Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Chemicals and Instrumental Analysis
2.3. Human Health Risk Assessment
2.4. Chronic Daily Intake (CDI)
2.5. Hazard Quotient (Non-Carcinogenic Risk Assessment)
2.6. Carcinogenic Risk Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Concentrations and Detection Frequency
3.2. Historical Vulnerability of the Transboundary Aquifer to Contamination by Pesticide Residues
3.3. DEA to ATR Ratio
3.4. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Affum, A.O.; Acquaah, S.O.; Osae, S.D.; Kwaansa-Ansah, E. Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana. Sci. Total Environ. 2018, 633, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Papadakis, E.N.; Vassiliou, G.; Papadopoulou-Mourkidou, E. Occurrence of pesticide in transboundary aquifers of North-eastern Greece. Sci. Total Environ. 2012, 441, 41–48. [Google Scholar] [CrossRef]
- Drouin, G.; Droz, B.; Leresche, F.; Payraudeau, S.; Masbou, J.; Imfeld, G. Direct and indirect photodegradation of atrazine and S-metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation. Environ. Sci. Process. Impacts 2021, 23, 1791–1802. [Google Scholar] [CrossRef]
- Papadakis, N.E.; Vryzas, Z.; Kotopoulou, A.; Kintzikoglou, K.; Makris, C.K.; Papadopoulou-Mourkidou, E. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol. Environ. Saf. 2015, 116, 1–9. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A.B.; Singh, N.; Singh, J. Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 2017, 16, 211–237. [Google Scholar] [CrossRef]
- Carazo-Rojas, E.; Perez Rojas, G.; Perez-Villanueva, M.; Chinchilla-Soto, C.; Chin-Pampillo, J.S.; Aguilar-Mora, P.; Alpizar-Marin, M.; Masis-Mora, M.; Rodriguez-Rodriguez, C.E.; Vryzas, Z. Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. Environ. Pollut. 2018, 241, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. 2021, 18, 468. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. 2021, 18, 1112. [Google Scholar] [CrossRef]
- Hasegawa, S.; Sakayori, T. Monitoring of Matrix Flow and Bypass Flow through the Subsoil in a Volcanic Ash Soil. Soil Sci. Plant Nutr. 2000, 46, 661–671. [Google Scholar] [CrossRef]
- Milan, M.; Ferrero, A.; Fogliatto, S.; Piano, S.; Vidotto, F. Leaching of S-metolachlor, terbuthylazine, desethyl-terbuthylazine, mesotrione, flufenacet, isoxaflutole, and diketonitrile in field lysimeters as affected by the time elapsed between spraying and first leaching event. J. Environ. Sci. Health B 2015, 50, 851–886. [Google Scholar] [CrossRef]
- Bakaraki Turan, N.; Tuğba Zaman, B.; Selali Chormey, D.; Onkal Engin, G.; Bakırdere, S. Atrazine: From Detection to Remediation—A Minireview. Anal. Lett. 2021, 55, 411–426. [Google Scholar] [CrossRef]
- Directive 2006/118/EC; Protection of Groundwater against Pollution and Deterioration. European Parliament and Council: Brussels, Belgium, 2006; Volume 372, pp. 19–31.
- Directive 98/83/EC; Quality of Water Intended for Human Consumption. European Parliament and Council: Brussels, Belgium, 1998; Volume 330, pp. 32–54.
- Directive 2000/60/EC; Establishing a Framework for Community Action in the Field of Water Policy. European Parliament and Council: Brussels, Belgium, 2000; p. 327.
- Directive 2008/105/EC; European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy. European Parliament and Council: Brussels, Belgium, 2008; Volume 348, pp. 84–97.
- Stradtman, S.C.; Freeman, J.L. Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine. Toxics 2021, 9, 207. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Zhang, Y.; Jiao, N. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environ. Int. 2019, 133, 105175. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Reregistration Eligibility Decision (RED) Terbuthylazine; USEPA: Washington, DC, USA, 1995.
- Mercadante, R.; Polledri, E.; Giavin, E.; Menegola, E.; Bertazzi, P.A.; Fustinoni, S. Terbuthylazine in hair as a biomarker of exposure. Toxicol. Lett. 2012, 210, 169–173. [Google Scholar] [CrossRef]
- USEPA. Health Effects Assessment for Asbestos. EPA, 1995. Re-Registeration Eligibility (RED) Facts: Metolachlor. EPA-738-F-95-007.EPA Prevention, Herbicides, and Toxic Substances; USEPA: Washington, DC, USA, 2009.
