Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey
Abstract
:1. Background
2. Data and Model
2.1. Study Area and Data
2.2. Model Specification and Statistical Analysis
2.3. Specification of the Spatially Varying Coefficient Model (SVC)
3. Results
3.1. Descriptive Statistics
3.2. Model Performance Comparison
3.3. Spatially Varying Effects of Diabetes
3.4. Spatially Varying Effects for Hypertension
3.5. Spatial Effects
3.6. Non-Linear Effect of Age
4. Discussion
4.1. Policy Implications
4.2. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caprara, G. Mediterranean-type dietary pattern and physical activity: The winning combination to counteract the rising burden of non-communicable diseases (NCDs). Nutrients 2021, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, D.; Steyn, K.; Levitt, N.; Nojilana, B. Non-Communicable Diseases–A Race against Time; Medical Research Council South Africa: Cape Town, South Africa, 2011. [Google Scholar]
- Lalkhen, H.; Mash, R. Multimorbidity in non-communicable diseases in South African primary healthcare. S. Afr. Med. J. 2015, 105, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwan, A.; MacLean, D.R.; Riley, L.M.; d’Espaignet, E.T.; Mathers, C.D.; Stevens, G.A.; Bettcher, D. Monitoring and surveillance of chronic non-communicable diseases: Progress and capacity in high-burden countries. Lancet 2010, 376, 1861–1868. [Google Scholar] [CrossRef]
- Dalal, S.; Beunza, J.J.; Volmink, J.; Adebamowo, C.; Bajunirwe, F.; Njelekela, M.; Mozaffarian, D.; Fawzi, W.; Willett, W.; Adami, H.O.; et al. Non-communicable diseases in sub-Saharan Africa: What we know now. Int. J. Epidemiol. 2011, 40, 885–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, K.H.; Brath, H. A global view on the development of non-communicable diseases. Prev. Med. 2012, 54, S38–S41. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, M.J. Non-communicable diseases in sub-Saharan Africa: Understanding the drivers of the epidemic to inform intervention strategies. Int. Health 2016, 8, 157–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The Global Burden of Disease: 2004 Update; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Mayosi, B.M.; Flisher, A.J.; Lalloo, U.G.; Sitas, F.; Tollman, S.M.; Bradshaw, D. The burden of non-communicable diseases in South Africa. Lancet 2009, 374, 934–947. [Google Scholar] [CrossRef]
- Libman, K.; Freudenberg, N.; Sanders, D.; Puoane, T.; Tsolekile, L. The role of urban food policy in preventing diet-related non-communicable diseases in Cape Town and New York. Public Health 2015, 129, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kankeu, H.T.; Saksena, P.; Xu, K.; Evans, D.B. The financial burden from non-communicable diseases in low-and middle-income countries: A literature review. Health Res. Policy Syst. 2013, 11, 1–2. [Google Scholar] [CrossRef]
- Marbaniang, S.P.; Chungkham, H.S.; Lhungdim, H. A structured additive modeling of diabetes and hypertension in Northeast India. PLoS ONE 2022, 17, e0262560. [Google Scholar] [CrossRef] [PubMed]
- Do Nam, K.; Van, N.B.; Hoang, L.V.; Duc, T.P.; Ha, T.T.; Tuan, V.T.; Dinh, P.P.; Thu, H.T.; Show, P.L.; Nga, V.T.; et al. Hypertension in a mountainous province of Vietnam: Prevalence and risk factors. Heliyon 2020, 6, e03383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marbaniang, S.P.; Lhungdim, H.; Yadav, B.; Yajurvedi, V.K. Overweight/obesity risks and prevalence of diabetes and hypertension in North Eastern India: An analysis using seemingly unrelated probit model. Clin. Epidemiol. Glob. Health 2021, 11, 100764. [Google Scholar] [CrossRef]
- Marbaniang, S.P.; Lhungdim, H.; Chauhan, S.; Srivastava, S. Interaction of multiple risk factors and population attributable fraction for type 2 diabetes and hypertension among adults aged 15–49 years in Northeast India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102227. [Google Scholar] [CrossRef] [PubMed]
