Exhaustion in Healthcare Workers after the First Three Waves of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Outcomes
2.3. Explanatory Variables
2.4. Statistical Methods
3. Results
3.1. Description of the Study Population
3.2. Univariate Analysis
3.3. Multivariate Analysis
3.4. Comparison of the Perceived Job Stressors and Exhaustion Score between flHCW and slHCW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Light, D.W. Alienation and stress among doctors: Dilemmas and possible solutions. Prof. Prof. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Toppinen-Tanner, S. Process of Burnout: Structure, Antecedents, and Consequences. People at Work; Research Report 93; Finish Institute of Occupational Health: Helsinki, Finland; Tampereen Yliopistopaino Oy—Juvenes Print: Tampere, Finland, 2011; ISSN 978-952-261-043-0. [Google Scholar]
- Taris, T.W.; Le Blanc, P.M.; Schaufeli, W.B.; Schreurs, P.J.G. Are there causal relationships between the dimensions of the Maslach Burnout Inventory? A review and two longitudinal tests. Work Stress 2005, 19, 238–255. [Google Scholar] [CrossRef] [Green Version]
- Korunka, C.; Tement, S.; Zdrehus, C.; Borza, A. Burnout: Definition, Recognition and Prevention Approaches. BOIT: Burnout Intervention Training for Managers and Team Leaders. 2010. Available online: https://www.bridgestoeurope.com/wpcontent/uploads/2020/03/BOIT_theoretical_abstract_2705.pdf (accessed on 15 February 2021).
- Burisch, M. Das Burnout-Syndrom: Theorie der Inneren Erschöpfung; The Burnout-Syndrome: A Theory of Inner Exhaustion; Springer: Berlin/Heidelberg, Germany, 2006; pp. 129–197. [Google Scholar]
- Guseva Canu, I.; Marca, S.C.; Dell’Oro, F.; Balázs, Á.; Bergamaschi, E.; Besse, C.; Bianchi, R.; Bislimovska, J.; Koscec Bjelajac, A.; Bugge, M.; et al. Harmonized definition of occupational burnout: A systematic review, semantic analysis, and Delphi consensus in 29 countries. Scand. J. Work Environ. Health 2021, 47, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, J.; Verbraak, M.; Keijsers, G.P.J.; de Bruin, M.B.N.; Schmidt, A.J.M. Psychometric properties of a Dutch version of the Maslach Burnout Inventory General Survey (MBI-DV) in individuals with and without clinical burnout. Stress Health 2005, 21, 17–25. [Google Scholar] [CrossRef]
- Pandemic Fatigue—Reinvigorating the Public to Prevent COVID-19. Policy Framework for Supporting Pandemic Prevention and Management. WHO Regional Office for Europe: Copenhagen, Denmark, 2020. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/bitstream/handle/10665/335820/WHO-EURO-2020-1160-40906-55390-eng.pdf (accessed on 15 March 2022).
- Dimitriu, M.C.T.; Pantea-Stoian, A.; Smaranda, A.C.; Nica, A.A.; Carap, A.C.; Constantin, V.D.; Davitoiu, A.M.; Cirstoveanu, C.; Bacalbasa, N.; Bratu, O.G.; et al. Burnout syndrome in Romanian medical residents in time of the COVID-19 pandemic. Med. Hypotheses 2020, 144, 109972. [Google Scholar] [CrossRef] [PubMed]
- Stafie, C.S.; Profire, L.; Apostol, M.M.; Costache, I.I. The Professional and Psycho-Emotional Impact of the COVID-19 Pandemic on Medical Care—A Romanian GPs’ Perspective. Int. J. Environ. Res. Public Health 2021, 18, 2031. [Google Scholar] [CrossRef]
- Aly, H.M.; Nemr, N.A.; Kishk, R.M.; Elsaid, N.M.A.B. Stress, anxiety and depression among healthcare workers facing COVID-19 pandemic in Egypt: A cross-sectional online-based study. BMJ Open 2021, 11, e045281. [Google Scholar] [CrossRef]
