Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Differences in Vitamin D Levels between Shift Workers and Non-Shift Workers
3.3. Differences in Vitamin D Levels between Shift Workers and Non-Shift Workers—Subgroup Analysis
3.3.1. Methods of Measurement
3.3.2. Sex Differences
3.3.3. Meta-Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xenos, K.; Papasavva, M.; Raptis, A.; Katsarou, M.-S.; Drakoulis, N. Vitamin D Supplementation and Genetic Polymorphisms Impact on Weight Loss Diet Outcomes in Caucasians: A Randomized Double-Blind Placebo-Controlled Clinical Study. Front. Med. 2022, 9, 811326. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfotenhauer, K.M.; Shubrook, J.H. Vitamin D deficiency, its role in health and disease, and current supplementation recommendations. J. Am. Osteopath. Assoc. 2017, 117, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hajj Fuleihan, G.; Bouillon, R.; Clarke, B.; Chakhtoura, M.; Cooper, C.; McClung, M.; Singh, R.J. Serum 25-Hydroxyvitamin D Levels: Variability, Knowledge Gaps, and the Concept of a Desirable Range. J. Bone Miner. Res. 2015, 30, 1119–1133. [Google Scholar] [CrossRef]
- Passeron, T.; Bouillon, R.; Callender, V.; Cestari, T.; Diepgen, T.L.; Green, A.C.; van der Pols, J.C.; Bernard, B.A.; Ly, F.; Bernerd, F.; et al. Sunscreen photoprotection and vitamin D status. Br. J. Dermatol. 2019, 181, 916–931. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.W.; Lee, H.C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef]
- Vanhevel, J.; Verlinden, L.; Doms, S.; Wildiers, H.; Verstuyf, A. The role of vitamin D in breast cancer risk and progression. Endocr. Relat. Cancer 2022, 29, R33–R55. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. Am. J. Clin. Nutr. 2008, 87, 1080–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowah, D.; Fan, X.; Dennett, L.; Hagtvedt, R.; Straube, S. Vitamin D levels and deficiency with different occupations: A systematic review. BMC Public Health 2017, 17, 519. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.G.; Hansen, J.; Costa, G.; Haus, E.; Kauppinen, T.; Aronson, K.J.; Castaño-Vinyals, G.; Davis, S.; Frings-Dresen, M.H.; Fritschi, L.; et al. Considerations of circadian impact for defining ‘shift work’ in cancer studies: IARC Working Group Report. Occup. Environ. Med. 2011, 68, 154–162. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, H.; Yoon, I.Y. Impacts of serum Vitamin D levels on sleep and daytime sleepiness according to working conditions. J. Clin. Sleep Med. 2020, 16, 1045–1054. [Google Scholar] [CrossRef]
- Daugaard, S.; Garde, A.H.; Hansen, Å.M.; Vistisen, H.T.; Rejnmark, L.; Kolstad, H.A. Indoor, outdoor, and night work and blood concentrations of vitamin d and parathyroid hormone. Scand. J. Work. Environ. Health 2018, 44, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-Y.; Jang, T.-W.; Lee, H.-E.; Lee, D.-W.; Storz, M.A.; Rizzo, G.; Lombardo, M. Shiftwork Is Associated with Higher Food Insecurity in U.S. Workers: Findings from a Cross-Sectional Study (NHANES). Int. J. Environ. Res. Public Health 2022, 19, 2847. [Google Scholar] [CrossRef]
