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Abstract: The correct distribution of service facilities can help keep fixed and overhead costs low
while increasing accessibility. When an appropriate location is chosen, public-sector facilities, such
as COVID-19 centers, can save lives faster and provide high-quality service to the community at a
low cost. The purpose of the research is to highlight the issues related to the location of COVID-19
vaccine centers in the city of Jeddah, Saudi Arabia. In particular, this paper aims to analyze the
accessibility of COVID-19 vaccine centers in Jeddah city using maximal coverage location problems
with and without constraint on the number and capacity of facilities. A maximal coverage model is
first used to analyze the COVID-19 vaccination coverage of Jeddah districts with no restriction on
the facility capacity. Then, a maximize capacitated coverage method is utilized to assess the centers’
distribution and demand coverage with capacity constraints. Finally, the minimize facilities model
is used to identify the most optimal location required to satisfy all demand points with the least
number of facilities. The optimization approaches consider the objective function of minimizing
the overall transportation time and travel distance to reduce wastage on the service rate provided
to the patients. The optimization model is applied to a real-world case study in the context of the
COVID-19 vaccination center in Jeddah. The results of this study provide valuable information that
can help decision-makers locate and relocate COVID-19 centers more effectively under different
constraints conditions.

Keywords: location-allocation; geographic information system; point of dispensing; network analysis;
COVID-19; vaccine centers

1. Introduction

Public health emergencies, either naturally occurring or man-made, are adverse events
that pose an urgent threat to the public’s health. To effectively mitigate, prevent, or treat
the effects of public health emergencies and to ensure public safety, prior preparation and
planning for immediate response are required. Planning for a rapid response includes
locating point of dispensing (POD) sites to aid the distribution and dispensing of medical
countermeasures such as a vaccine and antibiotics [1]. PODs are used to increase the
capacity of providing health services and lessen the burden of accessing public medical
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institutions during crises, vaccination campaigns, and mass testing. The purpose of es-
tablishing PODs and the associated spatial and temporal constraints make their location
assignment a challenging and critical task, especially during public health emergencies [2].
To choose the proper number and sites for PODs, various variables need to be gathered,
including population distribution, road network data, public transit data, distribution of
businesses, households, health centers, and other public facilities [3]. These variables are
assessed using mathematical location modeling techniques and geographic information
systems (GIS) to choose the optimal PODs while maximizing public access. The candidate
locations for emergency mass dispensing can be any public facilities that accommodate a
large number of individuals with high-capacity parking spaces, such as convention centers,
major sporting arenas, public buildings, and in some cases, schools or shopping centers.

Choosing the optimal number and location of PODs for effective mass dispensing
in public health emergencies is a location-allocation problem [4]. A location-allocation
model is a strategic decision-making problem that aims to identify the optimal locations for
facilities that entail concurrently identifying a set of facility locations and assigning spatially
distributed sets of demands to these facilities with the aim of improving the existing distri-
bution [5]. The location and allocation of PODs should be efficient in order to supply the
required services to a large number of the targeted population. Researchers have generally
adopted one of the two methodologies to solve healthcare facility location-allocation prob-
lems, namely the deterministic approach and the uncertain approach. In the deterministic
approach, location-allocation problems are formulated as a mathematical (linear) model
that optimizes single or multiple health policy objectives, such as minimizing travel time/
distance between demand points and facilities or maximizing demand coverage [6,7]. The
uncertain approach is based on the assumption that some of the parameters or the system’s
inputs are incomplete or imperfect [8–12]. Additionally, the meta-heuristic methodology
was used to solve complex multiple objectives problems, such as minimizing the cost of
constructions and maximizing service coverage [13,14].

One of the most significant public health emergencies in recent years is the highly
infectious coronavirus disease 2019 (COVID-19). COVID-19 is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [15]. The World Health Organiza-
tion (WHO) declared an influx of public health emergencies of international concern on
30 January 2020 [16]. COVID-19 has triggered a global public health emergency, affecting
more than 200 countries and territories. According to WHO [17], the COVID-19 pandemic
had more than 260 million confirmed cases and more than 5.2 million reported deaths as of
1 December 2021. In Saudi Arabia, more than 50 thousand COVID-19 cases were confirmed
from January 2020 to December 2021, and more than 45 million vaccination doses have been
administrated [17]. During the COVID-19 pandemic, most countries have implemented
a variety of protective measures that prove to be effective such as social distancing and
quarantining [18]. Vaccination is thought to be the most effective technique for averting the
pandemic and avoiding the disease’s implications [19]. COVID-19 vaccination centers’ lo-
cation allocation is concerned with situating these facilities among potential zones in order
to deliver efficient and effective services over a large population with spatially distributed
demands [20]. As a result, an important and critical issue is how to efficiently distribute
vaccine centers so that they are easily accessible to a wide range of the population. Figure 1
demonstrates the current distribution of COVID-19 centers among districts in Jeddah city.