- Nissan, D.; Weiss, G.; Siman-Tov, M.; Spitz, A.; Bodas, M.; Shenhar, G.; Adini, B. Differences in levels of psychological distress, perceived safety, trust, and efficacy amongst hospital personnel during the COVID-19 pandemic. Res. Nurs. Health 2021, 44, 776–786. [Google Scholar] [CrossRef]
- Lamiani, G.; Borghi, L.; Poli, S.; Razzini, K.; Colosio, C.; Vegni, E. Hospital Employees’ Well-Being Six Months after the COVID-19 Outbreak: Results from a Psychological Screening Program in Italy. Int. J. Environ. Res. Public Health 2021, 18, 5649. [Google Scholar] [CrossRef]
- Leiter, M.P.; Maslach, C. Latent burnout profiles: A new approach to understanding the burnout experience. Burn Res. 2016, 3, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Magnavita, N.; Soave, P.M.; Antonelli, M. A One-Year Prospective Study of Work-Related Mental Health in the Intensivists of a COVID-19 Hub Hospital. Int. J. Environ. Res. Public Health 2021, 18, 9888. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, L.E.; Bretones, F.D.; Rodríguez, J.A. The Effort-Reward Model and Its Effect on Burnout Among Nurses in Ecuador. Front. Psychol. 2021, 12, 760570. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Li, J. Associations of Extrinsic and Intrinsic Components of Work Stress with Health: A Systematic Review of Evidence on the Effort-Reward Imbalance Model. Int. J. Environ. Res. Public Health 2016, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Preckel, D.; von Känel, R.; Kudielka, B.M.; Fischer, J.E. Overcommitment to work is associated with vital exhaustion. Int. Arch. Occup. Environ. Health 2005, 78, 117–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ives, J.; Greenfield, S.; Parry, J.M.; Draper, H.; Gratus, C.; Petts, J.I.; Sorell, T.; Wilson, S. Healthcare workers’ attitudes to working during pandemic influenza: A qualitative study. BMC Public Health 2009, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Çalışkan, E.; Kargın, M. The relationship between coronavirus 19 fear and occupational fatigue, burnout and recovery levels in healthcare professionals in Turkey. Arch. Environ. Occup. Health 2021, 1–10. [Google Scholar] [CrossRef]
- Mateș, D.; Calotă, V.C.; Staicu, C.A.; Călugărenu, L.; Ipate, M.; Mărgineanu, M.; Oțelea, M.R.; Persecă, O.; Popescu, F.S.; Rașcu, A.; et al. ORCHESTRA project in Romania—A prospective occupational cohort to study the impact of COVID-19 pandemic on healthcare workers. Rom. J. Occup. Med. 2021, 72, 54–58. [Google Scholar] [CrossRef]
- Psychological and Educational Research Group. Faculty of Psyhology and Education Sciences, University of Bucurest. Available online: http://researchcentral.ro/index.php?action=listateste&ID=412 (accessed on 14 December 2020).
- Siegrist, J.; Li, H.; Montano, D. Psychometric Properties of the Effort-Reward Imbalance Questionnaire. Available online: https://www.uniklinik-duesseldorf.de/fileadmin/Fuer-Patienten-und-Besucher/Kliniken-Zetren-Institute/Institute/Institut_fuer_Medizinische_Soziologie/Dateien/ERI/ERI_Psychometric-New.pdf (accessed on 15 March 2021).
- Siegrist, J. A theory of occupational stress. In Stress in the Workplace: Past, Present and Future; Dunham, J., Ed.; Whurr Publishers: London, UK, 2001. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/hrh/statistics/Health_workers_classification.pdf (accessed on 15 March 2021).
