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Abstract: Urban sprawl has become the main pattern of spatial expansion in many large cities in
China, and its ecological and environmental effects profoundly impact Chinese urban development.
In this paper, nighttime light data and statistical yearbook data are adopted as basic data sources
to simulate the evolution trend of the urban sprawl in the upper Yangtze River (UYR), China. First,
the urban sprawl index (USI) is employed to assess the level of urban sprawl and to determine the
characteristics of urban sprawl under different scales. Second, the spatial autocorrelation model is
applied to reveal the spatial pattern change characteristics of urban sprawl from 1992 to 2015. Third,
a scenario analysis model of urban sprawl is constructed to simulate the evolution trend of the urban
sprawl under different scenarios. Finally, based on the Geodetector, the influence of factors and factor
interactions influencing urban sprawl in different time periods is analyzed. The results yield the
following main conclusions: (1) The urban sprawl in the UYR first intensifies and then stabilizes
over time. The number of cities with high USI in Sichuan province, medium cities, and Chengdu-
Chongqing urban agglomeration increases over time, indicating that urban sprawl is intensifying in
these areas. (2) The urban sprawl hot spots experience a pattern transformation process of point-like
expansion-point-ring expansion-point-axis expansion-axis radiation. (3) Under the scenarios with
different scales, the urban land sprawl in large cities is the highest, accounting for more than 47% of
the UYR. Urban land sprawl extent in the Chengdu-Chongqing urban agglomeration is the highest,
accounting for more than 51% of the UYR. The cities exhibiting the highest sprawl are Chongqing,
Lijiang, and Kunming, accounting for 25.84%, 7.37%, and 5.11%, respectively, of the UYR. (4) In
the different time scenario simulations, the urban land in large cities exhibits the highest sprawl,
accounting for approximately 48.16% of the UYR. The urban land in the Chengdu-Chongqing urban
agglomeration demonstrates the highest sprawl, accounting for 50.92% of the UYR. (5) From 1996 to
2002, the driver with the highest influence on urban sprawl was secondary industry share of GDP,
with a q-statistic of 0.616. From 2009 to 2015, the driver with the highest influence on urban sprawl
was green space per capita with a q-statistic of 0.396.

Keywords: urban sprawl; the upper Yangtze River; cold–hot-spot pattern; USSA model; scenario simulations

1. Introduction

Urban sprawl was a noteworthy appearance and problem in the process of urban
development in Western countries in the 20th century. At present, there is only a vague
definition of the connotation of urban sprawl, but all definitions exhibit one common feature:
low density, scattered development, poor accessibility, and a single function [1]. Against
the current background of large-scale urbanization, the development of many cities has
exceeded the normal track, and the layout of urban construction is seemingly disorderly or
even out of control. The phenomenon of urban sprawl has also occurred in China, which is
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chiefly embodied in the disorderly expansion of built-up land, and the speed of population
development is lower than that of land development, which reduces the urban land-use
efficiency and triggers impacts on social and economic development, resources, ecology,
and the environment [2–4]. The contradictions and conflicts between these aspects have
seriously harmed the social and economic development of China. Urban sprawl has become
the main method of spatial expansion in many large cities in China. Many problems in
the development of Western cities have also been manifested to varying degrees in China,
which has attracted the attention of relevant scholars and departments [5,6].

Urban sprawl first appeared in the urbanization process of Western developed coun-
tries. After World War II, the popularity of motor vehicles and the massive construction of
roads led to the expansion of urban space, which destroyed the agricultural land around
the cities and the ecological environment inside the cities [7]. The phenomenon of sub-
urbanization dominated by domestic automobiles exacerbated the employment problem
and the proliferation of low-density housing, resulting in the problem of urban sprawl.
Urban sprawl studies originated in the 1960s. Whyte [8] first proposed the term “urban
sprawl” in 1958. The process of suburbanization emerged in France in the 1960s and has
since sprawled to the suburbs regardless of the size of the city, with the rate of sprawl
varying from region to region [9]. In the 1990s, as the economy grew, a large number of
residents chose to migrate to large cities, which exceeded the local housing demand. At
this time, a spatial pattern of diffuse cities emerged [10]. At the beginning of the 21st
century, governments at all levels greatly accelerated urban sprawl by investing heavily in
transportation and other public facilities [11]. Market failures can also exacerbate urban
sprawl by affecting population growth, rising incomes, and falling commuting costs [12].