This research analyzes the spatial accessibility of COVID-19 vaccination centers in
Jeddah in order to evaluate the locational distribution of COVID-19 facilities under different
access and resource constraints. The access to the COVID-19 centers in Jeddah city is
evaluated based on the travel distance and transportation time. We selected the maximal
covering location problem (MCLP) in analyzing the current distribution of COVID-19
centers in Jeddah. The MCLP is one of several alternative location-allocation models that
aims to maximize demand coverage with distance or time constraints. We utilized the
maximal coverage model with different impedance cutoffs, which is the maximum travel
time required to travel from a demand point to facilities, to assess the accessibility of current
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COVID-19 centers. The MCLP is thought to be effective when a limited number of facilities
are available to cover a large number of demand points, particularly in cases of health
emergency location-allocation problems [21].

Figure 1. Map of the distribution of existing COVID-19 centers among districts at Jeddah city.

The maximal coverage is used to analyze COVID-19 vaccination centers’ locations
with and without restriction on the facility capacity. First, the maximize coverage model is
utilized to locate optimal vaccine sites that maximize demand coverage without constraint
on the number of facilities or their capacity. Second, the maximize capacitated coverage
model was used to ensure demand coverage while maintaining the restriction of the facility
capacity. The model was implemented with different capacity assumptions and impedance
cutoffs. Third, the minimize facility problem is used to identify the minimum number of
facilities needed to cover demand points, which will help when the number of facilities
needs to be reduced. The optimization of demand coverage focuses in this research on the
count of the districts rather than the population due to the unavailability of recent census
data for the targeted case study.
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This helps determine the optimal POD locations to maximize demand coverage while
maintaining facility capacity when required and promoting access equity. The precise
question can be: Where should the facilities be located in order to maintain a proper
distribution of facilities to cover the majority of the population’s needs? In particular, we
aim to find answers to the following research questions: (1) How accessible are COVID-
19 vaccination centers to Jeddah citizens and residents? (2) When facility capacity is a
concern, what is the optimal distribution of facility to maximize coverage of demand points?
(3) Which facilities are optimal to maximize the demand coverage when the number of
facilities is minimized? To answer these issues, spatial accessibility was investigated using
location-allocation algorithms based on the distance between residences represented in the
districts’ centroid and facility locations.

Contribution

This research aims to contribute to society by implementing a COVID-19 vaccine
centers location-allocation model that improves the efficiency and effectiveness of reaching
vaccine centers under different access and resource scenarios. The proposed models can be
utilized to improve the planning of COVID-19 center distribution in Jeddah city, and the
application of the models could contribute to speeding up the process of reaching the center
to get the vaccine. Studies in the field used location-allocation models to optimize the loca-
tion of various healthcare facilities, including permanent and temporary emergency sites.
This study offers an analysis of health emergency location-allocation problems, particularly
COVID-19 vaccination centers’ location-allocation problem. Maximize coverage is one of
the most commonly used methods for emergency healthcare facility location-allocation
problems. The analysis will provide decision-makers with an insight into optimal vaccine
distribution based on various scenarios.

This paper is structured as follows: Section 2 presents the literature review, Section 3
presents the location-allocation models and data, Section 4 provides a description of the
research experiment and results, and Section 5 presents a summary and discussion of the
results. Finally, Section 6 presents the conclusion of the work.

2. Literature Review

Facility location allocation is a strategic decision problem that aims to find an optimal
location from a set of candidate sites. The area of location-allocation analysis has a wide
range of applications that have been thoroughly researched, such as locating health facilities,
retail stores, schools, and police stations. For a broad spectrum of corporate and public
organizations, facility location selections are crucial in the strategic design of systems.
Poorly located facilities or locating an insufficient number of facilities can significantly
increase capital and inventory expenses while degrading customer service [22]. The optimal
location can be chosen according to problem-related objectives such as construction cost,
travel time, and service demand. The optimal location can be defined as continuous values
(i.e., facilities are located anywhere in some bounded region) or discrete values (i.e., a
predefined candidate location).