- Bosu, W.K.; Reilly, S.T.; Aheto, J.M.; Zucchelli, E. Hypertension in older adults in Africa: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0214934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataklte, F.; Erqou, S.; Kaptoge, S.; Taye, B.; Echouffo-Tcheugui, J.B.; Kengne, A.P. Burden of undiagnosed hypertension in sub-saharan Africa: A systematic review and meta-analysis. Hypertension 2015, 65, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Kaze, A.D.; Schutte, A.E.; Erqou, S.; Kengne, A.P.; Echouffo-Tcheugui, J.B. Prevalence of hypertension in older people in Africa: A systematic review and meta-analysis. J. Hypertens. 2017, 35, 1345–1352. [Google Scholar] [CrossRef]
- Asmelash, D.; Asmelash, Y. The burden of undiagnosed diabetes mellitus in adult African population: A systematic review and meta-analysis. J. Diabetes Res. 2019, 2019, 4134937. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- Ogunsakin, R.E.; Akinyemi, O.; Babalola, B.T.; Adetoro, G. Spatial pattern and determinants of anemia among women of childbearing age in Nigeria. Spat. Spatio Temporal Epidemiol. 2021, 36, 100396. [Google Scholar] [CrossRef]
- Ogunsakin, R.E. Bayesian Spatial-Temporal Disease Modeling with Application to Malaria. In Statistical Methods for Global Health and Epidemiology; Springer: Cham, Switzerland, 2020; pp. 319–334. [Google Scholar]
- Puri, P.; Singh, S.K. Patterns and predictors of non-communicable disease multimorbidity among older adults in India: Evidence from longitudinal ageing study in India (LASI), 2017–2018. J. Public Health Policy 2022, 43, 1–20. [Google Scholar] [CrossRef]
- Barua, S.; Saikia, N.; Sk, R. Spatial pattern and determinants of diagnosed diabetes in southern India: Evidence from a 2012–13 population-based survey. J. Biosoc. Sci. 2021, 53, 623–638. [Google Scholar] [CrossRef]
- Ogunsakin, R.E.; Babalola, B.T.; Akinyemi, O. Statistical Modeling of Determinants of Anemia Prevalence among Children Aged 6–59 Months in Nigeria: A Cross-Sectional Study. Anemia 2020, 2020, 4891965. [Google Scholar] [CrossRef] [PubMed]
- Pou, S.A.; Tumas, N.; Soria, D.S.; Ortiz, P.; del Pilar Díaz, M. Large-scale societal factors and noncommunicable diseases: Urbanization, poverty and mortality spatial patterns in Argentina. Appl. Geogr. 2017, 86, 32–40. [Google Scholar] [CrossRef]
- Xu, L.; Lai, D.; Fang, Y. Spatial analysis of gender variation in the prevalence of hypertension among the middle-aged and elderly population in Zhejiang Province, China. BMC Public Health 2016, 16, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlin, B.P.; Gelfand, A.E.; Banerjee, S. Hierarchical Modeling and Analysis for Spatial Data; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wheeler, D.C.; Páez, A. Geographically Weighted Regression. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 461–486. [Google Scholar]
- Wheeler, D.C.; Calder, C.A. Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity; ASA Section on Bayesian Statistical Science: Boston, MA, USA, 2006. [Google Scholar]
- Roy, P.K.; Khan, M.H.; Akter, T.; Rahman, M.S. Exploring socio-demographic-and geographical-variations in prevalence of diabetes and hypertension in Bangladesh: Bayesian spatial analysis of national health survey data. Spat. Spatio Temporal Epidemiol. 2019, 29, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.nesstar.statssa.gov.za:8282/webview/index.jsp?submode=default&mode=documentation&top=yes (accessed on 15 June 2022).
- Statistics South Africa. General Household Survey 2019, Statistical Release P0318; Statistics South Africa: Pretoria, South Africa, 2019. [Google Scholar]
- Interactive Map of South Africa, Its Provinces and Its Major Cities. Available online: https://www.south-africa-tours-and-travel.com/map-of-south-africa.html (accessed on 15 June 2022).