The current research on urban sprawl has mainly concentrated on four aspects. The
first aspect is the delimitation of urban sprawl. Whyte [8] delimited urban sprawl as the
rapid development of urban suburbs. Gottmann [13] proposed that sprawl is the con-
tinuous expansion along the periphery of a metropolis. Anderson et al. [14] understood
urban sprawl as the separation of residential land from other land uses because of its
location on the urban periphery; a general decrease in land-use intensity; a highly con-
nected transportation network; and the expansion of urban boundaries. It is evident that
there exists no very clear definition of the connotation of urban sprawl, but it is found
that the definition has changed from neutral to derogatory, and all definitions exhibit a
common feature: low density, inaccessibility, scattered development, and functional in-
efficiency. The second aspect is the measurement study of urban sprawl. Two types of
measurements are typically used to measure urban sprawl. One uses a single index to
measure a particular aspect of sprawl, and the other uses a composite index to measure
multidimensional aspects of sprawl. The most well-known single index is the sprawl index
(SI) [15], which was used to measure the sprawl score status of metropolitan areas in the
USA in 2000. Ewing et al. [16] originally used a single sprawl index to estimate sprawl in
448 metropolitan counties. The representative of composite index is that Ewing et al. [17]
used principal component analysis to screen out 22 highly correlated variables, and on that
basis, he formed four factors of residential density, land-use mix, intensity of economic
centers and downtown centers, and accessibility of neighborhood networks, which were
combined to obtain the sprawl index. Torrens [18] measured urban sprawl in terms of seven
aspects, including urban growth, with a total of 42 factors. The composite index method
also includes dynamic model, spatial model, measurement model, statistical model, and
integrated model. Zhou et al. [19] explored the factors influencing vertical urban sprawl
by constructing regression models from the perspective of government, developers, and
residents. Das and Angadi [20] combined spatial landscape metrics and the Shannon
entropy model to analyze the spatial assessment of urban sprawl. The third aspect is the
study of factors influencing urban sprawl mainly from two aspects: natural conditions and
socio-economic conditions. Wang et al. [21] analyzed urban decentralization and urban
renewal as socioeconomic factors behind urban sprawl in China. Marais et al. [22] argued
that historical path dependencies and interdependencies are considered the main factors of
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urban sprawl. Fan and Zhou [23] believed the factors that positively influence urban sprawl
are fiscal competition among governments, competition for investment, and competition to
promote the environment. Guite [24] identified population growth and the work sector as
contributing to sprawl. Domingo et al. [25] used multiple scenario simulations to reveal the
potential impact of planning on urban growth. Due to the emergence of residential density
hot spots, Koprowska et al. [26] used hot spot analysis to demonstrate a link between urban
sprawl and increased availability of urban green zones. Overall, the impact factors of urban
sprawl include natural conditions, government, history, population, economy, etc. The
fourth aspect involves the study methods of urban sprawl control. On the basis of the least
cumulative resistance model, Guan et al. [27] simulated the urban sprawl conditions under
different scenarios by considering the level of the source, ecological barriers, ecological
resistance, and urban sprawl and proposed suggestions to guide the sustainable devel-
opment of cities. Li et al. [28] proposed that the sprawl of megacities in China requires
multiple-scale aspects to join together to manage by examining urban regional expansion
patterns. Gavrilidis et al. [29] used hierarchical analysis to evaluate green space proposals
in urban areas and proposed a methodological framework for controlling urban sprawl.
Menzori et al. [30] argued that management capacity affects the geographic location of
urban growth and, in turn, the moderation of urban sprawl. Tan et al. [31] concluded that
innovation policies are not driving urban sprawl.