- Thorpe, N.; Shirmohammadi, A. Herbicides and Nitrates in Groundwater of Marylandand Childhood Cancers: A Geographic Information Systems Approach. J. Environ. Sci. Health C 2005, 23, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Rusiecki, J.A.; Hou, L.; Lee, W.J.; Blair, A.; Dosemeci, M.; Lubin, J.H.; Bonner, M.; Samanic, C.; Hoppin, J.A.; Sandler, D.P.; et al. Cancer incidence among pesticide applicators exposed to metolachlor in the Agricultural Health Study. Int. J. Cancer 2006, 118, 3118–3123. [Google Scholar] [CrossRef] [PubMed]
- Papastergiou, A.; Papadopoulou-Mourkidou, E. Occurrence and spatial and temporal distribution of pesticide residues in groundwater of major corn-growing areas of Greece (1996–1997). Environ. Sci. Technol. 2001, 35, 63–69. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, S.; Pose-Juan, E.; Herrero-Hernandez, E.; Alvarez-Martin, A.; Sanchez-Martin, M.J.; Rodriguez-Cruz, S. Pesticide residues in groundwaters and soils of agricultural areas in the Agueda River Basin from Spain and Portugal. Int. J. Environ. Anal. Chem. 2013, 93, 1585–1601. [Google Scholar] [CrossRef]
- Vonberg, D.; Vanderborght, J.; Cremer, N.; Pütz, T.; Herbst, M.; Vereecken, H. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res. 2014, 50, 294–306. [Google Scholar] [CrossRef]
- Szekacs, A.; Mortl, M.; Darvas, B. Monitoring Pesticide Residues in Surface and Ground Water in Hungary: Surveys in 1990–2015. J. Chem. 2015, 2015, 717948. [Google Scholar] [CrossRef] [Green Version]
- Korosa, A.; Auersperger, P.; Mali, N. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia). Sci. Total Environ. 2016, 571, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Menchen, A.; De las Heras, J.; Gómez Alday, J. Pesticide contamination in groundwater bodies in the Júcar River European Union Pilot Basin (SE Spain). Environ. Monit. Assess. 2017, 189, 146. [Google Scholar] [CrossRef] [PubMed]
- PPDB (Pesticide Properties Data Base). Pesticides General Information; University of Hertfordshire: Hatfield, UK, 2016; Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1362.htm (accessed on 1 March 2022).
- Papadakis, E.M.; Papadopoulou-Mourkidou, E. LC-UV determination of atrazine and its principal conversion products in soli after combined microwave-assisted and solid-phase extraction. Int. J. Environ. Anal. Chem. 2006, 86, 573–582. [Google Scholar] [CrossRef]
- Vryzas, Z.; Vassiliou, G.; Alexoudis, C.; Papadopoulou-Mourkidou, E. Spatial and temporal distribution of pesticide residues in surface waters in north-eastern Greece. Water Res. 2009, 43, 1–10. [Google Scholar] [CrossRef]
- Kim, H.H.; Lim, Y.W.; Yang, J.Y.; Shin, D.C.; Ham, H.S.; Choi, B.S.; Lee, J.Y. Health risk assessment of exposure to chlorpyrifos and dichlorvos in children at childcare facilities. Sci. Total Environ. 2013, 444, 441–450. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Ali, N.; Kalsoom; Khan, S.; Ihsanullah; ur Rahman, I.; Muhammad, S. Human Health Risk Assessment Through Consumption of Organophosphate Pesticide Contaminated Water of Peshawar Basin, Pakistan. Expos. Health 2018, 10, 259–272. [Google Scholar] [CrossRef]
- USEPA. Definitions and General Principles for Exposure Assessment: Guidelines for Exposure Assessment; Office of Pesticide Programs: Washington, DC, USA, 1999.
- IRIS (Integrated Risk Information System). Oral Chronic Reference Dose Integrate Risk Information System Database; Toxicity and Chemical Specific Factor Database. Available online: www.epa.gov/iris (accessed on 2 September 2021).
- FOOTPRINT. The FOOTPRINT Pesticide Properties Data Base. Database Collated by (FP6-SSP-022704). Available online: http://sitem.herts.ac.uk/aeru/footprint/en/index.htm (accessed on 2 September 2021).