The location of a healthcare facility (HCF) is a critical problem as it has a direct influ-
ence on healthcare accessibility and individuals’ satisfactions [21]. In the healthcare domain,
facility location studies typically focus on two types of health situations non-emergency and
emergency. Non-emergency facility locations problems focus on locating optimal sites for
primary care facilities, such as hospitals, clinics [23–25], blood banks [26–28], medical labo-
ratories [29], mobile health units [30], and rehabilitation centers [31], as well as determining
their capacities and allocation required resources. Locating emergency facilities is a more
complex and challenging task that requires dealing with critical, urgent, and unpredictable
situations. Healthcare emergency facilities are either permanent facilities such as off-site
public access devices [32,33], emergency centers [34–36] or ambulance stations [37,38], or
temporary facilities like temporary medical centers [39,40], sample collection points [41,42],
or dispensing points [43–45].
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Studies conducted to determine optimal HCF sites have either applied deterministic
approaches considering that all parameters are given [21], stochastic/uncertain approaches
assuming that some of the parameters or the system’s inputs are incomplete or inaccu-
rate [8,45], or hybrid approaches integrating uncertainty in strategic policy modeling [10].
Research in the deterministic paradigm often optimizes a health policy objective using opti-
mization methodologies such as p-median or p-center. P-median problems aim to reduce
the total necessary travel distance or time to facilities, which is a prominent indicator of
the efficiency [6,46,47]. The p-center, known as the min-max problem, aims to minimize
the maximal distance from demand points to their nearest facilities [7]. Another objective
employed in the location set and maximal coverage location problems is to maximize
population coverage with the minimum number of stations. Depending on the application,
problem-specific objectives can be used. For example, in the maximal survival location prob-
lems in ambulances, predicted patient survival can be used as a measure of the quality of
facility placements [48]. Other researchers have adopted a multiple objectives optimization
to choose locations based on a number of goals, such as minimizing the cost of construc-
tions and maximizing service coverage, which gives a more realistic and representative
problem formulation of the actual HCF locations decision-making mechanism [24,25]. To
efficiently solve complex multiple objectives problems, studies have utilized metaheuristic
algorithms to find an optimal or nearly optimal solution in a short time, such as genetic
algorithm [13], Lagrangian relaxation [49], simulated annealing [50,51], and particle swarm
optimization [12,52].

Critical health emergency situations such as biological attacks, pandemics, or infectious
disease outbreaks require a fast and efficient and large-scale dispensing of important
medical supplies, prophylaxis, or vaccines to prevent the spread of infectious diseases.
Due to the importance of the POD locations, researchers have also used mathematical
programming techniques such as linear programming or metaheuristics techniques (e.g.,
genetic algorithm) to find a POD optimal location based on some simple or complex health
policy objectives (e.g., travel and waiting times) [44,53].

Due to the COVID-19 pandemic, several researchers have investigated methods for
locating COVID-19 emergency health centers. Manupati et al. [54] proposed a mixed-
integer linear programming (MILP) model to develop a plasma supply chain network that
simplifies the location of plasma banks as well as the allocation of delivery facilities to these
plasma banks for COVID-19. Zhou et al. [55] investigated the inherent spatial variability of
COVID-19 transmission in the community and developed vaccine delivery tactics that took
spatial prioritizing into account. They suggested a combined agent-based model and SEIR
spatial model (susceptible-exposed-infected-recovered) [56] to assess COVID-19 intra-city
transmission’s spatial process.

Tavana et al. [57] presented a mixed-integer linear programming model for fair and
equitable COVID-19 vaccination distribution in developing countries. The model also
considers time-dependent capacity and triple refrigeration requirements (i.e., cold, very
cold, and ultra-cold). Lusiantoro et al. [58] proposed a mathematical maximal coverage
model to optimize the location of COVID-19 vaccination centers by maximizing the covered
demand population and minimizing the total distance traveled by vaccine recipients. The
model was demonstrated in a case study of a healthcare center in Yogyakarta, Indonesia.
Kuvvetli [59] developed a goal programming model for the location-allocation problem to
optimize sample test locations to minimize total distance while maintaining the maximum
availability and the minimum number of test sampling centers. The model was applied
to two cities in Turkey. Faisal et al. [60] presented a spatial analysis of COVID-19 centers
in Jeddah city using kernel density estimation, incremental spatial autocorrelation, and
hotspot analysis based on the population distribution and districts map. In this research, we
assess the accessibility of COVID-19 vaccination centers using location-allocation maximal
coverage under different capacity and access constraints and assumptions.
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3. Materials and Methods
3.1. Location-Allocation Models

The location-allocation problem aims to allocate the COVID-19 vaccine facilities to the
closest centroid point of the districts. The focus of this study is to evaluate the optimality
of current facilities in Jeddah city and determine the optimal location-allocation decisions
using the MCLP method. MCLP seeks to identify the optimal facility locations on network
nodes so that demand coverage within a pre-specified period of time or distance is maxi-
mized [61]. When there are a small number of facilities are available to cover a large number
of demand points, this model is considered promising, especially for health emergency
location-allocation problems [21]. In terms of facility selection, unlike the location set
coverage problem model, the MCLP model does not aim to reduce the number of facilities
required to cover all demand points over a certain distance or time [62]. The MCLP model,
on the other hand, provides solutions that span the broadest demand range while adhering
to specified distance or time restrictions between supply and demand points. Both the
demand and facility locations’ coordinates must be identified with a threshold level of
accuracy for the MCLP to work.

