, such as food
technological processes, packaging, transportation, storage [14] and culinary procedures
tools and cooking methods [16,17]. In this way, the levels of HM in foods are different,
according to the type of food, environment and agricultural and industrial food process [10].

Natural or unprocessed foods refer to the edible parts of animals (muscle, offal, eggs
or milk), plants (seeds, fruit, leaves, stems, tubers and roots) fungi and algae, succeeding
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just after their separation from their nature status, and minimally processed foods refers to
natural foods that were altered by methods and processes to preserve them [18]. These food
groups provide different essential nutrients to human organisms, e.g., many plant source
foods provide different micronutrients and bioactive compounds and animal food sources
provide amino acids, vitamins and minerals [18]. Unprocessed and minimally processed
foods are important components of the human diet because of their high nutritional
value [12,19]. In this ScR, we are interested in studying the presence of HM in the most
natural form of the foods, in their raw stages, or the ones with minimally processed
methods designed to preserve natural foods and that could reflect environmental sources
of contaminants. Different from natural foods that could be contaminated by intrinsic
factors, processed or ultra-processed foods and cooked foods could include chemical
contaminants (as additives) or process contaminants (added during the cooking, heating or
storage process of food at home or industries or during their transportation) that have an
important impact on food quality and safety and may represent different routes or sources
of contamination [14,20]. The presence of HM in foods has public health implications; food
safety is necessary to maintain food quality [21] and, therefore, some agencies, at the global
level, have established standards for Maximum Limits (MLs) of metals and other toxic
elements in food. We highlight the Codex Alimentarius Commission, managed by the
Food and Agriculture Organization of the United Nations (FAO) and the World Health
Organization (WHO), which through the establishment of MLs of contaminants, such as
HM, promotes the safety and quality food production around the world [22,23].

The main objective of the present Scoping Review (ScR) is to summarize the existing
evidence about the presence of specific HM (As, Pb, Cd, Hg, MeHg and Al) contents in
unprocessed or minimally processed foods for human consumption worldwide. As a
second objective, we identified how those reported HM values in food were found with
respect to FAO/WHO International Food Standards for MLs for contaminants in food.

2. Methods

This ScR was conducted following the Joanna Briggs Institute (JBI) methodology
for conducting Scoping Reviews [24] and the PRISMA Extension for Scoping Reviews
(PRISMA-ScR) [25]. Before any search was conducted, the protocol was registered in Open
Science Framework in April 2021 [26] (https://osf.io/25gps, accessed on 29 April 2021).

This ScR was based on PRISMA key elements, Population, Concept and Context (PCC),
and considered as participants the studies that reported information about HM content in
foods. The concepts investigated were HM and unprocessed or minimally processed foods.
Regarding context, worldwide information from countries, cities or localities in areas with
or without identified environmental pollution was considered.

This study included original research studies published from 1 January 2011 to
31 December 2020, in English or Spanish. We considered cross-sectional and longitudinal
studies and published reports that measured the presence of the following HM As, Pb, Cd,
Hg, MeHg and/or Al, in unprocessed or minimally processed foods (cereals, roots and
tubers, pulses, seeds and nuts, milk, eggs, fish and shellfish, meat, vegetables and fruits) in
any part of the world.

2.1. Search Strategy and Data Extraction

The literature searches were conducted in duplicate. In the first step, two researchers
performed independent literature advanced searches on the PubMed, ScienceDirect and
FAO AGRIS databases between 25 May and 25 October 2021. The search terms were selected
according to MeSH Terms from two main clusters: Heavy Metals and Food Contamination.
Terms were combined within each cluster using “OR”; these clusters were then combined
using “AND”. The string word “NOT” term was added to exclude for systematic reviews
and for water. Details of the electronic search strategy and the filters applied in all searches
are presented in Table 1. As a second step, we conducted the search in titles, abstracts
and full-text articles. After compiling search results, duplicate articles were eliminated.

https://osf.io/25gps
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Subsequently, in order to compare the obtained information, we excluded (a) reviews,
systematics reviews or meta-analysis studies; as well as studies exploring the presence
of the interest HM in: (b) animal feed, (c) water, (d) fungi and plants such as cilantro
and parsley, (e) culinary ingredients (substances obtained by industrial processes such
as pressing, centrifuging, refining or extracting) such as honey and vegetable oils, and
(f) hunted animals; (g) studies without a measure of central tendency and/or without an
exact or precise value of HM; (h) studies that test a methodology to validate the content
of HM in food or that make an experiment to modify the HM content in foods; (i) studies
exploring the HM content in an inedible part of the food; (j) studies without the specification
that the studied food was natural, raw or without any cooking process; (k) studies that
reported all their HM content information in a way that could not be classified with the
methodology used, such as information by food group (if there were individual foods
reported, the article was not excluded); and (l) studies without information of the weight
base HM analysis (as dry, wet or fresh weight). Figure 1 shows the PRISMA flowchart
diagram of the literature review pipeline.

Table 1. Search strategy in databases.

Database Search Results

PubMed
#5

(((#1) AND (#2)) NOT (#3))
NOT (#4) 2324

#4 (Review) OR (Review
Literature) 1,184,623

#3 (Water) 406,953

#2
((Food contamination) OR

(Food Contaminations)) OR
(Contamination, Food)

34,956

#1 ((Metals, Heavy) OR (Heavy
Metals) OR (Heavy Metal)) 198,701

Filters applied in every search: Books and Documents, Case Reports, Clinical Study, Clinical Trial,
Journal Article, Observational Study, Randomized Controlled Trial, English, Spanish, MEDLINE,

from 2011–2020

ScienceDirect

#1

(((Metals, Heavy) OR (Heavy
Metals)) OR (Heavy Metal))
AND ((Food contamination)
OR (Food Contaminations)
OR (Contamination, Food))

NOT (Water) NOT ((Review)
OR (Review Literature)))

266

Filters applied: Year: 2011–2020 Title, abstract, keywords

FAO|AGRIS

#2

(((Metals, Heavy) OR (Heavy
Metals)) OR (Heavy Metal))
AND ((Food contamination)
OR (Food Contaminations)
OR (Contamination, Food))

NOT (Water) NOT ((Review)
OR (Review Literature)))

6

#1

(((Metals, Heavy) OR (Heavy
Metals)) OR (Heavy Metal))
AND ((Food contamination)
OR (Food Contaminations)
OR (Contamination, Food))

NOT (Water) NOT ((Review)
OR (Review Literature)))

137

Filters applied search #2: language:(Spanish), publication Date: [2011 TO 2020]
Filters applied search #1: language:(English), publication Date: [2011 TO 2020]

# Refers to the number of advance searches in the databases.
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Figure 1. PRISMA flowchart of the results. Adapted from Ref. [27].

