Introduction to the Special Issue of IJERPH Entitled “Prenatal Exposure to Environmental Pollutants and Other Stressors: Impacts on Fetal Development, Birth Outcomes, Children’s Health and Beyond”
1. Introduction
2. Short Overview of Prenatal Exposure to Toxic Environmental Pollutants and Potential Health Impacts
3. Conclusions
Funding
Conflicts of Interest
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Landrigan, P.J.; Etzel, R.A. Textbook of Children’s Environmental Health; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980–2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. 7 Million Premature Deaths Annually Linked to Air Pollution; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Wylie, B.J.; Matechi, E.; Kishashu, Y.; Fawzi, W.; Premji, Z.; Coull, B.A.; Hauser, R.; Ezzati, M.; Roberts, D.J. Placental pathology associated with household air pollution in a cohort of pregnant women from Dar es Salaam, Tanzania. Environ. Health Perspect. 2017, 125, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Rollin, H.B.; Channa, K.; Olutola, B.G.; Odland, J.O. Evaluation of in utero exposure to arsenic in South Africa. Sci. Total Environ. 2017, 575, 338–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, B.; Wilhelm, M. Ambient air pollution and adverse birth outcomes: Methodologic issues in an emerging field. Basic Clin. Pharm. Toxicol. 2008, 102, 182–190. [Google Scholar] [CrossRef]
- Ritz, B.; Wilhelm, M.; Hoggatt, K.J.; Ghosh, J.K. Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am. J. Epidemiol. 2007, 166, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, T.J.; Darrow, L.A.; Parker, J.D. Air pollution and postneonatal infant mortality in the United States, 1999–2002. Environ. Health Perspect. 2008, 116, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of improved air quality with lung development in children. N. Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef] [Green Version]
- WHO. More than 90% of the World’s Children Breathe Toxic Air Everyday; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Goyer, R.A. Lead toxicity: Current concerns. Environ. Health Perspect. 1993, 100, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Goyer, R.A.; Rhyne, B.C. Pathological effects of lead. Int. Rev. Exp. Pathol. 1973, 12, 1–77. [Google Scholar] [PubMed]
- Pounds, J.G.; Long, G.J.; Rosen, J.F. Cellular and molecular toxicity of lead in bone. Environ. Health Perspect. 1991, 91, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, M.B. Toxicokinetics of bone lead. Environ. Health Perspect. 1991, 91, 33–37. [Google Scholar] [CrossRef]
- Bellinger, D.; Leviton, A.; Allred, E.; Rabinowitz, M. Pre-and postnatal lead exposure and behavior problems in school-aged children. Environ. Res. 1994, 66, 12–30. [Google Scholar] [CrossRef]
- Denno, D.W. Biology and Violence: From Birth to Adulthood; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- Arctic Monitoring and Assessment Programme. AMAP Assessment Report: Arctic Pollution Issues; Arctic Council: Oslo, Noway, 1998. [Google Scholar]
- Beinhoff, C.I. Removal of Barriers to Introduction of Cleaner Artisanal Gold Mining and Extraction Technologies; Global Mercury Project; GEF/UNDP/UNIDO Project EG/GLO/01/G34; GMP News; Global Environment Facility: Washington, DC, USA, 2003. [Google Scholar]
- Koos, B.J.; Longo, L.D. Mercury toxicity in the pregnant woman, fetus, and newborn infant: A review. Am. J. Obs. Gynecol. 1976, 126, 390–409. [Google Scholar] [CrossRef]
- Matsumoto, H.; Koya, G.; Takeuchi, T. Fetal Minamata disease: A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J. Neuropathol. Exp. Neurol. 1965, 24, 563–574. [Google Scholar] [CrossRef]
- Aschner, M.; Lukey, B.; Tremblay, A. The Manganese Health Research Program (MHRP): Status report and future research needs and directions. Neurotoxicology 2006, 27, 733–736. [Google Scholar] [CrossRef]