The research on urban sprawl is quite comprehensive, covering various aspects such
as definition, quantification, mechanism, influence, and regulation. However, the research
on urban sprawl has begun to solidify, but from the perspective of the research content,
there remains a lack of research in the below two dimensions. The first dimension is the
scale effect of urban sprawl, and the second dimension is the simulation and prediction
research on urban sprawl. Against the background of Chinese large-scale urbanization,
the phenomenon of urban sprawl will occur for a long time. By simulating urban sprawl
scenarios, guiding the sustainable development of cities in the above basin is of great
importance to the ecological security of the area.

At present, the main methods adopted to simulate urban sprawl include the cellular
automata model, neural network algorithm, SLEUTH model, CLUE-S model, and FLUS
model. Yang et al. [32] used CA–Markov model to simulate future urban sprawl. Okwuashi
and Ndehedehe [33] combined machine learning with cellular automation to build models
for simulating future city states. Liao et al. [34] proposed an urban cellular automaton
model for predicting urban growth boundaries under different levels of ecological space
of importance. Li et al. [35] employed the SLEUTH model to discuss the temporal and
spatial variation of urban growth. Huang et al. [36] used CLUE-S model to simulate the
urban growth boundary. Chen et al. [37] obtained the characteristics of future urban sprawl
based on FLUS model simulations. Some scholars have also used neural network models
to identify and predict future urban sprawl scenarios, and the results have achieved a
high degree of accuracy [38–41]. There are also combinations of neural networks and other
models to predict urban sprawl [42,43] These models mainly consider social, economic, and
policy factors impacting urban sprawl. However, little consideration is given to ecological
factors, and the simulation results often lack scale-effect research.

This paper chooses the upper Yangtze River as the research area. The extent of urban
sprawl in Sichuan, Chongqing, Yunnan, and Guizhou over the past 20 years and the process
of changing patterns of urban sprawl characteristics on multiple scales are measured. The
pattern and evolution of urban sprawl cold and hot spots are analyzed, an urban sprawl
scenario analysis model is developed on this basis to simulate the evolution trend under
different scenarios, and a basis is provided for sustainable city development. Finally, based
on the Geodetector, we analyzed the factors influencing urban sprawl and the interaction
of factors in the two time periods.
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2. Study Area and Data Sources
2.1. Study Area

The upper Yangtze River (UYR) extends from the source of the Yangtze River to the
main stream of Yichang, spanning from 90.54–111.46◦ E longitude and 24.46–35.75◦ N
latitude, and has a length of 4511 km, accounting for roughly 70% of the entire length of
the Yangtze River. The main tributaries are Yalong River, Min River, Jialing River, Wu
River, and so on. The terrain is high in the west and low in the east, with the Tibetan
Plateau in the west at an altitude of over 6000 m and the plains and hills of the Sichuan
Basin in the east at an altitude of only a few hundred meters. The river runoff in the UYR
accounts for 48% of the runoff in the entire basin, which determines the changes in the
water environment of the entire Yangtze River. Therefore, the ecological protection of the
UYR is correlated with the ecological security of the entire basin and the long-term stability
and sustainable development of China. This paper mainly studies the four provinces (cities)
of Sichuan, Chongqing, Yunnan, and Guizhou in the UYR. There are 47 cities in the study
area, including 2 megacities with urban populations over 5 million, 24 large cities with
urban populations over 1 million, 12 medium-sized cities with urban populations over
500,000, and 9 small cities with urban populations less than 500,000, as shown in Figure 1.
As of the end of 2019, the year-end population of these four provinces (cities) reached
199.8057 million, accounting for 14.27% of the Chinese population, and the regional GDP
reached CNY 110,214.466 billion, accounting for 11.12% of the GDP of China.
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As shown in Figure 1, the Chengdu-Chongqing urban agglomeration consists of
Chongqing and Sichuan provinces (except Beichuan County, Pingwu County, Wanyuan
City, Tianquan County, and Baoxing County), with a total area of 185,000 km2. The Central
Yunnan urban agglomeration is located in the central part of Yunnan Province, consist-
ing of 4 cities in Kunming, Qujing, Yuxi, and Chuxiong and 7 counties and cities in the
northern part of Honghe Prefecture, with a total area of 111,400 km2, accounting for 29%
of the total area of Yunnan Province. The Qianzhong urban agglomeration is located in
the central region of Guizhou Province, including the 6 cities (states) of Guiyang, Zunyi,
Bijie, Anshun, Qiandongnan, and Qiannan and 33 counties (cities and districts) of Guian
New District, with a total area of 53,800 km2. The three urban agglomerations, as the
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19 urban agglomerations fostered by the government, are still subject to systematic ecolog-
ical risks with the growth of urban sprawl intensity and the serious threat of landscape
ecosystem degradation.