2.2. Statistical Analysis and Data Presentation

The identified literature was analyzed according to the extent of worldwide evidence,
measured by the number of publications by continent and country, followed by the group
and subgroup foods and the HM studied in them and by those articles that reported
concentrations of HM exceeding the FAO/WHO MLs for contaminants.

2.3. Creation of Variables for the Food Groups and Subgroups

In order to compare the obtained information, we classified each food item reported
according to the Global Individual Information Food Consumption Data Tool (FAO/WHO
GIFT) [26], into nine food groups, cereals, roots and tubers, pulses, seeds and nuts, milk,
eggs, fish and shellfish, meat, vegetables and fruits, and in their corresponding subgroup;
more information about the individual food items that compose each food group and
subgroup is presented in Supplementary Table S1. We classified food items within each food
group considering the FAO/WHO GIFT Tool and the Codex Alimentarius International
Food Standards set by the FAO and the OMS [28]. We also used the AGROVOC Multilingual
Thesaurus [29] when food items were not reported on those tools.
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2.4. Heavy Metals (HM) in Food Geographical Analysis

In addition, for each reviewed study, we estimated the HM mean from the longitudinal
studies that reported the information on more than one occasion in the same study area.
Additionally, in each study, when the measurements of HM were individually reported
from different places within the same country, we estimated the HM mean separating the
noncontaminated areas from the contaminated ones. Then, we made the conversion and
homologation of all the reported HM units to parts per million (ppm), to finally, construct
the weighted mean (WM), defined as:

Xj =

i=N

∑
i=1

(
nij

Nj
xij) (1)

where (i) identifies the study under consideration, while (j) identifies the HM present and
(n) is the number of food group observations. In this sense, (nij) indicates the number of
food group observations contained in the study (i) with HM (j) present. (Nj) represents,
for each country and food group, the sum of the number of observations (n) for the present
HM (j). Nj = ∑N

i=1 nij, where N is the number of studies considered for each country and
food group. (xij) represent, for each country and food group, the quantity of HM (j) present
in the study considered (i). Therefore, Xi represents, for each country and food group,
the amount of HM (j) present, weighted by the number of observations contained in the
studies in that country. The weighted mean for each HM was thus calculated at the country
level and according to each food group.

Finally, we created maps of the evidence; therefore, the information of the 152 included
studies were represented in QGIS open-source Geographic Information System (GIS) [30]
(more information is presented in Supplementary Table S2). The HM ppm weighted
mean concentration data were classified according to the natural breaks methodology; this
method uses a computing algorithm in order to minimize differences between the data
values in the same class and maximize the differences between classes [31].

2.5. Reference Values for Maximum Limits (MLs) of Heavy Metals (HM) in Foods

We compared the subgroup mean reported value of HM in foods per study with those
HM MLs reported at the Codex Alimentarius International Food Standards FAO/WHO [22].

3. Results
3.1. Study Inclusion

Using our search strategy, the database search resulted in 2733 studies. After the
removal of duplicated studies (n = 105), we obtained 2628 unique studies screened for title
and abstract. Then, we considered 359 full-text studies for reading. Of these, 207 were
excluded according to the following exclusion criteria: processed food (5), not natural
experiment (15), publication before 2011 (2), hunted animals (6), reported animal feed (1),
without a measure of central tendency and/or without an exact or precise value of HM
(33), studied other metals (12), without weight base HM analysis (57), culinary or plant
ingredients (2), fungi studies (33), with sample size ≤ 1 or without sample size (24), food
items with a cooking process or not reported as raw or natural food (3), studies of foods
that were identified ≤3 times per food group (1), not identified as edible food (1), all results
presented as food group (6), evaluated HM thorough storage containers (5), and does not
report the country of origin (1). Finally, 152 studies were included (Figure 1).

3.2. Worldwide Evidence

Worldwide evidence distribution by country of study and their corresponding con-
tinent are presented in Figure 2, Map 1. Studies were conducted in 43 countries; in Asia,
the studies were conducted mainly in 13 countries, with China being the country with the
highest number of studies (n = 34), followed by Iran (21 studies). In Europe, studies focused
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on 16 countries, where Italy was the country with the highest number of publications
(n = 14 studies). In America, studies were identified in six countries, and Brazil had the
highest number of studies (n = 7). In Africa, evidence was found in seven countries, with
Nigeria (n = 3) being the predominant one, and in Oceania, only two studies from Australia
were included. Thus, Asia was the continent with the highest number of publications
(n = 79, 51.3%), followed by Europe (n = 45, 29.9%), America (n = 15, 9.7%), Africa (n = 11,
7.1%) and Oceania (n = 2, 1.3%).
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Authors’ own elaboration. Data from Refs. [32–183].

3.3. Principal Food Groups and Heavy Metals Identified

Figure 3 shows the distribution of worldwide studies and their corresponding HM
concentrations reported in the three principal food groups from which we found more
evidence (fish and shellfish, vegetables, and cereals). The fish and shellfish group was
the most studied food group (n = 58), as Figure 3 Map 2 shows; Italy (n = 9) was the
country with the highest number of studies reporting on the analysis of HM, followed
by China (n = 8). The highest weighted average for As levels were found in Germany
(mean = 127 ppm), followed by Turkey (mean = 58.3 ppm), while the highest weighted
average for Cd in this food group was found in Iran (mean = 1.6 ppm), Bangladesh
(mean = 0.96 ppm) and China (mean = 0.68 ppm). Nigeria was the country with the highest
levels of Pb reported (mean = 20.15 ppm). The higher weighted average levels of Hg
were found in Germany (mean = 248.5 ppm), followed by Iran (mean = 6.79 ppm) and
Bangladesh (mean = 5.24 ppm). Canada had the highest weighted average values for
MeHg (mean = 0.17 ppm).
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worldwide. Source: Authors’ own elaboration. Data from Refs. [32–183].