- Williams, M.; Todd, G.D.; Roney, N.; Crawford, J.; Coles, C.; McClure, P.R.; Garey, J.D.; Zaccaria, K.; Citra, M. Toxicological Profile for Manganese; ATSDR: Atlanta, GA, USA, 2000. [Google Scholar]
- Keen, C.L.; Zindenberg, C.S. Present knowledge in nutrition. In Manganese; Brown, M.L., Ed.; International Life Sciences Institute: Washington, DC, USA, 1990; pp. 279–286. [Google Scholar]
- Mena, I.; Horiuchi, K.; Burke, K.; Cotzias, G.C. Chronic manganese poisoning. Individual susceptibility and absorption of iron. Neurology 1969, 19, 1000–1006. [Google Scholar] [CrossRef]
- Mena, I.; Marin, O.; Fuenzalida, S.; Cotzias, G.C. Chronic manganese poisoning: Clinical picture and manganese turnover. Neurology 1967, 17, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Gulumian, M.; Hancock, R.D.; Rollin, H.B. Influence of metal-ligand interactions on the distribution of metal ions and ligands in biological fluids. Physiological implications: Competitive interaction and their physiological consequences. In Handbook on Metal-Ligand Interactions in Biological Fluids; Berthon, G., Ed.; Marcel Dekker, Inc.: Toulouse, France, 1995; Volume 1, pp. 117–129. [Google Scholar]
- Miller, G.; Massaro, T.F.; Massaro, E.J. Interactions between lead and essential elements: A review. Neurotoxicology 1990, 11, 99–119. [Google Scholar] [PubMed]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attaran, A.; Roberts, D.R.; Curtis, C.F.; Kilama, W.L. Balancing risks on the backs of the poor. Nat. Med. 2000, 6, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.; Morse, D.C.; Lans, M.C.; Schuur, A.G.; Murk, A.J.; Klasson-Wehler, E.; Bergman, A.; Visser, T.J. Interactions of persistent environmental organohalogens with the thyroid hormone system: Mechanisms and possible consequences for animal and human health. Toxicol. Ind. Health 1998, 14, 59–84. [Google Scholar] [CrossRef] [PubMed]
- Patandin, S. Effects of Environmental Exposure to Polychlorinated Biphenyls and Dioxins on Growth and Development in Young Children: A Prospective Follow-up Study of Breast-Fed and Formula-Fed Infants from Birth until 42 Months of Age. Ph.D. Thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1999. [Google Scholar]
- Ribas-Fito, N.; Sala, M.; Kogevinas, M.; Sunyer, J.J. Polychlorinated biphenyls (PCBs) and neurological development in children: A systematic review. J. Epidemiol. Community Health 2001, 55, 537–546. [Google Scholar] [CrossRef]
- Tryphonas, H. The impact of PCBs and dioxins on children’s health: Immunological considerations. Can. J. Public Health 1998, 89 (Suppl. 1), S54–S57. [Google Scholar] [CrossRef]
- Daston, G.; Faustman, E.; Ginsberg, G.; Fenner-Crisp, P.; Olin, S.; Sonawane, B.; Bruckner, J.; Breslin, W.; McLaughlin, T.J. A framework for assessing risks to children from exposure to environmental agents. Environ. Health Perspect. 2004, 112, 238–256. [Google Scholar] [CrossRef] [Green Version]
- Selevan, S.G.; Kimmel, C.A.; Mendola, P. Identifying critical windows of exposure for children’s health. Environ. Health Perspect. 2000, 108 (Suppl. 3), 451–455. [Google Scholar]
- Weiss, B. Vulnerability of children and the developing brain to neurotoxic hazards. Environ. Health Perspect. 2000, 108 (Suppl. 3), 375–381. [Google Scholar]
- Hooper, K.; McDonald, T.A. The PBDEs: An emerging environmental challenge and another reason for breast-milk monitoring programs. Environ. Health Perspect. 2000, 108, 387–392. [Google Scholar] [CrossRef]
- Sonawane, B.R. Chemical contaminants in human milk: An overview. Environ. Health Perspect. 1995, 103 (Suppl. 6), 197–205. [Google Scholar] [PubMed] [Green Version]
- Sripada, K.; Wierzbicka, A.; Abass, K.; Grimalt, J.O.; Erbe, A.; Röllin, H.B.; Weihe, P.; Díaz, G.J.; Singh, R.R.; Visnes, T.; et al. A children’s health perspective on nano- and microplastics. Environ. Health Perspect. 2022, 130, 015001. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Kippler, M.; Hoque, A.M.W.; Raqib, R.; Öhrvik, H.; Ekström, E.-C.; Vahter, M. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol. Lett. 2010, 192, 162–168. [Google Scholar] [CrossRef]