The demand and facility points’ coordinates (Tables 1 and 2) were retrieved from
the Ministry of Health Google Earth satellite image. The XY coordinates system is a
projected coordinate system with UTM and WGS 1984 for the northern hemisphere and
zone 37 N. The number of district centroids at different drive time thresholds of 20, 30,
40, 50, 60, and 120 min to the nearest facilities was evaluated using the Network Analysis
extension of the ArcMap system (https://desktop.arcgis.com/, accessed on 15 July 2022) to
reflect the current baseline travel time situation in Jeddah. The network analysis tool uses
Dijkstra’s algorithm [63] to find the shortest paths. We used MCLP with three conditions
and decision-making variables: (1) locating uncapacitated facilities to maximize demand
coverage, (2) locating capacitated facilities to maximize demand coverage, and (3) locating
uncapacitated facilities while simultaneously maximizing coverage and minimizing the
number of facilities. The location-allocation solver in Esri’s ArcGIS is used to solve the
three problems using maximize coverage, maximize capacitated coverage, and minimize
facilities models. The solver is based on a combination of a Hillsman editing [64], a vertex
substitution heuristic [65], and a metaheuristic model for solution refinement. In the
following subsections, the general mathematical formulation for MCLP and the capacitated
MCLP are provided.

Table 1. A sample of the Jeddah city COVID-19 vaccine facilities with coordinate information.

Facility’s Name Vaccine Type x y

King Abdulaziz Airport Pfizer 515,688 2,395,991
King Abdulaziz University Pfizer 524,344 2,377,067
Maternity and Children’s Hospital Pfizer 517,872 2,381,778
Jeddah field hospital Pfizer 516,132 2,390,450
Specialized clinics Comprehensive National Guard Pfizer 523,252 2,381,605
International Medical Center Hospital Pfizer 518,054 2,378,941
Prince Abdulmajeed PHC Center AstraZeneca 529,472 2,369,307
King Abdullah Medical Complex AstraZeneca 510,369 2,407,092
King Abdulaziz Hospital AstraZeneca 521,435 2,371,302
Al Mahgar Medical Center AstraZeneca 521,359 2,370,983
Obhur Medical Center AstraZeneca 513,239 2,406,473
Health Centre AlBawadi AstraZeneca 516,702 2,390,092

https://desktop.arcgis.com/
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Table 2. Sample of Jeddah’s districts and their centroids.

District Name x Centroid (m) y Centroid (m)

Al Thagur 523,617 2,375,293
Al Sharafeyyah 519,394 2,379,374
Al Azizeyyah 520,155 2,383,348
Al Dahyh 521,946 2,356,167
Al Naeem 514,888 2,391,636
Al Ajaweed 532,149 2,366,756
Al Khaledeyyah 513,925 2,384,152
Al Basateen 512,025 2,397,900
Al Wazeereyyah 524,073 2,371,332
Al Rabbwah 518,856 2,388,693
Al Faysaleyyah 519,020 2,385,444
Al Ameer Fawaz Al Shamaly 531,195 2,370,382
Al Hada 531,444 2,363,401
Al Ameer Abdoulmajjed 528,407 2,368,760
Al Sahefah 520,266 2,376,112
Al Gharbeyah 512,434 2,421,965
Al Zohor 510,880 2,421,238
Al Hazazia 514,508 2,418,802
Al Eusala 532,077 2,389,199
Betrumeen 520,328 2,371,655
Al Hamadhnyah 520,046 2,405,711
Al Barakah 529,009 2,351,588
Al Mountazahat 530,106 2,374,006
Al Samer 525,395 2,386,573
Al Worood 521,071 2,379,535
Al Bashaer 518,079 2,411,159
Al Sheraa 509,818 2,406,800
Al Ammareyyah 520,031 2,376,598
Al Kandarah 520,956 2,376,690

3.2. Maximal Covering Location Problem

Based on a network of links and nodes, where nodes are the demands (n districts) that
need to served by facilities (p facilities), dij is the travel cost/distance associate with the link
of two nodes i and j, and D is a pre-defined maximum distance. The MCLP formulated
based on Church and ReVelle [66] as follows:

Maximize ∑
i∈I

hiYi, (1a)

subject to ∑
j∈Ni

Xj −Yi ≥ 0, ∀i ∈ I, (1b)

∑
j∈J

Xj ≤ p, (1c)

Yi ∈ {0, 1}, ∀i ∈ I, (1d)

Xj ∈ {0, 1}, ∀j ∈ J, (1e)

where:
I = the set of demand nodes {1, .., i, .., m},
J = the set of potential facilities {1, .., j, ..n},
D = a pre–defined maximum distance,
dij = the distance from a demand i to facility j,
hi = the number of demands at a given node i (e.g., the population at a given node),
Ni = the set of facilities nodes j that can cover demand node i. Ni = {j|dij ≤ D},
Xj = a binary variable indicates whether a facility is located at j (1) or not (0),
Yi = a binary decision variable indicates whether the node/demand i is covered (1) or
not (0).
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The objective function, (1a), maximizes the number of covered demands by facilities.
Constraint (1b) ensures that demand will be only considered covered if a facility is located
within a D distance from the demand point. Constraint (1c) ensures that the number of
located facilities is less than or equal to the total number of potential sites. Constraints (1d)
and (1e), are integrality constraints.