Vegetables was the second most studied food group (n = 39), with China being the
country with the highest number of studies (n = 12). The highest weighted average levels
of As were found in Portugal (mean = 0.38 ppm), and the highest weighted average for Cd
was found in South Africa (mean = 0.99 ppm). In this food group, the highest weighted
average for Pb was found in Serbia (mean = 3.35 ppm), and for Hg, it was found in
China (mean = 0.038 ppm) (Figure 3 Map 3). Finally, with respect to the cereals food group
(n = 38), China was also the country with the highest number of studies (n = 16) and with
the highest Hg weighted average (mean = 0.67 ppm). Bangladesh had the highest weighted
average for As (mean = 0.21 ppm), while Australia for Cd (mean = 15.3 ppm) and Pb
(mean = 271.87 ppm) (Figure 3 Map 4).

The map distribution of the other less reported food groups is presented in
(Supplementary Figure S1 Maps 5 to 10). The roots and tubers group (n = 25) was mainly
studied in China (n = 5). The highest As and Cd weighted average were reported in Iran,
Pb in Serbia and Hg in Croatia. Meat (n = 20) had the highest number of studies in China
(n = 2); the highest As and Hg weighted average was found in Kuwait, Cd in South Korea
and Pb in Tunisia. With respect to the pulses, seeds and nuts food group (n = 16), China
(n = 6) was the country with most evidence published. The highest levels of As were found
in Bangladesh, Cd and Hg in China, and Pb in Iran for this food group. Fruits (n = 13) were
mainly studied in Bangladesh (n = 3), which was the country with the highest weighted
average for As, and Germany reported the highest levels of Cd and Pb. Milk (n = 12)
presented the highest weighted average levels of As and Hg in Bangladesh, Cd in Ethiopia
and Pb in South Korea. Finally, the eggs group (n = 8) was the least studied.



Int. J. Environ. Res. Public Health 2022, 19, 8651 10 of 25

3.4. Food Subgroups by Food Group and Heavy Metals Identified

Table 2 describes the number of food groups and food subgroups reported in the
different studies included in this ScR, as well as the number of determinations from each
HM evaluated in the corresponding food subgroup. It is essential to highlight that some
articles reported various food items (food groups), as well as different HM measurements.
We found that, in the fish and shellfish food group, Hg/MeHg followed by Cd were the
most studied HM, and fish (n = 42), crustaceans (n = 17) and mollusks (n = 14) were the
most studied subgroups. In the cereals food group, rice (n = 33) was the most reported food
subgroup and Cd was the most studied HM. In the vegetables group, all subgroups were
studied, with leafy (n = 28) and fruiting (n = 29) vegetables being the most reported, and Cd
followed by Pb being the most studied HM in these subgroups. Regarding the roots and
tubers group, potatoes (n = 21) followed by carrots were the most studied subgroups, and
Cd and Pb followed by As were the most reported HM. In the pulses, nuts and seeds food
group, pulses (n = 11) were the most studied, and Cd, Pb and As were the most reported
HM. In fruits food group, tropical fruits (n = 7) were the most studied subgroup. Chicken
eggs (n = 6) and cow milk (n = 11) were the most reported food subgroups in the eggs and
milk food groups; these groups were the least studied and Cd, Pb, As and Hg/MeHg were
measured on them.

Table 2. Description of number of food groups and food subgroups, reported in the different studies
included in this review, as well as the number of times that heavy metals were evaluated in the
corresponding food subgroup.

Number of Articles by Heavy Metals Studied

Food Group Studied * Number of Articles
Reviewed by Food Group

Food Subgroup
Studied *

Number of Articles
that Report the Food

Subgroup
As Pb Cd Hg/MeHg Al

Cereals 37

Maize 6 5 6 6 2 1
Millet 1 0 0 1 0 0
Rice 33 12 16 25 8 3

Wheat 7 2 6 7 1 1
Others (barley, oat) 1 0 1 1 0 1

Eggs 8

Chicken egg 6 2 3 3 2 1
Duck egg 1 0 1 1 1 0
Fish egg 1 0 0 1 0 0

Turtle egg 1 1 0 1 0 0

Fish and shellfish 58

Cephalopods 8 3 5 5 9 0
Crustacean 17 7 10 11 14 1

Fish 42 15 22 26 39 2
Molluses 14 7 10 10 14 1
Offal fish 4 3 2 2 4 0

Fruits 13

Citrus fruits 3 0 2 3 0 0
Pome fruits 5 1 4 5 0 0
Soft fruits 7 1 6 7 1 1

Stone fruits 3 1 3 3 0 0
Tropical fruits 7 3 6 7 0 0
Watermelons 3 1 3 3 0 0

Meat 20

Offal poultry 6 2 4 5 4 1
Offal red meat 8 3 5 7 4 0
Poultry meat 10 5 7 8 5 1

Red meat 16 8 11 15 8 0

Milk 12
Cow milk 11 4 9 9 5 0
Ewe milk 2 0 2 2 1 0
Goat milk 1 0 1 0 0 0

Pulses, seed and nuts 16
Nuts and seeds 4 0 3 4 0 0

Pulses 11 7 10 11 3 0
Soybeans 4 2 4 4 1 0

Roots and tubers 25

Beetroot 4 0 3 4 0 0
Carrot 12 5 8 12 1 1
Potato 21 6 17 20 2 1
Radish 5 2 3 5 1 0
Others 6 1 5 6 0 0
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Table 2. Cont.

Number of Articles by Heavy Metals Studied

Food Group Studied * Number of Articles
Reviewed by Food Group

Food Subgroup
Studied *

Number of Articles
that Report the Food

Subgroup
As Pb Cd Hg/MeHg Al

Vegetables 39

Brasica vegetables 21 6 16 19 5 1
Bulb vegetables 19 4 13 19 2 0

Fruiting vegetables 29 10 25 26 4 3
Leafy vegetables 28 9 24 27 7 2

Legume vegetables 10 2 9 10 0 0
Stalk and sterm

vegetables 9 4 7 9 2 0

Total of times HM
reported 144 292 350 150 22

* Adapted from FAO and WHO Global Individual Food Consumption data Tool (GIFT). Ref. [28] Abbreviations:
As: Arsenic; Pb: Lead; Cd: Cadmium; Hg/MeHg: Mercury and or Methylmercury.