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 192–225. [Google Scholar] [CrossRef]
- Breslow, N.E.; Clayton, D.G. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 1993, 88, 9–25. [Google Scholar]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–20. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, S.; Huang, H. Spatio-temporal parse network-based trajectory modeling on the dynamics of criminal justice system. J. Appl. Stat. 2021, 49, 1–22. [Google Scholar] [CrossRef]
- Cressie, N.; Moores, M.T. Spatial statistics. arXiv 2021, arXiv:2105.07216. [Google Scholar]
- Lee, D.; Mitchell, R. Locally adaptive spatial smoothing using conditional auto-regressive models. J. R. Stat. Soc. Ser. C Appl. Stat. 2013, 62, 593–608. [Google Scholar] [CrossRef]
- Waller, L.A.; Carlin, B.P.; Xia, H.; Gelfand, A.E. Hierarchical spatio-temporal mapping of disease rates. J. Am. Stat. Assoc. 1997, 92, 607–617. [Google Scholar] [CrossRef]
- Gelfand, A.E.; Kim, H.-J.; Sirmans, C.F.; Banerjee, S. Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 2003, 98, 387–396. [Google Scholar] [CrossRef]
- Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Gelfand, A.E. Gibbs sampling. J. Am. Stat. Assoc. 2000, 95, 1300–1304. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Calder, C.A. An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J. Geogr. Syst. 2007, 9, 145–166. [Google Scholar] [CrossRef]
- Amsalu, E.; Liu, M.; Li, Q.; Wang, X.; Tao, L.; Liu, X.; Luo, Y.; Yang, X.; Zhang, Y.; Li, W.; et al. Spatial-temporal analysis of tuberculosis in the geriatric population of China: An analysis based on the Bayesian conditional autoregressive model. Arch. Gerontol. Geriatr. 2019, 83, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, F.; Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 2015, 63, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 583–639. [Google Scholar] [CrossRef] [Green Version]
- Ando, T. Predictive Bayesian model selection. Am. J. Math. Manag. Sci. 2011, 31, 13–38. [Google Scholar] [CrossRef]
- Aitkin, M. Statistical Inference: An Integrated Bayesian/Likelihood Approach; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Martins, T.G.; Simpson, D.; Lindgren, F.; Rue, H. Bayesian computing with INLA: New features. Comput. Stat. Data Anal. 2013, 67, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integratednested Laplace approximations. J. Roy. Stat. Soc. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Cressie, N.; Wikle, C.K. Statistics for Spatio-Temporal Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Sherman, M. Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lawson, A.B. Statistical Methods in Spatial Epidemiology; John Wiley & Sons: West Sussex, UK, 2013. [Google Scholar]
- Alberts, M.; Choma, S.; Dikotope, S.; Ntuli, S.T.; Maimela, E. Prevalence and associated risk factors of hypertension amongst adults in a rural community of Limpopo Province, South Africa. Afr. J. Prim. Health Care Fam. Med. 2015, 7, 1–5. [Google Scholar]
- Kavishe, B.; Biraro, S.; Baisley, K.; Vanobberghen, F.; Kapiga, S.; Munderi, P.; Smeeth, L.; Peck, R.; Mghamba, J.; Mutungi, G.; et al. High prevalence of hypertension and of risk factors for non-communicable diseases (NCDs): A population based cross-sectional survey of NCDS and HIV infection in Northwestern Tanzania and Southern Uganda. BMC Med. 2015, 13, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahangir, M.S.; Hasan, M.M.; Richardson, A.; Tabassum, S. Malnutrition and non-communicable diseases among Bangladeshi women: An urban–rural comparison. Nutr. Diabetes 2017, 7, e250. [Google Scholar] [CrossRef] [PubMed]