- Sweileh, W.A. Research trends and scientific analysis of publications on burnout and compassion fatigue among healthcare providers. J. Occup. Med. Toxicol. 2020, 15, 23. [Google Scholar] [CrossRef]
- Yuan, Z.; Yu, D.; Zhao, H.; Wang, Y.; Jiang, W.; Chen, D.; Liu, X.; Li, X. Burnout of Healthcare Workers Based on the Effort-Reward Imbalance Model: A Cross-Sectional Study in China. Int. J. Public Health 2021, 66, 599831. [Google Scholar] [CrossRef]
- Tzenetidis, V.; Papathanasiou, I.; Tzenetidis, N.; Nikolentzos, A.; Sarafis, P.; Malliarou, M. Effort Reward Imbalance and Insomnia among Greek Healthcare Personnel during the Outbreak of COVID-19. Mater. Sociomed. 2021, 33, 124–130. [Google Scholar] [CrossRef]
- Shi, L.; Xu, R.H.; Xia, Y.; Chen, D.; Wang, D. The Impact of COVID-19-Related Work Stress on the Mental Health of Primary Healthcare Workers: The Mediating Effects of Social Support and Resilience. Front. Psychol. 2022, 12, 800183. [Google Scholar] [CrossRef] [PubMed]
- Beno, A.; Hensing, G.; Lindegård, A.; Jonsdottir, I.H. Self-reported changes in work situation—A cross-sectional study of patients 7 years after treatment for stress-related exhaustion. BMC Public Health 2021, 21, 1222. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, C.V.; Ladaru, G.-R.; Burlacu, S.; Constantin, F.; Ioanas, C.; Petre, I.L. Impact of the COVID-19 Pandemic on the Romanian Labor Market. Sustainability 2021, 13, 271. [Google Scholar] [CrossRef]
- Stoichitoiu, L.E.; Baicus, C. COVID-19 pandemic preparedness period through healthcare workers’ eyes: A qualitative study from a Romanian healthcare facility. PLoS ONE 2021, 16, e0257381. [Google Scholar] [CrossRef] [PubMed]
- Avanzi, L.; Perinelli, E.; Vignoli, M.; Junker, N.M.; Balducci, C. Unravelling Work Drive: A Comparison between Workaholism and Overcommitment. Int. J. Environ. Res. Public Health 2020, 17, 5755. [Google Scholar] [CrossRef]
- Jang, Y.; You, M.; Lee, H.; Lee, M.; Lee, Y.; Han, J.O.; Oh, J.H. Burnout and peritraumatic distress of healthcare workers in the COVID-19 pandemic. BMC Public Health 2021, 21, 2075. [Google Scholar] [CrossRef]
- El-Menyar, A.; Ibrahim, W.H.; El Ansari, W.; Gomaa, M.; Sathian, B.; Hssain, A.A.; Wahlen, B.; Nabir, S.; Al-Thani, H. Characteristics and predictors of burnout among healthcare professionals: A cross-sectional study in two tertiary hospitals. Postgrad. Med. J. 2021, 97, 583–589. [Google Scholar] [CrossRef]
- Ferry, A.V.; Wereski, R.; Strachan, F.E.; Mills, N.L. Predictors of UK healthcare worker burnout during the COVID-19 pandemic. QJM-Int. J. Med. 2021, 114, 374–380. [Google Scholar] [CrossRef]
- Hwang, H.; Hur, W.M.; Shin, Y. Emotional exhaustion among the South Korean workforce before and after COVID-19. Psychol. Psychother. 2021, 94, 371–381. [Google Scholar] [CrossRef]
- Sklar, M.; Ehrhart, M.G.; Aarons, G.A. COVID-related work changes, burnout, and turnover intentions in mental health providers: A moderated mediation analysis. Psychiatr. Rehabil. J. 2021, 44, 219–228. [Google Scholar] [CrossRef]
- Marina, C.; Geoca-Mutu, D.; Raduca, L.; Avino, A.; Brinduse, L.; Stefan, C.; Scaunasu, R.; Jecan, C. COVID-19 outbreak impact on plastic surgery residents from Romania. J. Mind Med. Sci. 2020, 7, 14. [Google Scholar] [CrossRef]
- Houdmont, J.; Daliya, P.; Theophilidou, E.; Adiamah, A.; Hassard, J.; Lobo, D.N. East Midlands Surgical Academic Network (EMSAN) Burnout Study Group. Burnout Among Surgeons in the UK During the COVID-19 Pandemic: A Cohort Study. World J. Surg. 2022, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maunder, R.G.; Heeney, N.D.; Kiss, A.; Hunter, J.J.; Jeffs, L.P.; Ginty, L.; Johnstone, J.; Loftus, C.A. Wiesenfeld LA. Psychological impact of the COVID-19 pandemic on hospital workers over time: Relationship to occupational role, living with children and elders, and modifiable factors. Gen. Hosp. Psychiatry 2021, 71, 88–94. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Statistics. Statistical Yearbook of Romania. 2021. Available online: https://insse.ro/cms/sites/default/files/field/publicatii/anuarul_statistic_al_romaniei_carte_0.pdf (accessed on 9 July 2022).