- Barbadoro, P.; Santarelli, L.; Croce, N.; Bracci, M.; Vincitorio, D.; Prospero, E.; Minelli, A. Rotating Shift-Work as an Independent Risk Factor for Overweight Italian Workers: A Cross-Sectional Study. PLoS ONE 2013, 8, e63289. [Google Scholar] [CrossRef]
- Croce, N.; Bracci, M.; Ceccarelli, G.; Barbadoro, P.; Prospero, E.; Santarellia, L. Body mass index in shift workers: Relation to diet and physical activity. G. Ital. Di Med. Del Lav. Ed Ergon. 2007, 29, 488–489. [Google Scholar]
- Copertaro, A.; Bracci, M.; Barbaresi, M. Assessment of plasma homocysteine levels in shift healthcare workers. Monaldi Arch. Chest Dis.-Card. Ser. 2008, 70, 24–28. [Google Scholar] [CrossRef]
- Shah, A.; Turkistani, A.; Luenam, K.; Yaqub, S.; Ananias, P.; Jose, A.M.; Melo, J.P.; Mohammed, L. Is Shift Work Sleep Disorder a Risk Factor for Metabolic Syndrome and Its Components? A Systematic Review of Cross-Sectional Studies. Metab. Syndr. Relat. Disord. 2022, 20, 1–10. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Mahmoudabadi, M.; Vahid, F. The role of serum 25 (OH) vitamin D level in the correlation between lipid profile, body mass index (BMI), and blood pressure. Clin. Nutr. ESPEN 2022, 48, 421–426. [Google Scholar] [CrossRef]
- Cheng, S.; Massaro, J.M.; Fox, C.S.; Larson, M.G.; Keyes, M.J.; McCabe, E.L.; Robins, S.J.; O’Donnell, C.J.; Hoffmann, U.; Jacques, P.F.; et al. Adiposity, cardiometabolic risk, and vitamin D status: The framingham heart study. Diabetes 2010, 59, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Murray, J.; Farrington, D.P.; Eisner, M.P. Drawing conclusions about causes from systematic reviews of risk factors: The Cambridge Quality Checklists. J. Exp. Criminol. 2009, 5, 1–23. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Wang, C.C.; Chen, Y.J.; Tsai, C.K.; Li, P.F.; Peng, T.C.; Sun, Y.S.; Chen, W.L. Exploring the relationship between serum Vitamin D and shift work. J. Med. Sci. 2021, 41, 179–185. [Google Scholar] [CrossRef]
- Kantermann, T.; Duboutay, F.; Haubruge, D.; Hampton, S.; Darling, A.L.; Berry, J.L.; Kerkhofs, M.; Boudjeltia, K.Z.; Skene, D.J. The direction of shift-work rotation impacts metabolic risk independent of chronotype and social jetlag—An exploratory pilot study. Chronobiol. Int. 2014, 31, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Hong, S.; Heo, Y.; Chun, H.; Kim, D.; Park, J.; Kang, M.-Y. Vitamin D status and associated occupational factors in Korean wage workers: Data from the 5th Korea national health and nutrition examination survey (KNHANES 2010-2012). Ann. Occup. Environ. Med. 2014, 26, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.K.; Choi, Y.J.; Chung, Y.S. Other than daytime working is associated with lower bone mineral density: The Korea national health and nutrition examination survey 2009. Calcif. Tissue Int. 2013, 93, 495–501. [Google Scholar] [CrossRef]
- Park, H.Y.; Lim, Y.H.; Park, J.B.; Rhie, J.; Lee, S.J. Environmental and occupation factors associated with vitamin d deficiency in korean adults: The korea national health and nutrition examination survey (knhanes) 2010–2014. Int. J. Environ. Res. Public Health 2020, 17, 9166. [Google Scholar] [CrossRef]
- Rizza, S.; Pietroiusti, A.; Farcomeni, A.; Mina, G.G.; Caruso, M.; Virgilio, M.; Magrini, A.; Federici, M.; Coppeta, L. Monthly fluctuations in 25-hydroxy-vitamin D levels in day and rotating night shift hospital workers. J. Endocrinol. Investig. 2020, 43, 1655–1660. [Google Scholar] [CrossRef]