3.5. Heavy Metals (HM) in Food Subgroups in Comparison with the FAO/OMS Maximum Limits
(Mls) for Contaminants in Food

We compared the HM obtained from the studies included in this review with the MLs
of HM established by FAO/OMS. Table 3 shows the number of studies per country that
reported food subgroups that exceeded MLs (the completed data extracted of each study
are presented in Supplementary Table S2). Even though Pb and Cd were the HM with
more reported information in our search for the different food subgroups, there were many
food subgroups without established ML values. Additionally, there are not established ML
values for Al and Hg; therefore, our comparison and results are limited to the HM and food
subgroups for which MLs have been established.

Table 3. Number of articles that reported food subgroups that exceeded the Maximum Limits of
heavy metals established by FAO/OMS per country.

Classification FAO/WHO Global
Individual Food Consumption Data

Tool (GIFT) a
FAO/OMS Maximum Limits (MLs) b Number of Articles per Country that Exceed Maximum Limits (MLs)

in our Study c

Food Group Subgroup-Short
Name As Pb Cd MeHg As Pb Cd MeHg

Cereals

Rice 0.2 0.4
Thailand: 1

Bangladesh: 1
Iran: 2

China: 2

China: 3
Iran: 1

Australia: 1

Maize 0.2 0.1
Bangladesh: 1

Greece: 1
Iran: 1

China: 1

Bangladesh: 2
Iran: 1

China: 2

Wheat 0.2 0.2 Iran: 1
China: 1

Iran: 1
China: 1

UK: 1

Roots and tubers

Potato 0.1 0.1

Bangladesh: 1
Brazil: 1
China: 2

Croatia: 1
Germany: 1

Iran: 1
Poland: 1
Serbia: 1

Slovakia: 1

Brazil: 1
China: 2

Croatia: 1
Iran: 1

Poland: 1

Other starchy
roots and tubers: 0.1 0.1

Beetroot Brazil: 1
Serbia: 1

Carrot

Bangladesh: 1
Brazil: 1
China: 1

Croatia: 1
Germany: 1

Poland: 1
Serbia: 1

Croatia: 1
Germany: 1

Poland: 1
Serbia: 1

Radish China: 1
Iran: 1 Iran: 1
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Table 3. Cont.

Classification FAO/WHO Global
Individual Food Consumption Data

Tool (GIFT) a
FAO/OMS Maximum Limits (MLs) b Number of Articles per Country that Exceed Maximum Limits (MLs)

in our Study c

Food Group Subgroup-Short
Name As Pb Cd MeHg As Pb Cd MeHg

Pulses, seeds
and nuts Pulses 0.1 0.1

Bangladesh: 2
Brazil: 1

Croatia: 1
Iran: 1

Bangladesh: 1
Brazil: 1
China: 1
Iran: 1

Milk Milk 0.02

Bangladesh: 2
Ethiopia: 1
Hungary: 1
Mexico: 1

South Korea: 1

Eggs Eggs 0.1

Australia: 1
Bangladesh: 1

India: 1
Thailand: 1

Fish and shellfish

Freshwater,
diadromous and

marine fish
0.3

Argelia: 1
Bangladesh: 1

Bosnia and
Herzegovina: 1

China: 1
Iran: 1
Italy: 1

Nigeria: 1
Turkey: 1

Mollusks 2.0 Iran: 1

Cephalopods 2.0

Tuna 1.2 Italia: 1

Shark 1.6 Mexico: 1

Meat

Red meat 0.1

Bangladesh: 1
China: 1

Kuwait: 1
Nigeria: 1

South Korea: 1

Poultry 0.1

Bangladesh: 1
India: 1

South Korea: 1
Thailand: 1

Offal red meat 0.2

Kuwait: 1
Nigeria: 1

South Korea: 1

Offal poultry 0.1
Ghana: 1

Malaysia: 1
Tunisia: 1

South Korea: 1

Vegetables

Leafy vegetables 0.3 0.2

Bangladesh: 1
Brazil: 2
China: 4

Croatia: 1
Germany: 1

Iran: 2
Portugal: 1

Serbia: 1
Spain: 1

Bangladesh: 1
China: 4

Croatia: 1
Germany: 1

Iran: 2
Serbia: 1

South Africa: 1
Spain: 1

Stalk and steem
vegetables 0.1 China: 2

Brassica
vegetables 0.1 0.05

Bangladesh: 1
Brazil: 1
China: 6

Croatia: 1
Germany: 1

Serbia: 1

Brazil: 1
China: 6

Croatia: 1
Germany: 1

Serbia: 1
South Africa: 1

Bulb vegetables 0.1 0.05

Bangladesh: 1
Brazil: 1
China: 3

Croatia: 1
Iran: 2

Bnagladesh: 1
Brazil: 1
China: 3

Croatia: 1
Ghana: 1

Iran: 3
South Africa: 1
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Table 3. Cont.

Classification FAO/WHO Global
Individual Food Consumption Data

Tool (GIFT) a
FAO/OMS Maximum Limits (MLs) b Number of Articles per Country that Exceed Maximum Limits (MLs)

in our Study c

Food Group Subgroup-Short
Name As Pb Cd MeHg As Pb Cd MeHg

Vegetables

Fruiting
vegetables 0.05 0.05

Bangladesh: 2
Brazil: 2
China: 4

Germany: 1
Serbia: 1
Turkey: 1

Bangladesh: 3
Brazil: 2
China: 5

Germany: 1
Ghana: 1

Iran: 1
Serbia: 1

South Africa: 1
Turkey: 1

Legume
vegetables 0.1 0.1

Bangladesh: 1
Brazil: 1
China: 2

Germany: 1
Iran: 1

Bangladesh: 1
China: 1

Fruits

Tropical fruits 0.1
Bangladesh: 3

Brazil: 1
China: 1

Stone fruits 0.1 Bangladesh: 1
Germany: 1

Pome fruits 0.1
Bangladesh: 1

Brazil: 1
Germany: 1

Soft fruits
(berries and other

small fruits)
0.1 Brazil: 1

Germany: 1

a Adapted from the FAO and WHO Global Individual Food Consumption data Tool (GIFT). b Adapted from the
FAO and WHO General Standard for Contaminants and Toxins in Food and Feed. c According to the studies’
information that are included in this Scoping Review. NOTE: All reported means were converted to ppm (kg/g)
to facilitate comparison. There are no established FAO/OMS Maximum Limits (MLs) for mercury (Hg) and
aluminum (Al). Abbreviations: As: Arsenic; Pb: Lead; Cd: Cadmium; MeHg: Methylmercury.