2.2. Data Sources

The adopted DMSP/OLS nighttime light data are released by the National Physical
Earth Data Center (http://www.geodata.cn/). This type of data is monitored by six
satellites equipped with DMSP/OLS sensors. The longitude range covered by the data
is from −180◦ to 180◦, the latitude range is from −65◦ to 75◦, and the spatial resolution
is 30 arc seconds. These data remove the influences of sunlight, aurora, etc., and they
more accurately reflect the nighttime light information, which is beneficial for the quick
extraction of urban construction land.

The GIS data adopted in this paper include DEM, NDVI, land cover, farmland pro-
duction potential, and soil erosion data for the UYR. These data were obtained from the
Resource and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/). The spatial resolution is 1 km × 1 km. The main railroad data
are obtained from OpenStreetMap (https://master.apis.dev.openstreetmap.org/).

The statistical yearbook data contain the urban population of various cities in the UYR
from 1992 to 2015, including socioeconomic data. These data originate from the EPS data
platform, China Demographic Yearbook, Sichuan Province Statistical Yearbook, Chongqing
City Statistical Yearbook, Guizhou Province Statistical Yearbook, and Yunnan Province
Statistical Yearbook.

3. Methods
3.1. Urban Sprawl Index

In this paper, the USI is cited for quantifying the extent of urban sprawl [23,44]. This
index takes into account two main indicators that are relevant to urban sprawl: urban land
and urban population. The urban sprawl index is calculated as follows:

USIi
(t1,t2)

= UAi
(t1,t2)

−UPi
(t1,t2)

where USIi
(t1,t2)

is the USI of city i from time t1 to time t2; UAi
(t1,t2)

is the annual growth

speed of urban land in the city i between t1 and t2; UPi
(t1,t2)

is the annual growth speed of
urban population in the city i between t1 and t2. The formula is calculated as follows:

UAi
(t1,t2)

=

(Ai
t2

Ai
t1

) 1
t2−t1

− 1

× 100%

UPi
(t1,t2)

=

(Pi
t2

Pi
t1

) 1
t2−t1

− 1

× 100%

where Ai
t1

and Ai
t2

are the urban areas of city i at times t1 and t2, respectively; Pi
t1

and Pi
t2

are the urban populations of city i at times t1 and t2. When the annual growth speed of
the area of city i exceeds the annual growth speed of the urban population, USI > 0, while
otherwise, USI < 0. USI ≤ 0 indicates that the city has not sprawled, and USI >0 indicates
that it has sprawled.