- Mas, L.I.; Aparicio, V.C.; De Gerónimo, E.; Costa, J.L. Pesticides in water sources used for human consumption in the semiarid region of Argentina. SN Appl. Sci. 2020, 2, 691. [Google Scholar] [CrossRef] [Green Version]
- Meffe, R.; Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef]
- Jurado, A.; Vázquez-Suñé, E.; Carrera, J.; López de Alda, M.; Pujades, E.; Barceló, D. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94. [Google Scholar] [CrossRef]
- Hernández, F.; Marín, J.M.; Pozo, O.J.; Sancho, J.V.; López, F.J.; Morell, I. Pesticides residues and transformation products in groundwater from a Spanish agricultural region on the Mediterranean Coast. J. Environ. Anal. Chem. 2008, 88, 409–424. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, D.; Stuart, M.E.; Manamsa, K.; Talbot, J. Persistent and emerging micro-organic contaminats in Chalk groundwater of England and France. Environ. Pollut. 2015, 203, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Levitan, L. Pesticides: Amounts applied and amounts reaching pests. BioScience 1986, 36, 86–91. [Google Scholar] [CrossRef]
- Vryzas, Z.; Papadakis, E.; Oriakli, K.; Moysiadis, T.P.; Papadopoulou-Mourkidou, E. Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities. Chemosphere 2012, 89, 1330–1338. [Google Scholar] [CrossRef]
- Vryzas, Z.; Papadopoulou-Mourkidou, E.; Soulios, G.; Prodromou, K. Kinetics and adsorption of metolachlor and atrazine and the conversion products (deethylatrazine, deisopropylatrazine, hydroxyatrazine) in the soil profile of a river basin. Eur. J. Soil Sci. 2007, 58, 1186–1199. [Google Scholar] [CrossRef]
- Vryzas, Z.; Papadakis, E.N.; Papadpoulou-Mourkidou, E. Leaching of Br-, metolachlor, alachlor, atrazine, deethylatrazine and deisopropylatrazine in clayey vadoze zone: A field scale experiment in north-east Greece. Water Res. 2012, 46, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- McMahon, P.B.; Chapelle, F.H.; Jagucki, M.L. Atrazine mineralization potential of alluvial-aquifer sediments under aerobic conditions. Environ. Sci. Technol. 1992, 26, 1556–1559. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Kalkhoff, S.J.; Goolsby, D.A.; Sneck-Fahner, D.A.; Thurman, E.M. Occurrence of selected herbicides and herbicide degradation products in Iowa’s groundwater, 1995. Ground Water 1997, 35, 679–688. [Google Scholar] [CrossRef]
- Steele, G.V.; Johnson, H.M.; Sandstrom, M.W.; Capel, P.D.; Barbash, J.E. Occurrence and fate of pesticides in four contrasting agricultural settings in the United States. J. Environ. Qual. 2008, 37, 1116–1132. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, N.D.; Köppchen, S.; Hofmann, D.; Schäffer, A.; Burauel, P. Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years. Environ. Pollut. 2009, 157, 2126–2131. [Google Scholar] [CrossRef] [Green Version]
- Nouma, B.B.; Rezig, M.; Bahrouni, H. Best Irrigation Practices Designed for Pesticides Use to Reduce Environmental Impact on Groundwater Resource in the Tunisian Context. J. Agric. Sci. 2016, 8, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, J.P.; Williams, R.J.; Gooddy, D.C.; Cape, J.N.; Guha, P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—A UK perspective. Sci. Total Environ. 2006, 369, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Park, W.-P.; Chang, K.-M.; Hyun, H.-N.; Boo, K.-H.; Koo, B.-J. Sorption and leaching characteristics of pesticides in volcanic ash soils of Jeju Island, Korea. Appl. Biol. Chem. 2020, 63, 71. [Google Scholar] [CrossRef]