With respect to cereals group, in the rice subgroup, China was the country with the
highest number of studies reporting an excess of As and Cd. The reported means As
exceeding the MLs ranged from 0.24 ppm to 0.78 ppm. The highest concentrations of As
were reported by Rahman et al. in Bangladesh (mean = 0.56 ppm and 0.78 ppm) [105]. The
reported means exceeding the Cd MLs in rice ranged from 0.41 ppm to 73.0 ppm, with
Australia being the country with the highest Cd concentrations [59]. For the maize and
wheat subgroups, there are only established ML values for Pb and Cd; the Cd concentrations
that exceeded the MLs in maize were in the range of 0.23 ppm to 1.5 ppm, with Iran being
the country with the highest Pb concentration [164]. Regarding Cd, the range was from 0.1
to 16.17, and the highest concentration was reported by Peng et al. in China; it is important
to highlight that the study samples were collected from a major agricultural area located
near an important industrial base [172]. We also found values that exceeded the limits in
the wheat subgroup for Pb (mean = 1.85 ppm) and Cd (mean = 0.41 ppm) in Iran [164], and
for Pb (mean = 3.61 ppm) and Cd (mean = 0.2) in China, where study samples were taken
from amended soils with biogas slurry [172].

In the roots and tubers group, the potato subgroup had the highest number of studies
that reported values of Pb and Cd that exceeded MLs, with Pb values from 0.1 ppm to
6.07 ppm. the highest value was reported by Yang et al. in China [76]. The range of Cd
values was from 0.11 to 1.09, with this last concentration being reported by Guerra et al.
in Brazil. Carrot was another subgroup that had various values reported that exceeded
the MLs [154]; for Pb, the range of values that exceeded the MLs ranged from 0.3 ppm to
2.5 ppm, and for Cd from 0.21 ppm to 0.49 ppm, with Servia [150] and Croatia [127] being
the countries with the highest reported concentrations, respectively.

Regarding the pulses, seeds and nuts group, the FAO/OMS MLs are available only for
the subgroup of pulses and for Pb and Cd. The value that exceeded the MLs for Pb ranged
from 0.6 ppm to 95 ppm, with the lentil being the individual food item that had the highest
reported value by Pirsaheb et al. in Iran [164]. Regarding Cd, the values that exceeded the
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MLs ranged from 0.17 ppm to 3.39 ppm, with China having the highest concentration and
the sample was obtained from a coal-mining city [126]. With respect to the milk group, MLs
values have only been established for Pb; half of the studies reported concentrations that
exceeded MLs, with Pb exceeding concentrations from 0.23 ppm to 1.48 ppm and South
Korea being the country that reported the highest value [161]. Cow milk was the most
studied food subgroup in this category.

Regarding the eggs group, five studies reported Pb concentration results; four of them
had levels exceeding the MLs. The values of reported Pb levels that exceeded the MLs
ranged from 0.15 ppm to 4.06 ppm; chicken eggs were the most studied subgroup and duck
eggs were the food subgroup with the highest concentration reported in Thailand [95].

With respect to the fish and shellfish group, in the fish subgroup, the values of Pb ex-
ceeding ML concentrations ranged from 0.35 ppm to 20.15 ppm, and the highest value was
reported in Nigeria, whose sample was obtained from effluents from university and fishing
activities [51]. Mollusks exceeding MLs were only found in Iran (mean = 11.3 ppm), whose
sample originated from an area with anthropogenic polluting activities [62]. Exceeding
MeHg MLs for tuna were found in Italy (mean = 1.7 ppm) [98], and in Mexico for shark
(mean = 1.65 ppm) [181].

In the meat group, four Asian countries and one African country reported Pb values
exceeding MLs in red meat, ranging from 0.1 ppm to 9.2 ppm; the latter value was reported
by Kim et al. in South Korea in a sample of domestic pig muscle [161]. Regarding poultry
meat, four Asian countries reported Pb values exceeding MLs ranging from 0.17 ppm to
5.2 ppm, the latter value having been found in a sample of 61 chicken muscles in South
Korea [161]. Pb levels exceeding the MLs were reported for offal read meat and offal poultry
in three [35,56,161] and four countries [41,48,80,161], respectively, ranging from 0.63 ppm
to 47.7 ppm for offal red meat and from 0.25 ppm to 37.6 ppm for offal poultry.

There were many countries where HM concentration exceed the MLs for Pb and
Cd in the vegetables group; China [76,126,157,172], Iran [110,146], Bangladesh [105],
Brazil [147,154], Spain [106], Croatia [127], Portugal [44] Germany [46], Serbia [150], South
Africa [37] and Turkey [135] were found exceeding MLs in at least one vegetables sub-
group. In the leafy vegetables subgroup, exceeding MLs means values ranged, for Pb,
from 0.3 ppm to 12.8 ppm, and for Cd from 0.2 ppm to 21.9 ppm; in the stalk and stem
vegetables subgroup, Cd mean concentrations ranged from 0.19 ppm to 9.18 ppm, while in
the Brassica subgroup, Pb concentration mean values ranged from 1.0 ppm to 15.6 ppm
and for Cd from 0.05 ppm to 18.6 ppm; for the bulb vegetables subgroup, Pb exceeded
values ranging from 1.0 ppm to 10.4 ppm and for Cd from 0.05 ppm to 4.47 ppm; for
fruiting vegetables, Pb exceeding MLs varied from 0.056 ppm to 10.2 ppm, and for Cd from
0.05 ppm to 15.3 ppm; and finally for legume vegetables, the exceeding MLs for Pb varied
from 1.3 ppm to 10.9 ppm, and for Cd from 0.17 ppm to 0.23 ppm. China was the country
that reported the highest number of studies with exceeding MLs for Pb and Cd in all the
vegetable subgroups, and most of the exceeding foods were sampled from a coal-mining
city [76,126]. Only one study from Bangladesh by Rahman et al. reported the highest Cd
concentration in the legume vegetable subgroup (mean = 0.23 ppm) [105].