- Costea, F.; Sălceanu, M.; Staicu, I.M.; Andreescu, A.G. Burnout syndrome in the Emergency Department of the Central Military Emergency Hospital before and during the COVID-19 pandemic. Rom. J. Mil. Med. 2021, 124, 22–28. [Google Scholar] [CrossRef]
- Chou, L.P.; Li, C.Y.; Hu, S.C. Job stress and burnout in hospital employees: Comparisons of different medical professions in a regional hospital in Taiwan. BMJ Open 2014, 4, e004185. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Taki, F.; Kobayashi, D.; Jinta, T.; Suzuki, C.; Ayabe, A.; Sakamoto, F.; Kitaoka, K.; Uehara, Y.; Mori, N.; et al. Health care worker burnout after the first wave of the coronavirus disease 2019 (COVID-19) pandemic in Japan. J. Occup. Health 2021, 63, e12247. [Google Scholar] [CrossRef]
Characteristic N (%) | All 1872 | flHCW 1311 (70.03) | slHCW 561 (29.97) | p-Value |
---|---|---|---|---|
Demographic characteristics Gender | 0.367 | |||
Men | 340 (18.16) | 245 (18.69) | 95 (16.93) | |
Women | 1532 (81.84) | 1066 (81.31) | 466 (83.07) | |
Age (average ± SD) | 48.6 ± 10.9 | 48.6 ± 11.1 | 48.8 ± 10.6 | 0.776 * |
Age, years | 0.519 | |||
20–29 | 128 (6.84) | 89 (6.79) | 39 (6.95) | |
30–39 | 240 (12.82) | 177 (13.50) | 63 (11.23) | |
40–49 | 586 (31.30) | 413 (31.50) | 173 (30.84) | |
>50 | 918 (49.04) | 632 (48.21) | 286 (50.98) | |
Marital status | 0.001 | |||
Married/couple | 1390 (74.25) | 1002 (76.43) | 388 (69.16) | |
Single | 482 (25.75) | 309 (23.57) | 173 (30.84) | |
Education level | <0.001 | |||
Undergraduate | 179 (9.56) | 93 (7.09) | 86 (15.33) | |
University degree | 1693 (90.44) | 1218 (92.91) | 475 (84.67) | |
Job characteristics | ||||
Occupation | <0.001 | |||
Doctors | 1328 (70.94) | 1084 (82.68) | 244 (43.49) | |
Nurses | 248 (13.27) | 152 (11.59) | 96 (17.11) | |
Other health professionals | 168 (8.99) | 64 (4.88) | 104 (18.54) | |
Health management and support | 128 (6.85) | 11 (0.84) | 117 (20.86) | |
Workplace | <0.001 | |||
Hospital | 368 (19.66) | 328 (25.02) | 40 (7.14) | |
Other | 1504 (80.34) | 983 (74.98) | 520 (92.86) | |
Tenure (years) | 0.135 | |||
<1 | 37(1.98) | 22 (1.68) | 15 (2.67) | |
1–5 | 229 (12.23) | 160 (12.20) | 69 (12.30) | |
6–10 | 163 (8.71) | 125 (9.53) | 38 (6.77) | |
>10 | 1443 (77.08) | 1004 (76.58) | 439 (78.25) | |
Number of daily working hours (hours) | <0.025 | |||
≤8 | 1556 (83.12) | 1073 (81.85) | 483 (86.10) | |
>8 | 316 (16.88) | 238 (18.15) | 78 (13.9) | |
Working in shifts | 0.0009 | |||
No | 1524 (81.415) | 1047 (79.86) | 477 (85.03) | |
Yes | 348 (18.59) | 264 (20.14) | 84 (14.97) | |
Number of patients/day | ||||
<5 | 138 (10.53) | |||
Between 5–15 | 366 (27.92) | |||
Over 15 | 807(61.56) | |||
Management of risk of COVID-19 infection | 0.0002 | |||
Very well | 647 (34.56) | 480 (36.61) | 167 (29.78) | |
Well | 682 (36.43) | 492 (37.53) | 190 (33.87) | |
Acceptable | 429 (22.92) | 269 (20.52) | 160 (22.92) | |
Not so well | 88 (4.7) | 55 (4.2) | 33 (5.88) | |
Very badly | 26 (1.39) | 15 (1.14) | 11 (1.96) | |