To consider facility capacity in the MCLP problem, the earliest approaches in the
field [67,68] have added the capacity constraints into the mathematical formulation of
MCLP to ensure that the demand allocated to facilities will not exceed the maximum
capacity of the facility. Given the notational convention suggested above, the capacitated
maximal coverage problem is formulated based on Current and Storbeck [67] as follows:

Minimize ∑
i∈I

hiUi, (2a)

subject to ∑
j∈Ni

Wij + Ui = 1, ∀i ∈ I, (2b)

∑
i∈Mj

hiWij − k jXj ≤ 0, ∀j ∈ J, (2c)

∑
j

Xj ≤ p, (2d)

Xj ∈ {0, 1}, ∀j ∈ J, (2e)

where:
Ui = the percentage of uncovered demands,
Wij = the fraction of demand at node i assigned to facility j,
k j = the capacity of a facility location,
Mj = the set of demand nodes i that can be covered by a facility node j. Mj = {i|dij ≤ D}.

The objective function in (2a) minimizes the number of uncovered demands. Con-
straint (2b) ensures that demand will be considered covered only if the travel time/ distance
between demand i and facility j is less than the maximum travel time or distance. Con-
straint (2c) ensures that the total demand assigned to a facility does not exceed its capacity.
Constraint (2d) ensures that the number of located facilities is less than or equal to the total
number of potential sites. Constraint (1e) is integrality constraint.

3.2.1. Maximize Coverage

To maximize demand coverage, MCLPs were utilized to locate optimal facilities from
a set of pre-defined facility locations (COVID-19 vaccination centers) and allocate demands
(Jeddah districts) to maximize demand coverage within a given distance or travel time. A
demand point is considered covered by a facility if the travel time between the demand
point and the facility is less than the pre-defined cost threshold. This threshold is known as
the coverage radius or impedance cutoff in ArcGIS. The set of pre-defined facilities and
demand points are not required to be equivalent in this problem, and a facility can cover
an unlimited number of demand points within the pre-defined distance.

3.2.2. Maximize Capacitated Coverage

The goal of the maximize capacitated coverage (MCC) problem is to locate facilities
to cover as much demand as possible while considering the capacity of the facility as a
constraint. The capacity of facilities is a predefined numeric value (integer value between
1 and 1000) that indicates the maximum number of demands (districts) allowed to be
covered by each facility. Since the actual capacity of vaccination centers is not available, we
tested the maximal capacitated coverage approach using different capacity assumptions.
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3.2.3. Minimize Facilities

Minimizing facilities problems is similar to the maximum coverage problem, in which
the main goal is to choose facilities to serve as many demand points as possible, but the
number of facilities is to be minimized.

3.3. Study Area

Jeddah is situated on the Red Sea coast in western Saudi Arabia, with a total area
of 1686 km2 and longitude E 39◦11,052.6900 and latitude N 21◦32,032.5700. Jeddah is
the kingdom’s second-biggest metropolis, behind Riyadh, and the main city in Makkah
Province. Jeddah’s overall population is above 4 million, with an annual growth rate of
2.3 percent.

3.4. Data

The dataset is obtained from collecting information regarding all districts of Jeddah
city and the number of COVID-19 vaccine centers available in the city. We gathered
feature datasets from the topographic map of Jeddah, such as road lines, administrative
boundaries, COVID-19 centers, and settlement layers obtained from the Saudi ministry of
health. Demand points were represented by the centroid of the districts. The geometric
center, often known as the centroid, is a point that represents vector data (multipoint, line,
and area features). Figure 1 presents the distribution of existing COVID-19 centers among
districts at Jeddah city.

3.5. Objective Function

The objectives are to determine the optimal allocation of COVID-19 vaccine facilities to
maximize demand coverage, to find the optimal distribution of the facilities under different
capacity constraints, and to find the optimal location-allocation distribution of COVID-19
vaccine that simultaneously maximizes demand coverage and minimizes facilities.

3.6. Software

In the location and allocation studies of the COVID-19 facilities, geographic informa-
tion systems (GIS), linear programming methods, and mathematical models are used. The
GIS feature of network analysis has been extensively employed to tackle location-allocation
problems. GIS allows for the collection and analysis of locational data, making it useful for
determining facilities’ locations. The shortest paths or the service areas of the facilities can
be determined using network analysis [69]. The majority of our maps in this study were
created utilizing the Network Analyst tool extension in ArcMap version 10.8.1 to analyze
data. We used ArcMap to perform the network analysis of the district, street maps, and
COVID-19 centers in Jeddah. ArcMap software is developed by Environmental Systems
Research Institute (Esri), Redlands, CA, USA.