- Bozzo, S.; Azimonti, G.; Villa, S.; Di Guardo, A.; Finizio, A. Spatial and temporal trend of groundwater contamination from terbuthylazine and desethylterbuthylazine in the Lombardy Region (Italy). J. Environ. Qual. 2003, 32, 1089–1098. [Google Scholar] [CrossRef]
- Guzzella, L.; Rullo, S.; Pozzoni, F.; Giuliano, G. Studies on Mobility and Degradation Pathways of Terbuthylazine Using Lysimeters on a Field Scale. Environ. Sci. Process. Impacts 2013, 15, 366. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, A.; Klammler, G.; Weiss, S.; Gans, O.; Fank, J.; Haberhauer, G.; Gerzabek, M.H. Degradation and leaching of bentazone, terbuthylazine and S-metolachlor and some of their metabolites: A long-term lysimeter experiment. Plant Soil Environ. 2019, 65, 273–281. [Google Scholar] [CrossRef]
- Adams, C.D.; Thurman, E.M. Formation and transport of deethylatrazine in the soil and vadose zone. J. Environ. Qual. 1991, 20, 540–547. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Thurman, E.M.; Pomes, M.L.; Meyer, M.T.; Battaglin, W.A. Herbicides and their metabolites in rainfall: Origin, transport, and deposition patterns across the Midwestern and northeastern United States, 1990–1991. Environ. Sci. Technol. 1997, 31, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, A.; Guillamón, M.; Lacorte, S.; Tauler, R.; Barceló, D. Impact of pesticides used inagriculture and vineyards to surface and groundwater quality (North Spain). Water Res. 2008, 42, 3315–3326. [Google Scholar] [CrossRef]
Compound | Soil Degradation DT50 (Field) | Dissociation Constant (pKa) at 25 °C | Water Solubility at 20 °C (mg/L) | Octanol-Water Partition Coefficient at 20 °C (LogKow) | Vapour Pressure at 20 °C (mPa) | GUS Leaching Potential Index |
---|---|---|---|---|---|---|
ATR | 29 | 1.7 | 35 | 2.7 | 0.039 | 2.57 |
DIA | - | - | 980 | 1.15 | - | - |
DEA | 45 | - | 2700 | 1.5 | 12.44 | 3.24 |
HA | - | - | 5.9 | 2.09 | 1.131 | |
MET | 21 | - | 530 | 3.4 | 1.7 | 2.36 |
TER | 21.8 | 1.9 | 6.6 | 3.4 | 0.152 | 2.19 |
Parameter | Sampling Sites | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | B5 | C1 | C2 | ||
ATR | Mean | 0.02 | 0.23 | 0.10 | 0.28 | 0.23 | 0.45 | 0.03 | 0.05 | 0.30 | 0.20 | 0.14 |
Median | <0.00 | 0.01 | 0.01 | 0.01 | 0.11 | 0.18 | 0.02 | 0.01 | 0.24 | 0.16 | 0.17 | |
Max | 0.07 | 0.50 | 0.30 | 0.55 | 0.63 | 1.86 | 0.06 | 0.05 | 0.49 | 0.56 | 0.26 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
DIA | Mean | 0.06 | 0.05 | 0.06 | 0.14 | 0.14 | 0.09 | 0.26 | 0.08 | 0.22 | 1.99 | 0.06 |
Median | 0.02 | <0.00 | 0.02 | <0.00 | 0.15 | 0.09 | 0.20 | 0.02 | 0.22 | 2.01 | 0.04 | |
Max | 0.14 | 0.14 | 0.12 | 0.45 | 0.12 | 0.13 | 0.49 | 0.15 | 0.31 | 2.91 | 0.14 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
DEA | Mean | 0.13 | 0.05 | 0.05 | 0.18 | 0.13 | 0.05 | 0.17 | 0.05 | 0.28 | 0.23 | 0.20 |