Perceived job stressors | ||||
Reward score (average ± SD) | 5.44 ± 1.54 | 5.21 ± 1.522 | 5.99 ± 1.44 | <0.001 ** |
Effort score (average ± SD) | 9.19 ± 2.04 | 9.51 ± 1.89 | 8.45 ± 2.16 | <0.001 ** |
Personal factors | ||||
Overcommitment score (average ± SD) | 16.01 ± 2.89 | 16.34 ± 2.80 | 15.24 ± 2.94 | <0.001 ** |
COVID-19 diagnosis | 0.002 | |||
Yes | 476 (25.43) | 360 (27.46) | 116 (20.68) | |
No | 1396 (74.57) | 951 (72.54) | 445 (79.32) | |
Persistent symptoms of COVID-19 | 0.023 | |||
Yes | 201 (46.10) | 161 (49.24) | 40 (36.70) | |
No | 235 (53.90) | 166 (50.76) | 69 (63.30) | |
Duration of symptoms | 0.138 | |||
<1 month | 23 (11.44) | 19 (11.80) | 4 (10.00) | |
1–3 months | 75 (37.31) | 65 (40.37) | 10 (25.00) | |
>3 months | 103 (51.24) | 77 (47.83) | 26 (65.00) |
Total | flHCW | slHCW | ||||
---|---|---|---|---|---|---|
Variables | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value | Coefficient (CI 95%) | p-Value |
Demographics | ||||||
Age | −0.05 (−0.07–−0.03) | <0.0001 | −0.06 (−0.08–−0.04) | <0.0001 | −0.04 (−0.07–−0.001) | 0.04 |
Gender | ||||||
Men | reference | |||||
Women | 0.73 (0.18–1.29) | 0.010 | 0.61 (−0.03–1.23) | 0.06 | 12.14 (0.14–2.21) | 0.03 |
Level of education | ||||||
Undergraduate | reference | |||||
University degree | 1.45 (0.73–2.18) | 0.00009 | 1.09 (0.12–2.08) | 0.03 | 1.14 (0.07–2.22) | 0.04 |
Marital status | ||||||
Married/couple | reference | |||||
Single | 0.005 (−0.48–0.5) | 0.98 | −0.52 (−1.11–0.08) | 0.09 | −0.58 (−1.43–0.26) | 0.17 |
Objective job characteristics | ||||||
Occupation | ||||||
Health management and support | reference | |||||
Doctors | 2.77 (1.85–3.68) | <0.001 | 0.20 (−2.55–2.96) | 0.884 | 1.95 (0.85–3.04) | 0.001 |
Nurses | 1.89 (0.84–2.95) | <0.001 | −0.53 (−3.38–2.31) | 0.712 | 1.60 (0.29–2.91) | 0.017 |
Other health professionals | 1.42 (0.31–2.53) | 0.012 | −0.94 (−3.91–2.03) | 0.534 | 1.51 (0.27–2.75) | 0.017 |
Workplace | ||||||
Other | reference | |||||
Hospital | 1.55 (1.10–2.003) | <0.0001 | 0.64 (−0.15–1.45) | 0.11 | 0.57 (−0.71–1.87) | 0.38 |
Tenure | −0.12 (−0.39–0.15) | 0.4 | −0.21 (−0.54–0.12) | 0.21 | 0.32 (−0.37–1.02) | 0.36 |
Working h/day | ||||||
≤8 h | reference | |||||
>8 h | 2.20 (1.76–3.08) | <0.0001 | 1.64 (0.99–2.29) | <0.0001 | 3.43 (2.34–4.52) | <0.0001 |
Night shifts | ||||||
No | reference | |||||
Yes | 1.02 (0.48–1.57) | 0.0003 | 0.45 (−0.17–1.08) | 0.16 | 2.22 (0.55–1.15) | 0.00006 |
Perceived job stressors | ||||||
Effort score | 1.28 (1.2–1.37) | <0.0001 | 1.27 (1.16–1.38) | <0.0001 | 1.24 (1.1–1.39) | <0.0001 |
Reward score | −1.20 (−1.33–1.075) | <0.0001 | −1.17 (−1.33–−1.02) | <0.0001 | −1.06 (−1.32–−0.80) | <0.0001 |
Effort/reward score | 3.17 (2.91–3.44) | <0.0001 | 2.81 (2.51–3.11) | <0.0001 | 4.39 (3.73–5.03) | <0.0001 |
Distress (Effort/reward score > 1) | 0.25 (0.21–0.28) | <0.0001 | 4.01 (3.53–4.48) | <0.0001 | 4.87 (4.07–5.05) | <0.0001 |
Management of the infection risk in the workplace | ||||||