4. Experiments and Results
4.1. Maximize Coverage

The maximize coverage method is used to select facilities such that all or most of the
demand points would have access to facilities within a specified impedance cutoff. The
district centroids represent the demand nodes, and the facilities are distributed based on
their current locations in Jeddah city. The total number of COVID-19 centers available in
Jeddah city is 42 centers and the number of the demand points is 156 districts. We used the
location-allocation problem to maximize the coverage of the currently available facilities.
The Euclidean distance between the facilities and the demand nodes was used to define the
objective function of minimizing the travel time. The following assumptions have been
used prior to the implementation:

• Facilities are uncapacitated.
• The impedance is based on time in minutes.
• The travel type is from demand point to facility.
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• The impedance transformation is linear.
• Roads are bidirectional.

Different impedance cutoffs (times) are used as a preliminary evaluation of the current
distribution of the facilities with regard to the centroid districts. The impedance cutoffs
used are 10, 20, 30, 40, 50, and 60 min. We tested the location-allocation approach with
different impedance cutoffs to evaluate the accessibility of the centers under different
travel time constraints and determine the most accessible centers to districts. This will
help decision-makers choose the most accessible centers when the number of facilities
needs to be reduced. We first used the 10 min impedance cutoff, and we found that
37 facilities were chosen and 5 candidate facilities were not allocated, which are King
Abdulaziz Airport, King Abdulaziz Hospital, King Fahad General Hospital, Al Aziziyah
Maternity and Children Hospital, and Al Mishrifah Health Center (Table 6). Moreover,
101 districts can have access to facilities within 10 min. It was found when the impedance
cutoff was 20 min, 140 districts out of 156 districts were able to reach facilities, and for a
30 min impedance cutoff, almost all districts can reach facilities (155 districts) except for one
district, which is the Al-Rabie district. Moreover, within the 40 impedance cutoff, all the
156 Jeddah districts can have access to the 37 chosen facilities out of 42 facilities. Figure 2
presents the network analysis maps of the maximum coverage problem with different
impedance cutoffs. This analysis shows that the current network of facilities was more
than sufficient in covering the population districts if a 40 min impedance cutoff is assumed.
Table 3 presents the number of located demands and allocated facilities using the maximize
coverage problem.

Table 3. Analysis results of the maximize coverage problem with different impedance cutoffs and
number of chosen facilities and covered districts.

Impedance Cutoff No. of Facilities No. of Districts

10 37 101
20 37 140
30 37 155
40 37 156
50 37 156
60 37 156

(a) 10 min (101 districts) (b) 20 min (140 districts)
Figure 2. Cont.
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(c) 30 min (155 districts) (d) 40 min (156 districts)

(e) 50 min (156 districts) (f) 60 min (156 districts)
Figure 2. Network analysis map of the maximum coverage problem with different cutoff impedance
times.

4.2. Maximize Capacitated Coverage

The maximize capacitated coverage is used in location allocation when facilities have
limited capacity, such that all or the largest amount of demand may be satisfied without
any facility exceeding its capacity. Furthermore, this strategy selects the set of facilities to
minimize the entire sum of weighted impedance (demand assigned to a facility multiplied
by impedance to or from the facility). Similar to the maximize coverage problem, the
following assumptions are made in solving this model:

• Each facility has a limited capacity to cover demand from a fixed number of districts
(analyzed scenarios with three and four districts).

• The impedance is based on time in minutes.
• The travel type is from demand point to facility.
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• The impedance transformation is linear (equal to the cost of the shortest path between
the demand point and the facility).

• Roads are bidirectional.

When using maximize capacitated coverage problem, we first considered the maxi-
mum capacity of three districts with a similar range of impedance cutoffs to the maximize
coverage problem. We found all facilities were chosen except three facilities, which are King
Abdulaziz Airport, King Abdulaziz Hospital, and Al Aziziyah Maternity and Children
Hospital, and 94 districts were covered out of 156 districts when impedance cutoff equal to
10 (Table 6). In addition, with an impedance cutoff of 20 min, we found out that all facilities
were chosen except one facility, King Abdulaziz Airport, with a total of 112 districts covered
in 20 min. On the other hand, when cutoff times changed to 30, 40, 50, and 60 min, all
facilities were chosen to cover 124, 126, 126, and 126 districts, respectively.

Furthermore, we repeated the experiment with a maximum capacity of 4, we found
that when the impedance cutoff was 10 min, 98 districts were covered with 38 facilities.
All facilities were chosen in the network except four facilities King Abdulaziz Airport,
King Abdulaziz Hospital, King Fahad General Hospital, and Al Aziziyah Maternity and
Children Hospital (Table 6). On the other hand, when 20, 30, 40, 50, and 60 impedance
cutoffs were selected, 119, 135, 149, 154, and 156 districts were covered, respectively.
Figures 3 and 4 demonstrate the maximize capacitated coverage problem solution maps
under the assumption of facility capacities of three and four districts, respectively. Table 4
shows the number of covered demands and allocated facilities when the maximum capacity
of each facility is three districts or four districts.