Finally, with respect to the fruits group, the FAO/OMS MLs have been only established
for Pb. Tropical fruits was the subgroup with the highest number of studies that reported Pb
levels exceeding the MLs, ranging from 0.28 ppm to 0.93 ppm. Bangladesh was the country
with the most articles reporting this excess and the country with the highest levels reported
by Rahman et al. in guava fruit [105]. Pome fruits was another subgroup whose Pb values
exceeded the MLs, ranging from 0.45 ppm to 29.3 ppm. The highest value was reported by
Hoffen et al., in Germany, specifically in apples grown in an urban garden close to traffic
areas; the same study reported the highest values in stone fruits (mean = 23.2 ppm) and
soft fruits (mean = 59.5 ppm) [58].
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4. Discussion

We systematically summarized the existing evidence of HM content in foods (natural
or minimally processed). This represents an important topic because dietary exposure to
HM has been recognized as a public health concern (2), posing a serious threat to food safety
and human health. Exposure to HM through foods can contribute to their accumulation
in the human body, which eventually causes oxidative stress and could lead to different
harmful effects [184] and diseases [9], especially in prenatal maternal exposure, where it
has been associated with adverse birth outcomes, such as low birth weight [185].

Our review identified 152 studies, published between 2011 and 2020, with most of the
study evidence having been reported recently, during the period of 2018–2022 (69 studies).
This is consistent with the relevance of the topic, which has been increasingly studied
in recent years, and provides evidence of the emerging global concern of the presence
of toxic elements in the food we eat. Our findings also show that most of the evidence
comes from Asian countries, particularly China, which reflects the lack of evidence in the
rest of the world. This lack of evidence is the worst when we evaluated the number of
publications by country, as only 43 countries have at least one article published about the
topic, representing 22% of the countries around the world. There are some areas in America
and Africa where our searches and study inclusion criteria found no evidence or reports
regarding the measurement of HM concentration in foods, which should be a concern to
monitor for the corresponding agencies.

The amount of evidence in China could be related to the documented information
about widespread soil contamination with HM in that country [186,187], but actually, we
cannot arrive at conclusions about this gap in the evidence, and the reasons are outside the
scope of this study.

Other previous reviews suggest that contaminated zones could impact the presence
of HM in food. A review carried out in Bangladesh showed that vegetables in sewage-
irrigated areas were heavy-metal- and metalloid-contaminated, and that fish species were
highly contaminated with Cd, Pb and Cr [188]. Another review explored different sources
of HM contamination in soil–food crop subsystems worldwide and found that, in high-
income countries, the deposition of particulate matter and the use of industrial effluents
and sewage sludge as fertilizers were the primary contamination sources, while irrigation
with inadequately treated effluent or sludge were the principal sources of contamination in
low and middle countries [189].

In this review, we found the presence of toxic HM in all food groups around the world,
and we identified that the most studied food groups were fish and shellfish, vegetables,
and cereals, which is consistent with other worldwide reviews that have documented that
aquatic foods, fruits, vegetables and major staple foods, such as tubers, are the major HM
hosts [190].

With respect to International MLs, we found that many of the HM concentrations
reported exceeded the FAO/OMS MLs established for Cd, Pb and As globally in all food
groups, mainly in vegetables, followed by the roots and tubers, and cereals group. The
food subgroups with the highest number of studies reporting measures that exceeded the
MLs were leafy, brassica and fruiting from the vegetables group, potato and carrot from the
roots and tuber group and rice from cereals group. This is consistent with other reviews
that identify exceeding MLs for Pb and Cd in spinach, jute mallow and tomato [190]; the
concentrations of Pb, Cd and Ni in some fruits were above the recommended values by
the European Union in the Eastern Nigeria [191]. Additionally, a review carried out in
Bangladesh found that vegetables in sewage-irrigated areas were HM contaminated and
that fish species were highly contaminated with Cd, Pb and Cr [188]. A systematic review
conducted in Iran about toxic metals in consumed rice brands for human consumption
shows that 88% of the rice consumed does not meet the national standard and WHO/FAO
guideline requirements [192].

Some of the studies included in this ScR that reported HM concentrations exceeded
the FAO/OMS MLs; had samples that obtained from polluted or contaminated areas, such
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as with Pb and Cd in China [126], whose vegetable food group sample was obtained from a
coal-mining city, or with Pb for the mollusks subgroup in Iran, whose sample was obtained
from an area with anthropogenic polluting activities [62]. It is important to highlight that
the articles included in this review evaluated only food for human consumption, so it is a
major concern that areas known to be contaminated are food-producing areas.

Nevertheless, even though we found food subgroups exceeding MLs in contaminated
zones, we also found reported values below the detection limits (<LOD) in contaminated
zones, such as in Portugal, where cabbage samples were obtained from a mining area [43],
or Turkey, where corn samples were obtained from an area whose soil was impacted by
industrial and municipal wastewaters [135], or Cd for rice in China, whose sample was
collected in a major agricultural area near an important industrial base [141].

Because we studied foods in their most natural form, we expected that concentrations
for most of the reported foods were under the LOD values; instead, our results show that
there are many subgroups above the MLs. This highlights that, even though we found HM
in food from contaminated zones, this is not the only source of contaminants in food, so
agricultural zones must study and report the presence of HM in the foods they produce.

Among the strengths of our study, we can affirm that, to the best of our knowledge,
this is the first ScR to explore the published evidence regarding HM content in unprocessed
or minimally processed foods consumed by humans worldwide. Additionally, we followed
a systematic process for mapping the evidence and followed international criteria for the
process of this study, following the JBI methodology for conducting ScRs [24] and the
PRISMA Extension for ScRs [25]. We used an international food group and subgroup
classification system [28], so food information could be comparable with international
information and international dietary recommendations. We also compared HM MLs with
international references reported at the Codex Alimentarius International Food Standards
FAO/WHO [22], so MLs were the same for all countries, which allowed us to use the same
criteria for all articles; this comparison highlighted the need to increase the evidence related
to this topic in order to establish MLs for other HM, such as Al and Hg, and to establish
MLs in all food groups. Our study reflects the countries where we found evidence and
reflects the need to study places where there is a lack of information. Such findings point
toward a need to monitor and regulate HM in foods for human consumption, especially in
those areas that are contaminated and food-producing areas.