Very well | reference | |||||
Well | 0.72 (0.22–1.22) | 0.005 | 0.86 (0.29–1.44) | 0.003 | 0.49 (−0.46–1.44) | 0.309 |
Acceptable | 2.10 (1.54–2.67) | <0.001 | 2.21 (1.53–2.89) | <0.001 | 2.52 (1.53–3.51) | <0.001 |
Not so well | 2.71 (1.68–3.75) | <0.001 | 3.11 (1.84–4.38) | <0.001 | 2.65 (0.95–4.36) | 0.002 |
Very badly | 3.34 (1.52–5.16) | <0.001 | 3.81 (1.46–6.15) | 0.001 | 3.44 (0.65–6.23) | 0.016 |
Personal factors | ||||||
Overcommitment | 1.04 (0.99–1.1) | <0.0001 | 1.03 (0.96–1.10) | <0.0001 | 1.01 (0.91–1.12) | <0.0001 |
HCW diagnosed with COVID-19 | ||||||
No | reference | |||||
Yes | 0.95 (0.47–1.45) | 0.0001 | 0.76 | 0.009 | 1.03 (0.07–1.99) | 0.003 |
Persistence of symptoms | reference | |||||
No | 1.79 (0.9–2.68) | |||||
Yes | 0.00008 | 1.52 (0.49–2.56) | 0.004 | 2.15 (0.42–3.88) | 0.02 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | |
Demographics | ||||||||||
Age | −0.144 | <0.0001 | −0.178 | <0.001 | −0.169 | <0.001 | −0.190 | <0.001 | −0.189 | <0.001 |
Level of education | 0.074 | 0.007 | 0.048 | 0.198 | 0.040 | 0.234 | 0.041 | 0.146 | 0.059 | 0.006 |
Objective job characteristics | ||||||||||
Occupation | −0.085 | 0.003 | −0.04 | 0.12 | −0.026 | 0.23 | 0.009 | 0.84 | ||
Working h/day | 0.160 | <0.001 | 0.098 | <0.001 | 0.043 | 0.048 | 0.043 | 0.046 | ||
Number of patients/day | ||||||||||
<5 | reference | |||||||||
5–15 | 0.007 | 0.874 | −0.0009 | 0.982 | 0.003 | 0.933 | 0.003 | 0.919 | ||
>15 | 0.117 | 0.008 | 0.046 | 0.245 | −0.005 | 0.888 | −0.005 | 0.891 | ||
Perceived job stressors | ||||||||||
Effort/reward score | 0.422 | <0.001 | 0.207 | <0.001 | 0.207 | <0.001 | ||||
Management of the risk of infection in the workplace | 0.113 | <0.001 | 0.092 | <0.001 | 0.091 | <0.001 | ||||
Personal factors | ||||||||||
Overcommitment score | 0.532 | <0.001 | 0.531 | <0.001 | ||||||
Personal history of COVID-19 | 0.013 | 0.519 |
Variable | Unstandardized Coefficients | Standard Error | Beta | t | p * |
---|---|---|---|---|---|
Age | −0.00566 | 0.00089 | −0.15207 | −6.39373 | <0.0001 |
Score of overcommitment | 0.05210 | 0.00388 | 0.35508 | 13.42087 | <0.0001 |
Effort/reward score | 0.12807 | 0.01439 | 0.23497 | 8.90018 | <0.0001 |
Intercept | −0.54038 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | Beta Coef. | p | |
Demographics | ||||||||||
Age | −0.086 | 0.04 | −0.008 | 0.048 | -0.077 | 0.038 | −0.122 | <0.001 | −0.1123 | <0.001 |
Gender | 0.100 | 0.02 | 0.082 | 0.042 | 0.075 | 0.039 | 0.009 | 0.777 | 0.009 | 0.771 |
Level of education | 0.082 | 0.05 | 0.072 | 0.068 | 0.042 | 0.251 | 0.001 | 0.733 | 0.010 | 0.745 |
Objective job characteristics | ||||||||||
Occupation | −0.124 | 0.004 | −088 | 0.023 | −0.100 | 0.002 | −0.101 | 0.002 | ||
Working h/day | 0.246 | <0.001 | 0.158 | <0.001 | 0.064 | 0.057 | 0.065 | 0.053 | ||
Night shifts | 0.054 | 0.22 | −0.0006 | 0.880 | −0.0004 | 0.988 | 0.00006 | 0.999 | ||
Perceived job stressors | ||||||||||
Effort/reward score | 0.411 | <0.001 | 0.199 | <0.001 | 0.199 | <0.001 | ||||