3.2. Spatial Autocorrelation Model

This paper adopts the intensity of urban expansion as the initial observation value for
the calculation of cold and hot spots [45]. The urban expansion intensity is employed as the
initial observation value for the cold and hot spot calculations [45]. This paper introduces

http://www.geodata.cn/
https://www.resdc.cn/
https://master.apis.dev.openstreetmap.org/
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the Getis–Ord G∗i indices to measure the local clustering characteristics, respectively, of the
urban sprawl in the UYR. The calculation formula is as follows:

G∗i =
n

∑
j=1

Wij(d)XiXj/
n

∑
j=1

Xj

where G∗i is the spatial weight defined by the distance rule, and the spatial weight of an
adjacent research unit is 1, while that of a nonadjacent research unit is 0. Xi and Xj are the
urban expansion intensities of area i and area j, respectively.

3.3. Urban Sprawl Scenario Analysis Model

This paper introduces the urban sprawl scenario analysis (USSA) model to simulate
the urban sprawl conditions under different scenarios [27]. This model comprehensively
considers the urban sprawl source, ecological barrier, ecological resistance, and urban
sprawl extent. The calculation equation is as follows:

TVUSSA = gmin(
y=j

∑
x=i

Dxy ×Ux × Ry × Ey), for Ux =


0.8, USI ≥ Va
0.9, 0 ≤ USI < Va
1, USI < 0

where TVUSSA is the trend value of the USSA model. Negative function g is unknown, min
is the cumulative minimum value of the different levels in each cell, Dxy is the length of
the source y to the spatial grid of source x, Ux is the USI in which x is situated, and Ry is
the relative damping coefficient of the rank of y. The greater the rank of y is, the stronger
the capability of urban sprawl, and the lower the relative damping coefficient. Ey is the
ecological control factor of y. Va is the average value of the USI.

This paper identifies the sources of urban sprawl based on urban sprawl cold–hot
spots from 2009 to 2015. The source is the root cause of urban land maintenance and
sprawl and is the starting point and foundation of urban sprawl. Source refers to the
municipal district formed by the development of a city over a certain period of time. We
defined weights of 0.6, 0.7, 0.8, and 0.9, corresponding to the weight of the source in the hot
spots, sub-hot, sub-cold, and cold spots, respectively, as shown in Figure S1. Sources are
categorized to characterize differences in spatial sprawl capacity across municipal districts.
Therefore, the comparative analysis in this paper is all about the extent of sprawl in urban
municipalities, and rural areas are not included.

3.4. Urban Sprawl Influence Factor Model
3.4.1. Geodetector

This paper cites Geodetector to analyze the factors influencing urban sprawl in the
UYR. The Geodetector is a model developed by Wang et al. [46] to detect spatial hetero-
geneity and reveal the driving factors behind it. Factor detectors are used to identify the
importance of the drivers affecting the spatial and temporal patterns of urban sprawl, and
interaction detectors are used to explore the impact of interactions between drivers on
urban sprawl. The core idea of using a Geodetector to study the influencing factors of
urban sprawl is that if an influencing factor has a significant effect on the developmental
changes of urban sprawl, then the spatial distribution of this factor and the degree of urban
sprawl should have similarity [47]. The formula for the factor detector is as follows [48]:

q = 1 −

h=i
∑
L

Nhσ2
h

Nσ2

where q is the influence intensity value of the driver on urban sprawl and takes the value
range [0, 1]. A higher q-statistic indicates a more significant effect of the factor on urban
sprawl and vice versa. L is the number of classifications of influencing factors. Nh is the
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number of cities in category h. N is the number of cities in the entire study area. σh
2 is the

variance of the h class. σ2 is the variance of the full urban sprawl index.
The interaction detector first calculates the q-statistic of the two factors X1 and X2

for urban sprawl, namely q(X1) and q(X2), respectively, and calculates the q-statistic when
they interact, namely q(X1 ∩ X2), and finally compares the calculated results. The types of
interactions are shown in Table 1.

Table 1. Types of influence factor interaction.