The limitations of our literature review include the fact that, because our search
results demonstrate high heterogeneity among the methodologists across studies (which
represented a challenge in making the comparison, mapping and summarizing the evidence
results), we had to follow strict exclusion criteria, which could have left out information
that could help us to obtain a more precise panorama of the global situation. Additionally,
we grouped our food results accordingly to the FAO GIFT tool, so we could not include
studies’ information that was reported by food group; this decreased the number of food
items reported per article. We excluded mushrooms and plant foods because of their high
heterogeneity on the subspecies and methods of determination, but those were part of the
food subgroups we studied, which could make us lose valuable information with respect
to the HM present on the vegetables food group. With respect to the HM exceeding MLs,
our results are limited to the few available HM MLs for FAO/OMS guidelines; this does
not represent that we did not find evidence of exceeding MLs for Hg and Al in all food
groups, or As, Pb, or Cd for many of the food subgroups, but rather that there are no
established MLs for all HM and all food subgroups studied. Therefore, our results should
be interpreted with caution. Our study results do not reflect a country’s problem with the
presence of HM in food; they only reflect the zones and periods where HM were found,
and the areas where studies have been performed. Another limitation is that studying the
causes of the presence of HM was outside of the scope of this study, so we cannot conclude
about the impact of natural sources and human activities related to agriculture (such as the
use of pesticides or dumping of sewage and industrial wastewater in cultivated land) in
the presence of HM in food. Lastly, we identified the study of the causes of the presence of
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HM in food; the study of HM content in mushrooms, herbs and spices; the study of HM
presence in processed foods; and the establishment of As, Pb, Cd, Me, Hg, MeHg and Al
MLs for all food groups as opportunities for future research.

5. Conclusions

The presence of HM in foods was found around the world and in all food groups stud-
ied. This study constitutes a starting point for the importance of exploring the presence of
toxic elements in foods. In countries with regulations on these topics, a monitoring system
is recommended to evaluate and monitor compliance with national standards. For countries
without a regulation system, it is recommended to adopt international guidelines, such as
those of the FAO, and implement a monitoring system that supervises national compliance.
In both cases, the information must be disseminated to the population to create social
awareness. This is especially important to protect the population from the consumption of
internal production and for the international markets of the globalized world.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19148651/s1. Table S1: Classification of our individual
Food items according to the Global Individual Information Food Consumption Data Tool (FAO/WHO
GIFT). Table S2: Extracted information of the studies included in this Scoping Review (n = 152).
Figure S1: Heavy metals concentration in parts per million (ppm) in the least reported food groups
worldwide. References [32–183] are cited in the Supplementary Material.
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Istrian Coast of Croatia. Bull. Environ. Contam. Toxicol. 2015, 95, 611–617. [CrossRef]

171. Norton, G.J.; Deacon, C.M.; Mestrot, A.; Feldmann, J.; Jenkins, P.; Baskaran, C.; Meharg, A.A. Cadmium and Lead in Vegetable
and Fruit Produce Selected from Specific Regional Areas of the UK. Sci. Total Environ. 2015, 533, 520–527. [CrossRef]

172. Bian, B.; Wu, H.s.; Lv, L.; Fan, Y.; Lu, H. Health Risk Assessment of Metals in Food Crops and Related Soils Amended with Biogas
Slurry in Taihu Basin: Perspective from Field Experiment. Environ. Sci. Pollut. Res. 2015, 22, 14358–14366. [CrossRef]

173. Kosker, A.R. Metal and Fatty Acid Levels of Some Commercially Important Marine Species from the Northeastern Mediterranean:
Benefits and Health Risk Estimation. Environ. Monit. Assess. 2020, 192, 358. [CrossRef] [PubMed]

174. Ke, S.; Cheng, X.-Y.; Zhang, N.; Hu, H.-G.; Yan, Q.; Hou, L.-L.; Sun, X.; Chen, Z.-N. Cadmium Contamination of Rice from Various
Polluted Areas of China and Its Potential Risks to Human Health. Environ. Monit. Assess. 2015, 187, 408. [CrossRef] [PubMed]

175. Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of Food Crops Grown on Soils with Elevated
Heavy Metals Content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [CrossRef] [PubMed]

176. Zhao, K.; Fu, W.; Ye, Z.; Zhang, C. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun
County, Southeastern China. Int. J. Environ. Res. Public Health 2015, 12, 1577–1594. [CrossRef] [PubMed]

177. Naseri, M.; Vazirzadeh, A.; Kazemi, R.; Zaheri, F. Concentration of Some Heavy Metals in Rice Types Available in Shiraz Market
and Human Health Risk Assessment. Food Chem. 2015, 175, 243–248. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/24688968
http://doi.org/10.1590/S0103-90162012000100008
http://doi.org/10.1186/s40550-018-0070-5
http://doi.org/10.1016/j.chemosphere.2016.02.060
http://doi.org/10.3390/ijerph13030289
http://www.ncbi.nlm.nih.gov/pubmed/26959043
http://doi.org/10.1007/s00128-016-1749-z
http://doi.org/10.1038/srep20317
http://doi.org/10.4315/0362-028X.JFP-15-214
http://www.ncbi.nlm.nih.gov/pubmed/26613922
http://doi.org/10.1080/19393210.2015.1114032
http://doi.org/10.1016/j.foodchem.2020.127267
http://doi.org/10.1016/j.envpol.2015.10.015
http://www.ncbi.nlm.nih.gov/pubmed/26552521
http://doi.org/10.1080/19393210.2015.1099570
http://doi.org/10.1007/s00128-015-1672-8
http://www.ncbi.nlm.nih.gov/pubmed/26450597
http://doi.org/10.1002/jsfa.7486
http://www.ncbi.nlm.nih.gov/pubmed/26439310
http://doi.org/10.1080/15226514.2015.1086303
http://doi.org/10.4315/0362-028X.JFP-15-072
http://doi.org/10.1016/j.jes.2015.01.029
http://doi.org/10.1007/s00128-015-1619-0
http://doi.org/10.1016/j.scitotenv.2015.06.130
http://doi.org/10.1007/s11356-015-4853-4
http://doi.org/10.1007/s10661-020-08287-1
http://www.ncbi.nlm.nih.gov/pubmed/32394291
http://doi.org/10.1007/s10661-015-4638-8
http://www.ncbi.nlm.nih.gov/pubmed/26045041
http://doi.org/10.1016/j.ecoenv.2015.04.032
http://www.ncbi.nlm.nih.gov/pubmed/25942101
http://doi.org/10.3390/ijerph120201577
http://www.ncbi.nlm.nih.gov/pubmed/25635917
http://doi.org/10.1016/j.foodchem.2014.11.109