Table 4. Analysis results of the maximize capacitated coverage problem with different impedance
cutoffs and number of chosen facilities and covered districts.

Impedance Cutoff
Capacity = 3 Districts Capacity = 4 Districts

No. of Facilities No. of Districts No. of Facilities No. of Districts

10 39 94 38 98
20 41 112 38 119
30 42 124 39 135
40 42 126 42 149
50 42 126 42 154
60 42 126 42 156

(a) 10 min (94 districts) (b) 20 min (112 districts)
Figure 3. Cont.
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(c) 30 min (124 districts) (d) 40 min (126 districts)

(e) 50 min (126 districts) (f) 60 min (126 districts)
Figure 3. Network analysis map of the maximize capacitated problem with facility capacity of
3 districts and different cutoff impedance times.
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(a) 10 min (98 districts) (b) 20 min (119 districts)

(c) 30 min (135 districts) (d) 40 min (149 districts)
Figure 4. Cont.
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(e) 50 min (154 districts) (f) 60 min (156 districts)
Figure 4. Network analysis map of the maximize capacitated problem with facility capacity of 4
districts and different cutoff impedance times.

4.3. Minimizing Facilities

The goal of this analysis is to increase coverage while reducing the number of facilities.
This approach allows selecting the smallest number of facilities required to meet all or a
portion of demand points within a certain impedance cutoff. We applied the minimize
facilities problem with different impedance cutoffs. Similar to the previous problems, we
use the analysis with the following assumptions:

• Facilities are uncapacitated.
• The impedance is based on time in minutes.
• The travel type is from demand point to facility.
• The impedance transformation is linear.
• Roads are bidirectional.

When analyzing the minimize facilities problem with a 10 min impedance cutoff, we
found that 15 facilities were chosen to cover 101 districts. The chosen facilities include
the International Medical Center Hospital, King Abdullah Medical Complex, and Obhur
Medical Center (see Table 6). Similarly, when we applied the minimize facilities method
with an impedance cutoff of 15 min, 10 facilities were chosen out of 42 facilities to connect
122 districts (Table 6).

When selecting an impedance cutoff of 20 min, 9 facilities were chosen out of 42 facil-
ities to cover 140 districts for 20 min. We repeated the same process; however, changing
the impedance cutoff to 25 min, we found that 148 districts can have access to 7 chosen
facilities which are Obhur Medical Center, Al Thaghr Hospital, Ophthalmology Hospital,
Al Majed Medical Center, Al Qwizain Medical Center, Al Harazat Health Center, and Prince
Abdullah Al Faisal Stadium.

When choosing an impedance cutoff of 30 min with linear impedance transformation,
5 facilities were allocated out of 42 facilities to cover 155 districts. The selected centers are
Obhur Medical Center, Health Centre AlBawadi, East Jeddah General Hospital, Al Qwizain
Medical Center, and Prince Abdullah Al Faisal Stadium. Selecting an impedance cutoff of
40 min with linear impedance transformation allocates 2 facilities out of 42 facilities to cover
156 districts. The selected centers are Obhur Medical Center and Al Rawabi Health Center.
Figure 5 shows the network analysis of the minimize facility problem. Table 5 presents the
number of located demands and allocated facilities when using different impedance cutoff.
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Table 5. Analysis results of the minimize facilities problem with different impedance cutoffs and
number of chosen facilities and covered districts.

Impedance Cutoff No. of Facilities No. of Districts

10 15 101
15 10 122
20 9 140
25 7 148
30 5 155
40 2 156

(a) 10 min (15 facilities and 101 districts) (b) 15 min (10 facilities and 122 districts)

(c) 20 min (9 facilities and 140 districts) (d) 25 min (7 facilities and 148 districts)
Figure 5. Cont.
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(e) 30 min (5 facilities and 155 districts) (f) 40 min (2 facilities and 156 districts)
Figure 5. Network analysis map of the minimize facilities problem with different impedance cutoff.