Judgment Conditions Interaction

q(X1∩X2) < Min(q(X1),q(X2)) Non-linear reduction
Min(q(X1),q(X2)) < q(X1∩X2) < Max(q(X1),q(X2)) Single-factor nonlinearity reduction

q(X1∩X2) > Max(q(X1),q(X2)) Two-factor enhancement
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

3.4.2. Urban Sprawl Influence Indicator System Construction

The extent of urban sprawl and its spatial heterogeneity are influenced by a combi-
nation of many factors such as economic growth, social development, natural conditions,
and policy making. Based on the principles of scientific, comparability, independence,
operability, and accessibility of indicators and on the basis of existing results [49–51],
15 indicators were selected from four levels, namely economic development, social culture,
transportation, and government regulation, to quantitatively analyze the drivers of urban
sprawl in the UYR, as shown in Table 2. Using the natural break method in ArcGIS 10.8,
the 15 metrics and USI were reclassified into 10 categories and sampled at 10 km × 10 km
intervals and imported into the Geodetector.

Table 2. Urban sprawl influence indicator system.

Dimensions Factors Code Unit

Economic
development

GDP X1 Billion CNY
Urban disposable income per capita X2 CNY

Secondary industry share of GDP X3 %
Tertiary industry share of GDP X4 %

Investment in real estate development X5 Billion CNY

Social culture

Population X6 Million
Urbanization rate X7 %

Number of high schools X8 -
Urban green space per capita X9 m2

Transportation

Urban road area per capita X10 m2

Distance from major railroads X11 m
Private car ownership X12 -

Highway mileage X13 km

Government
regulation

Public finance expenditure X14 Billion CNY
Fixed assets input X15 Billion CNY

4. Results
4.1. Recognition of the Spatial Features of Urban Sprawl

The USI was adopted in the four periods of 1992–1996, 1996–2002, 2002–2009, and
2009–2015. To facilitate comparative analysis, the USI from 2009 to 2015 was classified by a
combination of artificial and natural fracture methods, and the classification criteria were
applied to the first three periods.

The USI in the UYR first increased and then stabilized over time (Figure 2). From 1992
to 1996, cities such as Deyang, Kunming, Panzhihua, Zunyi, and Mianyang experienced
severe urban sprawl, accounting for 10.64% of the UYR. During this period, the cities
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without sprawl accounted for 82.98% of the UYR. From 1996 to 2002, Chengdu, Chongqing,
Guiyang, and Nanchong developed into cities experiencing severe urban sprawl, account-
ing for 31.91% of the UYR, an increase of 21.28% over the previous period. The area without
sprawl accounted for 63.83%, a decrease of 19.15% over the previous period. From 2002 to
2009, Chengdu, Chongqing, Kunming, Deyang, Mianyang, and Zunyi were converted into
areas with a slight urban sprawl, while Meishan, Yibin, Dali, Lijiang, Anshun, etc., were
newly added areas faced with severe urban sprawl. During this period, the area without
urban sprawl in the UYR decreased to 23.40% of the entire study area. From 2009 to 2015,
Leshan, Luzhou, and Guangan were newly identified as areas with severe urban sprawl.
More than 40.43% of the UYR experienced severe urban sprawl, while the area with a slight
urban sprawl decreased to 17.02% of the entire UYR. The area without urban sprawl added
to 42.55% of the entire UYR.
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Figure 2. Urban sprawl across different cities in UYR, China, from 1992 to 2015: (a–d) the four periods
of 1992–1996, 1996–2002, 2002–2009, and 2009–2015, respectively.

4.2. The Pattern and Evolution of the Urban Sprawl Cold and Hot Spots

The Getis–Ord G∗i index is employed to analyze the local features of the cold and hot
spots during the above four periods of the urban sprawl in the UYR. The Getis–Ord G∗i
index value of the research unit was divided into four categories according to the natural
fracture method, and they were denoted as hot spots, sub-hot spots, sub-cold spots, and
cold spots in descending order, as shown in Figure 3.



Int. J. Environ. Res. Public Health 2022, 19, 9190 9 of 21
Int. J. Environ. Res. Public Health 2022, 19, x 10 of 23 
 

 

 

Figure 3. Distribution of urban sprawl cold and hot spots in the UYR, China, from 1992 to 2015: (a–

d) the four periods of 1992–1996, 1996–2002, 2002–2009, and 2009–2015, respectively. 