- Park, H.; Suh, B.; Lee, S.J. Shift work and depressive symptoms: The mediating effect of vitamin D and sleep quality. Chronobiol. Int. 2019, 36, 689–697. [Google Scholar] [CrossRef]
- Alefishat, E.; Farha, R.A. Determinants of Vitamin D status among Jordanian employees: Focus on the night shift effect. Int. J. Occup. Med. Environ. Health 2016, 29, 859–870. [Google Scholar] [CrossRef]
- Erden, G.; Ozdemir, S.; Ozturk, G.; Erden, I.; Kara, D.; Isik, S.; Ergil, J.; Vural, C.; Arzuhal, A. Vitamin D Levels of Anesthesia Personnel, Office Workers and Outdoor Workers in Ankara, Turkey. Clin. Lab. 2016, 62, 2003–2005. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Vigna, L.; Belluigi, V.; Conti, D.M.; Barberi, C.E.; Tomaino, L.; Consonni, D.; Riboldi, L.; Tirelli, A.S.; Andersen, L.L. Shift work and serum 25-OH vitamin D status among factory workers in Northern Italy: Cross-sectional study. Chronobiol. Int. 2015, 32, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Munter, G.; Levi-Vineberg, T.; Sylvetsky, N. Vitamin D deficiency among physicians: A comparison between hospitalists and community-based physicians. Osteoporos. Int. 2015, 26, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.I.; Son, J.S.; Kim, Y.O.; Chae, C.H.; Kim, J.H.; Kim, C.W.; Park, H.O.; Lee, J.H.; Jung, J.I. Association between serum vitamin D and depressive symptoms among female workers in the manufacturing industry. Ann. Occup. Environ. Med. 2015, 27, 28. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.P.; Jen, H.J. BMI differences between different genders working fixed day shifts and rotating shifts: A literature review and meta-analysis. Chronobiol. Int. 2020, 37, 1754–1765. [Google Scholar] [CrossRef]
- Peplonska, B.; Bukowska, A.; Sobala, W. Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives. PLoS ONE 2015, 10, e0133761. [Google Scholar] [CrossRef]
- Pereira-Santos, M.; Costa, P.R.F.; Assis, A.M.O.; Santos, C.A.S.T.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef]
- Doğan, Y.; Kara, M.; Culha, M.A.; Özçakar, L.; Kaymak, B. The relationship between vitamin D deficiency, body composition, and physical/cognitive functions. Arch. Osteoporos. 2022, 17, 66. [Google Scholar] [CrossRef]
- Eyles, D.W.; Liu, P.Y.; Josh, P.; Cui, X. Intracellular distribution of the vitamin D receptor in the brain: Comparison with classic target tissues and redistribution with development. Neuroscience 2014, 268, 1–9. [Google Scholar] [CrossRef]
- Massa, J.; Stone, K.L.; Wei, E.K.; Harrison, S.L.; Barrett-Connor, E.; Lane, N.E.; Paudel, M.; Redline, S.; Ancoli-Israel, S.; Orwoll, E.; et al. Vitamin D and actigraphic sleep outcomes in older community-dwelling men: The MrOS sleep study. Sleep 2015, 38, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccarty, D.E.; Reddy, A.; Keigley, Q.; Kim, P.Y.; Marino, A.A. Vitamin D, Race, and Excessive Daytime Sleepiness. J. Clin. Sleep Med. 2012, 8, 693–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Kou, T.; Zhuang, B.; Ren, Y.; Dong, X.; Wang, Q. The Association between Vitamin D Deficiency and. Nutrients 2018, 10, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.W.J.; Crowther, M.E.; Appleton, S.L.; Melaku, Y.A.; Adams, R.J.; Reynolds, A.C. Shift work disorder and the prevalence of help seeking behaviors for sleep concerns in Australia: A descriptive study. Chronobiol. Int. 2022, 39, 714–724. [Google Scholar] [CrossRef]