Int. J. Environ. Res. Public Health 2022, 19, 8651 25 of 25

178. Mok, J.S.; Kwon, J.Y.; Son, K.T.; Choi, W.S.; Shim, K.B.; Lee, T.S.; Kim, J.H. Distribution of Heavy Metals in Muscles and Internal
Organs of Korean Cephalopods and Crustaceans: Risk Assessment for Human Health. J. Food Prot. 2014, 77, 2168–2175. [CrossRef]
[PubMed]

179. Rjeibi, M.; Metian, M.; Hajji, T.; Guyot, T.; Ben Chaouacha-Chekir, R.; Bustamante, P. Seasonal Survey of Contaminants (Cd and
Hg) and Micronutrients (Cu and Zn) in Edible Tissues of Cephalopods from Tunisia: Assessment of Risk and Nutritional Benefits.
J. Food Sci. 2015, 80, T199–T206. [CrossRef]

180. Lin, K.; Lu, S.; Wang, J.; Yang, Y. The Arsenic Contamination of Rice in Guangdong Province, the Most Economically Dynamic
Provinces of China: Arsenic Speciation and Its Potential Health Risk. Environ. Geochem. Health 2015, 37, 353–361. [CrossRef]

181. Basu, N.; Tutino, R.; Zhang, Z.; Cantonwine, D.E.; Goodrich, J.M.; Somers, E.C.; Rodriguez, L.; Schnaas, L.; Solano, M.; Mercado,
A.; et al. Mercury Levels in Pregnant Women, Children, and Seafood from Mexico City. Environ. Res. 2014, 135, 63–69. [CrossRef]

182. Zhang, H.; Chen, J.; Zhu, L.; Yang, G.; Li, D. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta Area, South
China. PLoS ONE 2014, 9, e108572. [CrossRef]

183. Kohrman, H.; Chamberlain, C.P. Heavy Metals in Produce from Urban Farms in the San Francisco Bay Area. Food Addit. Contam.
Part B 2014, 7, 127–134. [CrossRef] [PubMed]

184. Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources,
and Remediation Techniques. Soil Sediment. Contam. An. Int. J. 2019, 28, 380–394. [CrossRef]

185. Laine, J.E.; Bailey, K.A.; Rubio-Andrade, M.; Olshan, A.F.; Smeester, L.; Drobná, Z.; Herring, A.H.; Stýblo, M.; García-Vargas,
G.G.; Fry, R.C. Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to
ARsenic (BEAR) Pregnancy Cohort in Mexico. Environ. Health Perspect. 2015, 123, 186–192. [CrossRef]

186. Hu, Y.; Wang, D.; Wei, L.; Song, B. Heavy Metal Contamination of Urban Topsoils in a Typical Region of Loess Plateau, China. J.
Soils Sediments 2014, 14, 928–935. [CrossRef]

187. Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination Features and Health Risk of Soil Heavy Metals in China. Sci. Total
Environ. 2015, 512–513, 143–153. [CrossRef] [PubMed]

188. Islam, M.; Karim, M.; Zheng, X.; Li, X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical
Review. Int. J. Environ. Res. Public Health 2018, 15, 2825. [CrossRef] [PubMed]

189. Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and
Management. Environ. Int. 2019, 125, 365–385. [CrossRef]

190. Nkwunonwo, U.C.; Odika, P.O.; Onyia, N.I. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. Sci.
World J. 2020, 2020, 6594109. [CrossRef]

191. Onakpa, M.M.; Njan, A.A.; Kalu, O.C. A Review of Heavy Metal Contamination of Food Crops in Nigeria. Ann. Glob. Health 2018,
84, 488–494. [CrossRef]

192. Sharafi, K.; Yunesian, M.; Nodehi, R.N.; Mahvi, A.H.; Pirsaheb, M. A Systematic Literature Review for Some Toxic Metals in
Widely Consumed Rice Types (Domestic and Imported) in Iran: Human Health Risk Assessment, Uncertainty and Sensitivity
Analysis. Ecotoxicol. Environ. Saf. 2019, 176, 64–75. [CrossRef]

http://doi.org/10.4315/0362-028X.JFP-14-317
http://www.ncbi.nlm.nih.gov/pubmed/25474068
http://doi.org/10.1111/1750-3841.12711
http://doi.org/10.1007/s10653-014-9652-1
http://doi.org/10.1016/j.envres.2014.08.029
http://doi.org/10.1371/journal.pone.0108572
http://doi.org/10.1080/19393210.2013.859740
http://www.ncbi.nlm.nih.gov/pubmed/24914598
http://doi.org/10.1080/15320383.2019.1592108
http://doi.org/10.1289/ehp.1307476
http://doi.org/10.1007/s11368-013-0820-1
http://doi.org/10.1016/j.scitotenv.2015.01.025
http://www.ncbi.nlm.nih.gov/pubmed/25617996
http://doi.org/10.3390/ijerph15122825
http://www.ncbi.nlm.nih.gov/pubmed/30544988
http://doi.org/10.1016/j.envint.2019.01.067
http://doi.org/10.1155/2020/6594109
http://doi.org/10.29024/aogh.2314
http://doi.org/10.1016/j.ecoenv.2019.03.072

	Introduction 
	Methods 
	Search Strategy and Data Extraction 
	Statistical Analysis and Data Presentation 
	Creation of Variables for the Food Groups and Subgroups 
	Heavy Metals (HM) in Food Geographical Analysis 
	Reference Values for Maximum Limits (MLs) of Heavy Metals (HM) in Foods 

	Results 
	Study Inclusion 
	Worldwide Evidence 
	Principal Food Groups and Heavy Metals Identified 
	Food Subgroups by Food Group and Heavy Metals Identified 
	Heavy Metals (HM) in Food Subgroups in Comparison with the FAO/OMS Maximum Limits (Mls) for Contaminants in Food 

	Discussion 
	Conclusions 
	References