4.3. The Simulation Results of the Different Urban Sprawl Scenarios 

4.3.1. Test of the Urban Sprawl Scenario Analysis Model 

According to the established model, the nighttime data in 1992, 1996, 2002, and 2009 

were adopted as sources to simulate the nighttime light distributions in 1996, 2002, 2009, 

and 2015. The kappa coefficient of the near-real night light data and simulated night light 

data was calculated, as shown in Figure 4. 

Figure 3. Distribution of urban sprawl cold and hot spots in the UYR, China, from 1992 to 2015:
(a–d) the four periods of 1992–1996, 1996–2002, 2002–2009, and 2009–2015, respectively.

From 1992 to 1996, the cold and hot spots of the urban sprawl in the UYR were clearly
distinguished. The hot spots were mainly centered on Chengdu, Chongqing, Kunming,
Mianyang, and Panzhihua, as illustrated in Figure 3a. From 1996 to 2002, the urban sprawl
cold and hot spots in the UYR underwent major changes. The hot spots were mostly
centered on Chengdu, Chongqing, and Kunming. Yuxi developed from a sub-cold spot
into a sub-hot spot, and the area of the sub-cold spot continued to increase, as shown in
Figure 3b. From 2002 to 2009, the distribution of the sub-hot spots increased. The newly
added sub-hot spots included Nanchong, Suining, and Dali, as shown in Figure 3c. From
2009 to 2015, the layout of the hot spots of the urban sprawl in the UYR during this period
was fragmented. New hot spots included Deyang, Meishan, Lijiang, Dali, and Southwest
Guizhou, as shown in Figure 3d. The newly added hot-spot cities connected the sub-hot
spot cities in the surrounding area, thereby forming a small radiation center and driving
the development of the surrounding area.

4.3. The Simulation Results of the Different Urban Sprawl Scenarios
4.3.1. Test of the Urban Sprawl Scenario Analysis Model

According to the established model, the nighttime data in 1992, 1996, 2002, and 2009
were adopted as sources to simulate the nighttime light distributions in 1996, 2002, 2009,
and 2015. The kappa coefficient of the near-real night light data and simulated night light
data was calculated, as shown in Figure 4.
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Figure 4. Calibrating the USSA model with the urban sprawl simulation in the UYR, China, from
1992 to 2015: (a1–a4) represent the near-real night light data of Chengdu, Chongqing, Kunming, and
Guiyang, respectively; (b1–b4) represent the simulated night light data of Chengdu, Chongqing,
Kunming, and Guiyang, respectively.

Figure 4 shows a detailed comparison of the near-real nighttime light data (a) and the
simulated nighttime light data (b) of the four phases. In addition, the kappa coefficient of
the corresponding year is also calculated. The results indicate that the kappa coefficients of
the nighttime light simulation results in 1996, 2009, 2002, and 2015 are all approximately
0.7, which is highly consistent with the real results. Therefore, the model constructed in
this study basically satisfies the research needs.

4.3.2. Scenario Simulation of the Different Scales of Urban Sprawl

The constructed ecological resistance surface was employed to simulate urban sprawl.
The specific method involved the use of the grid reclassification function in ArcGIS with
the percentage of the urban sprawl scale in the total study area in the classifier to obtain the
boundaries of urban sprawl. It is known that the total area of the municipal district in the
UYR amounts to 92,392.35 km2. This paper set four different scenarios to simulate the urban
sprawl boundaries. Scenario one, scenario two, scenario three and scenario four below
represent the simulated urban sprawl to 5%, 10%, 20%, and 30%, respectively. Moreover,
the urban space area accounts for 21.88%, 29.22%, 51.60%, and 72.50%, respectively, of the
total study area, as shown in Figure 5.
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Figure 5. Simulation results of urban sprawl under different scenarios in the UYR, China:
(a–d) represent the boundary when the simulated urban sprawl to 5%, 10%, 20%, and 30%, respectively.