- Copertaro, A.; Bracci, M. Working against the biological clock: A review for the occupational physician. Ind. Health 2019, 57, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Bukowska-Damska, A.; Skowronska-Jozwiak, E.; Kaluzny, P.; Lewinski, A. Night shift work and osteoporosis-bone turnover markers among female blue-collar workers in Poland. Chronobiol. Int. 2022, 39, 818–825. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, J.; Liu, D.; Wang, Y.; Jamilian, P.; Gaman, M.A.; Prabahar, K.; Fan, J. The effect of vitamin D on the lipid profile as a risk factor for coronary heart disease in postmenopausal women: A meta-analysis and systematic review of randomized controlled trials. Exp. Gerontol. 2022, 161, 111709. [Google Scholar] [CrossRef]
- Verdoia, M.; Gioscia, R.; Nardin, M.; Rognoni, A.; De Luca, G. Low levels of vitamin D and coronary artery disease: Is it time for therapy? Kardiol. Pol. 2022, 80, 409–416. [Google Scholar] [CrossRef]
- Jaiswal, V.; Ishak, A.; Peng Ang, S.; Babu Pokhrel, N.; Shama, N.; Lnu, K.; Susan Varghese, J.; Storozhenko, T.; Ee Chia, J.; Naz, S.; et al. Hypovitaminosis D and cardiovascular outcomes: A systematic review and meta-analysis. IJC Heart Vasc. 2022, 40, 101019. [Google Scholar] [CrossRef]
- Paschou, S.A.; Kosmopoulos, M.; Nikas, I.P.; Spartalis, M.; Kassi, E.; Goulis, D.G.; Lambrinoudaki, I.; Siasos, G. The impact of obesity on the association between vitamin D deficiency and cardiovascular disease. Nutrients 2019, 11, 2458. [Google Scholar] [CrossRef] [Green Version]
- Bikle, D.D. Vitamin D Assays. Front. Horm. Res. 2018, 50, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Máčová, L.; Bičíková, M. Vitamin D: Current challenges between the laboratory and clinical practice. Nutrients 2021, 13, 1758. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.A.; Camara, J.E.; Sempos, C.T.; Lukas, P.; Le Goff, C.; Peeters, S.; Burdette, C.Q.; Nalin, F.; Hahm, G.; Durazo-Arvizu, R.A.; et al. Vitamin D Standardization Program (VDSP) intralaboratory study for the assessment of 25-hydroxyvitamin D assay variability and bias. J. Steroid Biochem. Mol. Biol. 2021, 212, 105917. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.A.; Phinney, K.W.; Tai, S.S.C.; Camara, J.E.; Myers, G.L.; Durazo-Arvizu, R.; Tian, L.; Hoofnagle, A.N.; Bachmann, L.M.; Young, I.S.; et al. Baseline assessment of 25-hydroxyVitamin D assay performance: A Vitamin D standardization program (VDSP) interlaboratory comparison study. J. AOAC Int. 2017, 100, 1244–1252. [Google Scholar] [CrossRef]
- Vasile, M.; Corinaldesi, C.; Antinozzi, C.; Crescioli, C. Vitamin D in autoimmune rheumatic diseases: A view inside gender differences. Pharmacol. Res. 2017, 117, 228–241. [Google Scholar] [CrossRef]
- Hagenau, T.; Vest, R.; Gissel, T.N.; Poulsen, C.S.; Erlandsen, M.; Mosekilde, L.; Vestergaard, P. Global vitamin D levels in relation to age, gender, skin pigmentation and latitude: An ecologic meta-regression analysis. Osteoporos. Int. 2009, 20, 133–140. [Google Scholar] [CrossRef]