Median | 0.01 | 0.01 | <0.00 | <0.00 | 0.09 | 0.01 | 0.07 | 0.03 | 0.32 | 0.32 | 0.20 | |
Max | 0.46 | 0.05 | 0.05 | 0.65 | 0.27 | 0.05 | 0.45 | 0.06 | 0.13 | 0.42 | 0.55 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
HA | Mean | 0.07 | 0.30 | 0.05 | 0.07 | 0.05 | 0.05 | 0.08 | 0.05 | 0.06 | 0.13 | 0.10 |
Median | 0.05 | 0.01 | 0.02 | 0.00 | 0.01 | 0.02 | 0.05 | 0.01 | 0.06 | 0.06 | 0.05 | |
Max | 0.20 | 0.08 | 0.07 | 0.27 | 0.32 | 0.08 | 0.16 | 0.05 | 0.46 | 0.30 | 0.29 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
MET | Mean | 0.18 | 0.60 | 0.11 | 0.24 | 0.06 | 0.05 | 0.06 | 0.05 | 0.22 | 0.10 | 0.14 |
Median | <0.00 | <0.00 | 0.04 | <0.00 | 0.05 | 0.01 | 0.03 | <0.00 | 0.13 | 0.11 | 0.12 | |
Max | 0.58 | 0.23 | 0.20 | 0.93 | 0.12 | 0.04 | 0.15 | 0.05 | 0.52 | 0.17 | 0.41 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
TER | Mean | 0.02 | 0.45 | 0.05 | 0.15 | 0.25 | 0.14 | 0.05 | 0.04 | 0.16 | 0.20 | 0.09 |
Median | 0.01 | 0.80 | <0.00 | 0.10 | 0.21 | 0.16 | 0.02 | <0.00 | 0.17 | 0.11 | 0.13 | |
Max | 0.06 | 1.00 | 0.20 | 0.34 | 0.16 | 0.36 | 0.07 | 0.11 | 0.16 | 0.56 | 0.16 | |
n | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Sampling Sites | Positive Samples (%) ** | Samples with Concentration Higher than 0.1 μg/L (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N * | ATR | DIA | DEA | HA | MET | TER | ATR | DIA | DEA | HA | MET | TER | |
A1 | 5 | 80 | 80 | 60 | 60 | 80 | 60 | 0 | 40 | 20 | 20 | 40 | 0 |
A2 | 5 | 80 | 80 | 80 | 80 | 80 | 40 | 0 | 20 | 0 | 0 | 20 | 40 |
A3 | 5 | 80 | 80 | 40 | 80 | 80 | 20 | 40 | 20 | 0 | 0 | 40 | 20 |
A4 | 5 | 80 | 80 | 40 | 80 | 80 | 60 | 40 | 40 | 20 | 20 | 20 | 60 |
BI | 5 | 80 | 100 | 100 | 80 | 100 | 100 | 60 | 60 | 40 | 0 | 40 | 100 |
B2 | 5 | 80 | 100 | 100 | 80 | 100 | 60 | 60 | 40 | 0 | 0 | 0 | 60 |
B3 | 5 | 100 | 100 | 100 | 100 | 100 | 80 | 0 | 100 | 40 | 40 | 20 | 0 |
B4 | 5 | 80 | 80 | 80 | 80 | 80 | 40 | 0 | 40 | 0 | 0 | 0 | 20 |
B5 | 5 | 100 | 100 | 100 | 100 | 100 | 80 | 100 | 100 | 80 | 40 | 60 | 80 |
C1 | 5 | 100 | 100 | 100 | 60 | 100 | 80 | 60 | 100 | 60 | 40 | 60 | 80 |
C2 | 5 | 100 | 100 | 100 | 100 | 100 | 80 | 60 | 40 | 60 | 40 | 60 | 60 |
Total | 55 | 87.3 | 90.9 | 81.8 | 81.8 | 90.9 | 63.6 | 38.2 | 54.5 | 29.1 | 18.2 | 32.7 | 47.3 |
Reference | Maximum Concertation (μg/L) | Detection Frequency (%) | Samples > 0.1 µg/L (%) | Year | Country |
---|---|---|---|---|---|
Menchen et al. [28] | ATR (0.38) MET (0.23) TER (0.90) DIA (0.21) DEA (0.12) | ATR (4.45) | ATR (1.91) | 2017 | Spain |
MET (1.91) | MET (0.63) | ||||
TER (12.1) | TER (2.81) | ||||
DIA (8.28) | DIA (0.32) | ||||
DEA (5.73) | DEA (0.32) | ||||
Meffe et al. [39] | TER (29.05) | not specified | not specified | 2014 | Italy |
Jurado et al. [40] | ATR (3.45) MET (5.37) TER (1.27) DEA (1.98) | not specified | not specified | 2012 | Spain |
Hernández et al. [41] | TER (1.42) DIA (0.46) DEA DEA (0.40) | TER (50) DIA (72) DEA (35) | TER (15) DIA (35) DEA (8) | 2008 | Spain |
Sanchez-Gonzalez et al. [24] | ATR (0.37) MET (0.55) TER (0.34) DEA (0.34) | ATR (4) MET (100) TER (70) DEA (8) | ATR (4) MET (48) TER (36) DEA (4) | 2013 | Spain |