- Kandala, N.B.; Ji, C.; Stallard, N.; Stranges, S.; Cappuccio, F. Spatial analysis of risk factors for childhood morbidity in Nigeria. Am. J. Trop. Med. Hyg. 2007, 77, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.H.; Ma, S.H.; Ho, M.H.; Pang, J.S.; Ortega, E.; Bajpai, R. Arts for ageing well: A propensity score matching analysis of the effects of arts engagements on holistic well-being among older Asian adults above 50 years of age. BMJ Open 2019, 9, e029555. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.J.; Chidumwa, G.; Charlton, K.; Schutte, A.E.; Kowal, P. Predictors of hypertension awareness, treatment and control in South Africa: Results from the WHO-SAGE population survey (Wave 2). J. Hum. Hypertens. 2019, 33, 157–166. [Google Scholar] [CrossRef]
- Peltzer, K.; Phaswana-Mafuya, N. Hypertension and associated factors in older adults in South Africa: Cardiovascular topics. Cardiovasc. J. Afr. 2013, 24, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Pasea, L.; Harris, S.; Gonzalez-Izquierdo, A.; Torralbo, A.; Shallcross, L.; Noursadeghi, M.; Pillay, D.; Sebire, N.; Holmes, C.; et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: A population-based cohort study. Lancet 2020, 395, 1715–1725. [Google Scholar] [CrossRef]
- Zeb, I.; Qureshi, N.A.; Shaheen, N.; Zafar, M.I.; Ali, A.; Hamid, A.; Shah, S.A.; Ashraf, A. Spatiotemporal patterns of cutaneous leishmaniasis in the district upper and lower Dir, Khyber Pakhtunkhwa, Pakistan: A GIS-based spatial approaches. Acta Trop. 2021, 217, 105861. [Google Scholar] [CrossRef]
Description | n (Percent) | |
---|---|---|
Metrical Variable | Mean (SD) | |
Age | Age of the respondent | 46.45 ± 8.22 |
Socio-demographic variables | ||
Sex | ||
Male | 2807 (50.4) | |
Female | 2764 (49.6) | |
Marital status | ||
Single | 1701(30.5) | |
Married | 3203 (57.5) | |
Divorced/Separated/Widowed | 667 (12.0) | |
Educational status | ||
No primary education | 225 (4.0) | |
Primary | 990 (17.8) | |
Secondary | 3508 (63.0) | |
Tertiary | 848 (15.2) | |
Race | ||
African | 4718 (84.7) | |
Colored | 496 (8.9) | |
Indian/Asian | 57 (1.0) | |
White | 300 (5.4) | |
Working for a wage | ||
Yes | 4547 (81.6) | |
No | 1024 (18.4) | |
Working without remuneration | ||
Yes | 83 (1.5) | |
No | 5498 (98.5) | |
Salary period | ||
Per week | 762 (13.7) | |
Per month | 4775 (85.7) | |
Annually | 34 (0.6) | |
Residence type | ||
Urban | 3861(69.3) | |
Rural | 1710 (0.6) | |
Province | ||
Western Cape | 489 (8.8) | |
Eastern Cape | 700 (12.6) | |
Northern Cape | 380 (6.8) | |
Free State | 398 (7.1) | |
KwaZulu-Natal | 548 (9.8) | |
North West | 387 (6.9) | |
Gauteng | 1557 (27.9) | |
Mpumalanga | 600 (10.8) | |
Limpopo | 512 (9.2) |
Outcome | Model Fit Statistics | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|---|
Diabetes | 14.78 | 17.77 | 17.71 | 17.65 | |
2166.80 | 2067.81 | 2068.02 | 2068.16 | ||
2181.58 | 2085.58 | 2085.73 | 2087.37 | ||
Hypertension | 14.91 | 24.85 | 21.67 | 24.19 | |
4723.10 | 4382.83 | 4391.61 | 4389.19 | ||
4738.01 | 4407.68 | 4413.28 | 4413.38 |
Outcome | Model Fit Statistics | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|---|
Diabetes | 12.11 | 12.41 | 12.92 | 12.35 | |
2074.84 | 2074.41 | 2073.74 | 2074.49 | ||
2086.95 | 2086.82 | 2086.66 | 2086.84 | ||
Hypertension | 16.97 | 17.26 | 16.91 | 17.91 | |
4385.94 | 4386.39 | 4383.82 | 4388.54 | ||
4402.91 | 4403.65 | 4400.73 | 4406.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunsakin, R.E.; Ginindza, T.G. Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey. Int. J. Environ. Res. Public Health 2022, 19, 8886. https://doi.org/10.3390/ijerph19158886
Ogunsakin RE, Ginindza TG. Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey. International Journal of Environmental Research and Public Health. 2022; 19(15):8886. https://doi.org/10.3390/ijerph19158886
Chicago/Turabian StyleOgunsakin, Ropo E., and Themba G. Ginindza. 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey" International Journal of Environmental Research and Public Health 19, no. 15: 8886. https://doi.org/10.3390/ijerph19158886
APA StyleOgunsakin, R. E., & Ginindza, T. G. (2022). Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey. International Journal of Environmental Research and Public Health, 19(15), 8886. https://doi.org/10.3390/ijerph19158886