- McCullough, M.L.; Weinstein, S.J.; Freedman, D.M.; Helzlsouer, K.; Flanders, W.D.; Koenig, K.; Kolonel, L.; Laden, F.; Le Marchand, L.; Purdue, M.; et al. Correlates of circulating 25-hydroxyvitamin D: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010, 172, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Mosekilde, L. Vitamin D and the elderly. Clin. Endocrinol. 2005, 62, 265–281. [Google Scholar] [CrossRef]
- Forrest, K.Y.Z.; Stuhldreher, W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011, 31, 48–54. [Google Scholar] [CrossRef]
Shift Workers | Non-Shift Workers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Authors, Year | Country | Vitamin D Assay | Number | Age (Years) | BMI (kg/m2) | Vitamin D Levels (ng/mL) | Number | Age (Years) | BMI (kg/m2) | Vitamin D Levels (ng/mL) | Gender Prevalence |
Yang et al., 2021 [24] | U.S.A. | RIA | 728 | 30.09 ± 14.18 | - | 16.90 ± 6.77 | 2297 | 39.67 ± 14.50 | - | 17.93 ± 6.67 | Men |
Park et al., 2020 [28] | Korea | - | 2365 | - | - | 15.90 ± 9.73 | 11,620 | - | - | 17.30 ± 10.78 | Women |
Rizza et al., 2020 [29] | Italy | CLIA | 88 | 44.70 ± 7.90 | 24.30 ± 5.40 | 23.10 ± 9.10 | 200 | 47.60 ± 9.80 | 23.20 ± 4.00 | 25.90 ± 11.30 | Women |
Lee et al., 2020 [12] | Korea | CLIA | 412 | 29.02 ± 6.99 | 21.08 ± 2.79 | 13.22 ± 5.79 | 432 | 36.39 ± 11.38 | 21.83 ± 2.82 | 14.95 ± 8.37 | Women |
Park et al., 2019 [30] | Korea | - | 2666 | 35.84 ± 6.31 | - | 14.64 ± 5.99 | 79,412 | 39.88 ± 6.23 | - | 17.02 ± 6.78 | Men |
Alefishat et al., 2016 [31] | Jordan | CLIA | 82 | - | - | 21.00 ± 12.00 | 58 | - | - | 28.00 ± 14.00 | Women |
Erden et al., 2016 [32] | Turkey | CLIA | 125 | 35.06 ± 9.60 | 24.46 ± 3.84 | 8.98 ± 4.89 | 30 | 34.30 ± 7.18 | 24.78 ± 2.68 | 8.18 ± 2.39 | Women |
Romano et al., 2015 [33] | Italy | CLIA | 96 | 42.50 ± 7.60 | 26.40 ± 3.60 | 13.40 ± 5.30 | 100 | 51.20 ± 13.00 | 28.00 ± 2.20 | 21.90 ± 10.70 | Men |
Munter et al., 2015 [34] | Israel | CLIA | 37 | - | - | 14.80 ± 5.50 | 44 | - | - | 19.30 ± 7.00 | Men |
Kwon et al., 2015 [35] | Korea | CLIA | 872 | - | - | 8.89 ± 3.23 | 182 | - | - | 9.94 ± 3.25 | Women |
Kantermann et al., 2014 [25] | Belgium | LC-MS | 18 | 43.40 ± 6.20 | 26.90 ± 4.90 | 14.90 ± 7.42 | 9 | 44.70 ± 4.80 | 29.30 ± 4.70 | 17.16 ± 4.62 | Men |
Jeong et al., 2014 [26] | Korea | - | 969 | - | - | 17.00 ± 9.84 | 4440 | - | - | 18.00 ± 12.33 | Men |
Kim et al., 2013 [27] | Korea | RIA | 627 | 33.80 ± 9.50 | 23.10 ± 3.50 | 16.30 ± 5.90 | 2378 | 37.10 ± 8.50 | 23.50 ± 3.40 | 17.60 ± 6.10 | Men |
Authors, Year | Type of Workers (and Comparison) | Definition of Shift Work | Outdoor/Indoor Work |
---|---|---|---|
Yang et al., 2021 [24] | Unspecified—National survey | Working regular evening shifts, regular night shifts, and/or rotating shifts | Unspecified |
Park et al., 2020 [28] | Unspecified—National survey | Working night shifts or rotating shift | Unspecified |
Rizza et al., 2020 [29] | Hospital workers | Shift schedule of four to seven 12 h nights per month, followed by 2 days off | Indoor |
Lee et al., 2020 [12] | Hospital workers | ≥6 night shifts (working hours of 6:00 p.m. to 8:00 a.m., 7:00 p.m. to 7:00 a.m., or 10:00 p.m. to 7:00 a.m.) in a month | Indoor |