5. Discussion

As shown in Tables 3–6, the result of maximize coverage problem indicates that as we
increase the impedance cutoff more districts are covered. These results suggest that it is
possible to enhance the coverage of uncovered demand nodes by increasing the impedance
cutoff. It can be concluded that improving the coverage of uncovered nodes comes at
the expense of increasing the travel time; hence there is a trade-off between maximizing
the coverage and reducing the time. Moreover, in the maximize coverage problem, it is
noticed that five facilities were not allocated to any demand nodes in all the impedance
cutoff, which are King Abdulaziz Airport, King Abdulaziz Hospital, King Fahad General
Hospital, Al Aziziyah Maternity and Children Hospital, and Al Mishrifah Health Center.
This analysis might interest the decision makers to consider relocating some of the centers
to improve the distribution of vaccination centers. On the other hand, the result of the
minimize facilities problem highlights that as the impedance cutoff increases, more districts
can be covered, and fewer facilities can be chosen as service centers. This can be shown
clearly in the result of 40 impedance cutoff time that only two facilities are chosen to cover
all Jeddah districts. It is also noticed that in all the impedance cutoff times, the same
mentioned five facilities in the maximize coverage problem were still not chosen, which
supports the suggestion of considering the optimization of relocating some of the facilities.
Comparing the results of maximize capacitated coverage problem, it can be noticed that in
a maximum capacity of three, not all facilities can serve all districts even if we increase the
impedance cutoff time. Whereas in the maximize capacity of four, as the impedance cutoff
time increases, all facilities can be chosen to serve more districts. It is worth mentioning
that in the early cutoff time of both maximize capacitated coverage problem of the three
and four capacity, three centers of the five previously mentioned facilities in maximize
coverage and minimize facilities were still not utilized which are King Abdulaziz Airport,
King Abdulaziz Hospital, Al Aziziyah Maternity, and Children Hospital.

The analysis presented in this study provides insight into the spatial distribution of
COVID-19 with respect to the districts of Jeddah City; however, a comparison between
the analysis conducted in this study and an analysis with the complete data, including
recent population census data, deserves further investigation. It is also important to take
into account the number of medical staff and available cooling devices when determining
and estimating the capacity of vaccination sites. Unfortunately, this data is not currently
available but will be considered in future work.
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Table 6. A summary of the allocated facilities and a number of located districts using the maximize
coverage, minimize facilities, and maximize capacitated coverage (MCC) with different impedance
cutoffs.

No. Facility Name
Minimize Facilities Maximize Coverage MCC Capacity 3 MCC Capacity 4

10 15 20 25 30 40 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

1 King Abdulaziz Airport
2 King Abdulaziz University
3 Maternity and Children’s Hospital
4 Jeddah field hospital
5 Comprehensive National Guard
6 International Medical Center
7 Prince Abdulmajeed PHC Center
8 King Abdullah Medical Complex
9 King Abdulaziz Hospital

10 Al Mahgar Medical Center
11 Obhur Medical Center
12 Health Centre AlBawadi
13 Al Thaghr Hospital
14 Ophthalmology Hospital
15 King Fahad General Hospital
16 East Jeddah General Hospital
17 Mental health hospital in Jeddah
18 Al Majed Medical Center
19 University District PHC Center
20 Al Aziziyah M and C Hospital
21 Tayba Medical Center
22 Al Rayan Medical Center
23 Madain Al Fahd Medical Center
24 Al Balad Medical Center
25 Al Thaalba Medical Center
26 Al Qryniah Medical Center
27 Al Qwizain Medical Center
28 Al Rabwah PHC Center
29 Al Azziziyah Health Center
30 Al Mishrifah Health Center
31 Al Salamah Health Center
32 Al Marwah Health Center
33 Health Center East of The Highway
34 Al Rawabi Health Center
35 Al Rehab Health Center
36 Al Harazat Health Center
37 Kilo 14 Health Center
38 Old Airport Health Center
39 Umm Al Salam Health Center
40 Health Surveillance Center JIP
41 Al Salaam Mall
42 Prince Abdullah Al Faisal Stadium

6. Conclusions

The geographical accessibility of healthcare resources has long been a topic of interest
in public health research. Several studies have looked into analyzing the location and the
accessibility of healthcare facilities, including permanent and emergency facilities. Studying
and COVID-19 health facilities (vaccination and samples test) locations have attracted many
researchers recently. These studies have looked into COVID-19 vaccination distributions
sites [57], vaccination centers [58], and sample test sites [59]. These studies were conducted
using various location-allocation models and applied to different European and Asian
cities. In this research, we evaluate the current location of COVID-19 centers in Jeddah
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city using different objective functions and constraints conditions. We first examined the
accessibility of COVID-19 centers using the maximum covering model. We also assessed
the accessibility of the centers with the assumption that each facility is capacitated to cover
a limited number of districts. We also locate the optimal centers that maximize the coverage
and minimize the number of facilities. This analysis has the potential to aid in the redressing
of unequal COVID-19 facilities distribution. The analysis showed the uneven allocation
of the existing facilities in some districts compared to other districts in the city, especially
when the capacity of COVID-19 centers is considered. This may deter a huge number of
people from getting tested and getting COVID-19 vaccines. The results show that if the
capacity of COVID-19 centers is not a concern, all demand points can reach vaccination
centers in 30–40 min. In the case of capacitated facilities, less number of demand points are
covered by vaccination centers. The results also show that when minimizing the number of
centers, five centers are chosen to cover the majority of districts (155 districts) within a 30
impedance cutoff.
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