- Kuhnert, B.R.; Kuhnert, P.M.; Debanne, S.; Williams, T.G. The relationship between cadmium, zinc, and birth weight in pregnant women who smoke. Am. J. Obs. Gynecol. 1987, 157, 1247–1251. [Google Scholar] [CrossRef]
- Osman, K.; Akesson, A.; Berglund, M.; Bremme, K.; Schütz, A.; Ask, K.; Vahter, M. Toxic and essential elements in placentas of Swedish women. Clin. Biochem. 2000, 33, 131–138. [Google Scholar] [CrossRef]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sorensen, N.; Dahl, R.; Jorgensen, J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotox. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Stewart, P.W.; Lonky, E.; Reihman, J.; Pagano, J.; Gump, B.B.; Darvill, T. The relationship between prenatal PCB exposure and intelligence (IQ) in 9-year-old children. Environ. Health Perspect. 2008, 116, 1416–1422. [Google Scholar] [CrossRef]
- Boyd, C.A.; Weiler, M.H.; Porter, W.P. Behavioral and neurochemical changes associated with chronic exposure to low-level concentration of pesticide mixtures. J Toxicol. Environ. Health 1990, 30, 209–221. [Google Scholar] [CrossRef]
- Brody, J.G.; Aschengrau, A.; McKelvey, W.; Rudel, R.A.; Swartz, C.H.; Kennedy, T. Breast cancer risk and historical exposure to pesticides from wide-area applications assessed with GIS. Environ. Health Perspect. 2004, 112, 889–897. [Google Scholar] [CrossRef] [Green Version]
- DeRosa, C.; Richter, P.; Pohl, H.; Jones, D.E. Environmental exposures that affect the endocrine system: Public health implications. J. Toxicol. Environ. Health Part B 1998, 1, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Chung, K.L.; Sonnenschein, C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Perspect. 1994, 102, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.F.; Klotz, D.M.; Collins, B.M.; Vonier, P.M.; Guillette, L.J., Jr.; McLachlan, J.A. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science 1996, 272, 1489–1492. [Google Scholar] [CrossRef]
- Villa-Guillen, D. Breast cancer and exposure to hazardous contaminants: A minefield of feats and challenges. Open Access J. Biomed. Sci. 2020, 2, 000169. [Google Scholar] [CrossRef]
- Johnson, S.P. The Earth Summit: The United Nations Conference on Environment and Development (UNCED); Graham & Trotman/Martinus Nijhoff: London, UK; Boston, MA, USA, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Röllin, H.B. Introduction to the Special Issue of IJERPH Entitled “Prenatal Exposure to Environmental Pollutants and Other Stressors: Impacts on Fetal Development, Birth Outcomes, Children’s Health and Beyond”. Int. J. Environ. Res. Public Health 2022, 19, 8816. https://doi.org/10.3390/ijerph19148816
Röllin HB. Introduction to the Special Issue of IJERPH Entitled “Prenatal Exposure to Environmental Pollutants and Other Stressors: Impacts on Fetal Development, Birth Outcomes, Children’s Health and Beyond”. International Journal of Environmental Research and Public Health. 2022; 19(14):8816. https://doi.org/10.3390/ijerph19148816
Chicago/Turabian StyleRöllin, Halina B. 2022. "Introduction to the Special Issue of IJERPH Entitled “Prenatal Exposure to Environmental Pollutants and Other Stressors: Impacts on Fetal Development, Birth Outcomes, Children’s Health and Beyond”" International Journal of Environmental Research and Public Health 19, no. 14: 8816. https://doi.org/10.3390/ijerph19148816
APA StyleRöllin, H. B. (2022). Introduction to the Special Issue of IJERPH Entitled “Prenatal Exposure to Environmental Pollutants and Other Stressors: Impacts on Fetal Development, Birth Outcomes, Children’s Health and Beyond”. International Journal of Environmental Research and Public Health, 19(14), 8816. https://doi.org/10.3390/ijerph19148816