Park et al., 2019 [30] | Unspecified | Participants who responded to the question “In the past year, during which time of the day have you worked the most?” using the option “I work during other hours” rather than “I work mostly during the day (between 6 a.m. and 6 p.m.)” | Unspecified |
Alefishat et al., 2016 [31] | Employees | Subjects working from 4:00 p.m. till 7:00 a.m. at least 4 times per month for at least 3 years | Unspecified |
Erden et al., 2016 [32] | Anesthesia personnel (versus office workers) | Night shifts (unspecified) | Indoor |
Romano et al., 2015 [33] | Factory workers | 2 or 3 night shifts per week | Unspecified |
Munter et al., 2015 [34] | Physicians | Night shifts (unspecified) | Indoor |
Kwon et al., 2015 [35] | Factory workers | A night shift from 10 p.m. to the next morning at 6.a.m. at least four times per month on average or worked an average of at least 60 h per month during the night shift. | Indoor |
Kantermann et al., 2014 [25] | Factory workers | Slow counterclockwise shifts: 6 days night (22–6 h), one off and 6 days morning (6–14 h), one off and 6 days late (14–22), one day off | Unspecified |
Jeong et al., 2014 [26] | Unspecified—National survey | Those who worked in the afternoon (2 p.m. to midnight), at night (from 9 p.m. to 8 a.m. the following day), in regular rotation of shifts between day shifts and the night shifts, in 24 h shifts, in segmented shifts (working more than two shifts a day), and in irregular shifts | Unspecified |
Kim et al., 2013 [27] | Unspecified—National survey | The following categories: (1) evening (14:00–24:00), (2) night (21:00–08:00), (3) regular shift time (day and night or regular 24 h), or (4) irregular shift time (includes two times or more in a day) | Unspecified |
Authors, Year | Checklist for Correlates (0–5) | Checklist for Risk Factors (1–3) | Checklist for Causal Risk Factors (1–7) | Total Score (2–15) |
---|---|---|---|---|
Yang et al., 2021 [24] | 2 | 1 | 2 | 5 |
Park et al., 2020 [28] | 3 | 1 | 2 | 6 |
Rizza et al., 2020 [29] | 2 | 1 | 2 | 5 |
Lee et al., 2020 [12] | 3 | 1 | 5 | 9 |
Park et al., 2019 [30] | 2 | 1 | 2 | 5 |
Alefishat et al., 2016 [31] | 2 | 1 | 2 | 5 |
Erden et al., 2016 [32] | 2 | 1 | 2 | 5 |
Romano et al., 2015 [33] | 2 | 1 | 2 | 5 |
Munter et al., 2015 [34] | 2 | 1 | 2 | 5 |
Kwon et al., 2015 [35] | 2 | 1 | 2 | 5 |
Kantermann et al., 2014 [25] | 2 | 1 | 2 | 5 |
Jeong et al., 2014 [26] | 2 | 1 | 2 | 5 |
Kim et al., 2013 [27] | 2 | 1 | 2 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martelli, M.; Salvio, G.; Santarelli, L.; Bracci, M. Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8919. https://doi.org/10.3390/ijerph19158919
Martelli M, Salvio G, Santarelli L, Bracci M. Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(15):8919. https://doi.org/10.3390/ijerph19158919
Chicago/Turabian StyleMartelli, Margherita, Gianmaria Salvio, Lory Santarelli, and Massimo Bracci. 2022. "Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 15: 8919. https://doi.org/10.3390/ijerph19158919
APA StyleMartelli, M., Salvio, G., Santarelli, L., & Bracci, M. (2022). Shift Work and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(15), 8919. https://doi.org/10.3390/ijerph19158919