Sanchez-Gonzalez et al. [24] | ATR (0.19) MET (0.05) TER (1.89) DEA (0.08) | ATR (30) MET (25) TER (55) DEA (26) | ATR (5) MET (0) TER (25) DEA (0) | 2013 | Portugal |
Korosa et al. [27] | ATR (0.23) | ATR (94.6) | not specified | 2016 | Slovenia |
MET (0.068) | MET (38.8) | ||||
TER (0.03) | TER (574) | ||||
DIA (0.02) | DIA (17.9) | ||||
DEA (0.1) | DEA (98.2) | ||||
Lapworth et al. [42] | ATR (0.2) DIA (0.1) DEA (0.16) | ATR (12.5) DIA (9.6) DEA (20) | not specified | 2015 | England |
Lapworth et al. [42] | ATR (0.69) DIA (0.47) DEA (0.13) | ATR (73) DIA (60) DEA (47) | not specified | 2015 | France |
Sampling Site | Percentage (%) |
---|---|
A1 | 50 |
A2 | 25 |
A3 | 50 |
A4 | 50 |
B1 | 0 |
B2 | 0 |
B3 | 80 |
B4 | 50 |
B5 | 0 |
C1 | 40 |
C2 | 25 |
Rizia (B1) | Fylakio (B2) | Elia (B3) | Arzos (B4) | Kastanies (B5) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | |
ATR | HQm a | 0.0422 | 0.1262 | 0.0684 | 0.2162 | 0.0171 | 0.0393 | 0.0184 | 0.0416 | 0.0515 | 0.1563 |
HQh b | 0.0895 | 0.2916 | 0.2305 | 0.7839 | 0.0225 | 0.0548 | 0.0205 | 0.0509 | 0.0737 | 0.2333 | |
Rm c | 0.0003 | 0.0029 | 0.0005 | 0.0050 | 0.0001 | 0.0009 | 0.0001 | 0.0010 | 0.0004 | 0.0036 | |
Rh d | 0.0007 | 0.0067 | 0.0018 | 0.0181 | 0.0002 | 0.0013 | 0.0002 | 0.0012 | 0.0006 | 0.0054 | |
MET | HQm | 0.1913 | 0.5752 | 0.1342 | 0.3757 | 0.0751 | 0.1692 | 0.0821 | 0.1941 | 0.1432 | 0.4063 |
HQh | 0.2507 | 0.7817 | 0.2502 | 0.7818 | 0.0985 | 0.2505 | 0.1206 | 0.3254 | 0.2238 | 0.6881 | |
TER | HQm | 0.0501 | 0.1235 | 0.0391 | 0.0787 | 0.0501 | 0.1233 | 0.0402 | 0.0901 | 0.0512 | 0.1303 |
HQh | 0.0672 | 0.1833 | 0.0459 | 0.1070 | 0.0758 | 0.2136 | 0.0481 | 0.1172 | 0.1619 | 0.5132 | |
HQ SUM | HQi | 0.2836 | 0.8299 | 0.3058 | 0.6779 | 0.1403 | 0.3318 | 0.1407 | 0.3258 | 0.2459 | 0.6929 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlakidis, P.; Rodriguez, M.S.; Gikas, G.D.; Alexoudis, C.; Perez-Rojas, G.; Perez-Villanueva, M.; Carrera, A.P.; Fernández-Cirelli, A.; Vryzas, Z. Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach. Int. J. Environ. Res. Public Health 2022, 19, 8877. https://doi.org/10.3390/ijerph19148877
Parlakidis P, Rodriguez MS, Gikas GD, Alexoudis C, Perez-Rojas G, Perez-Villanueva M, Carrera AP, Fernández-Cirelli A, Vryzas Z. Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach. International Journal of Environmental Research and Public Health. 2022; 19(14):8877. https://doi.org/10.3390/ijerph19148877
Chicago/Turabian StyleParlakidis, Paraskevas, Maria Soledad Rodriguez, Georgios D. Gikas, Christos Alexoudis, Greivin Perez-Rojas, Marta Perez-Villanueva, Alejo Perez Carrera, Alicia Fernández-Cirelli, and Zisis Vryzas. 2022. "Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach" International Journal of Environmental Research and Public Health 19, no. 14: 8877. https://doi.org/10.3390/ijerph19148877
APA StyleParlakidis, P., Rodriguez, M. S., Gikas, G. D., Alexoudis, C., Perez-Rojas, G., Perez-Villanueva, M., Carrera, A. P., Fernández-Cirelli, A., & Vryzas, Z. (2022). Occurrence of Banned and Currently Used Herbicides, in Groundwater of Northern Greece: A Human Health Risk Assessment Approach. International Journal of Environmental Research and Public Health, 19(14), 8877. https://doi.org/10.3390/ijerph19148877