Management of the risk of infection in the workplace | −0.067 | 0.08 | −0.067 | 0.04 | −0.067 | 0.04 | ||||
Personal factors | ||||||||||
Overcommitment score | 0.521 | <0.001 | 0.523 | <0.001 | ||||||
Personal history of COVID-19 | 0.012 | 0.701 |
Variable | Unstandardized Coefficients | Standard Error | Beta | t | p * |
---|---|---|---|---|---|
Average working hours/day | 0.04226 | 0.01500 | 0.10789 | 2.81773 | 0.00501 |
Score of overcommitment | 0.04084 | 0.00488 | 0.34874 | 8.35956 | <0.0001 |
Effort/reward score | 0.12349 | 0.02719 | 0.18794 | 4.54216 | <0.0001 |
Intercept | −0.72794 |
flHCW | slHCW | p * | |||
---|---|---|---|---|---|
Average + SD | Median | Average + SD | Median | ||
Doctors | 15.023 ± 4.64 | 15 | 13.63 ± 4.72 | 13 | 0.00002 |
Nurses | 14.28 ± 4.82 | 14 | 13.28 ± 5.23 | 13 | 0.06 |
Other health professionals | 13.88 ± 3.75 | 14 | 13.19 ± 4.37 | 13 | 0.20 |
Health management and support | 14.82 ± 6.54 | 15 | 11.68 ± 4.16 | 11 | 0.11 |
OR (CI 95%) | p * | |
---|---|---|
flHCW group | ||
COVID-19—exhaustion score > 75% of the maximum score | 1.36 (1.027–1.82) | 0.03 |
Persistence of symptoms—exhaustion score > 75% of the maximum score | 1.41 (0.87–2.31) | 0.16 |
Duration of symptoms—exhaustion score > 75% of the maximum score | 1.13 (0.69–1.85) | 0.62 |
slHCW group | ||
COVID-19—exhaustion score > 75% of the maximum score | 1.41 (0.81–2.47) | 0.21 |
Persistence of symptoms—exhaustion score > 75% of the maximum score | 2.52 (0.94–6.77) | 0.06 |
Duration of symptoms—exhaustion score > 75% of the maximum score | 1.88 (0.54–6.47) | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oțelea, M.R.; Rașcu, A.; Staicu, C.; Călugăreanu, L.; Ipate, M.; Teodorescu, S.; Persecă, O.; Voinoiu, A.; Neamțu, A.; Calotă, V.; et al. Exhaustion in Healthcare Workers after the First Three Waves of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 8871. https://doi.org/10.3390/ijerph19148871
Oțelea MR, Rașcu A, Staicu C, Călugăreanu L, Ipate M, Teodorescu S, Persecă O, Voinoiu A, Neamțu A, Calotă V, et al. Exhaustion in Healthcare Workers after the First Three Waves of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2022; 19(14):8871. https://doi.org/10.3390/ijerph19148871
Chicago/Turabian StyleOțelea, Marina Ruxandra, Agripina Rașcu, Cătălin Staicu, Lavinia Călugăreanu, Mădălina Ipate, Silvia Teodorescu, Ovidiu Persecă, Angelica Voinoiu, Andra Neamțu, Violeta Calotă, and et al. 2022. "Exhaustion in Healthcare Workers after the First Three Waves of the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 19, no. 14: 8871. https://doi.org/10.3390/ijerph19148871
APA StyleOțelea, M. R., Rașcu, A., Staicu, C., Călugăreanu, L., Ipate, M., Teodorescu, S., Persecă, O., Voinoiu, A., Neamțu, A., Calotă, V., & Mateș, D. (2022). Exhaustion in Healthcare Workers after the First Three Waves of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(14), 8871. https://doi.org/10.3390/ijerph19148871