In this study, the urban sprawl pattern refers to a spatial characteristic and spatial struc-
ture formed by the urban sprawl process. Under scenario one and scenario two, the urban
boundary has sprawled, exhibiting a scattered layout, as shown in Figure 5a and Figure 5b,
respectively. Largely owing to the restriction of ecological barriers, the urban boundary
occurs away based on the urban centers. Under scenario three, the urban sprawl increases
along the original trend, and the urban spatial form changes into the marginal type, while
the municipal district becomes surrounded by newly sprawled areas, as shown in Figure 5c.
Under scenario four, the urban spatial form reveals a concentric belt structure, and the
municipal district has become completely surrounded by newly sprawled areas, as shown
in Figure 5d. It can be seen that the urban sprawl pattern under different scale scenarios
shows a transformation of “ decentralized layout-edge type-concentric belt”.

To more clearly reflect the sprawl rate of each city at different scales, statistics were
obtained for the various cities. The cities with the highest degree of sprawl are Chongqing,
Lijiang, and Kunming, which account for 25.84%, 7.37%, and 5.11%, respectively, of the
UYR, as shown in Figure 5.

4.3.3. Scenario Simulation of the Urban Sprawl at Different Times

Based on the obtained continuous nighttime light remote sensing data, this paper
applied the grey prediction method to conduct urban sprawl simulations in 2020, 2025, 2030,
and 2035. The results showed that the urban land area in these four years was 13,750 km2,
23,580 km2, 40,460 km2, and 69,400 km2, respectively, at an annual growth rate of 5.45%, as
shown in Figure 6.
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Figure 6. Simulation results of urban sprawl under different years in UYR, China: (a–d) the bound-
aries of the simulated urban sprawl to 2020, 2025, 2030, and 2035, respectively.

Figure 6 shows that similar sprawl trends occurred in different time simulations.
Over time, the urban spatial form also underwent a transformation of “decentralized
layout-edge type-concentric belt”. Overall, the degree of sprawl in the different time
scenario simulations is higher than that in the varying scale scenario simulations. From the
perspective of a single city, the degree of sprawl in the different time scenario simulations
in cities such as Chongqing, Lijiang, and Guangyuan is lower than that in the different scale
scenario simulations, while the degree of sprawl in cities such as Kunming, Guiyang, and
Liupanshui in the different time scenario simulations is higher than that in the different
scale scenarios. The cities with the highest degree of sprawl are Chongqing, Lijiang, and
Kunming, which account for 23.72%, 6.80%, and 5.65%, respectively, of the UYR, as shown
in Figure 6.

4.4. Analysis of Urban Sprawl Influencing Factors
4.4.1. Analysis of Urban Sprawl Influence Factor Detectors

The factor detector measures the effect of each factor on the extent of urban sprawl.
As shown in Figure 7, from 1996 to 2002, the q-statistic of the impact factors ranged
from 0.103 to 0.616 and were all significant (p < 0.01). The effects on urban sprawl
are, from strong to weak, as follows: secondary industry share of GDP > private car
ownership > GDP > highway mileage > investment in real estate development > fixed
asset investment > tertiary industry share of GDP > urban green space per capita > urban-
ization rate > urban disposable income per capita > public finance expenditure > urban
road area per capita > population > distance from major railroads > number of high schools.
From 2009 to 2015, the q-statistic of the impact factors ranged from 0.124–0.396 and were
all significant (p < 0.01). The effects on urban sprawl from strong to weak are: urban
green space per capita > tertiary industry share of GDP > number of high schools > public
finance expenditure > investment in real estate development > urban disposable income per
capita > fixed asset investment > population > private car ownership > highway mileage
> secondary industry share of GDP > urban road area per capita > distance from major
railroads > GDP > urbanization rate.
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From a factor perspective, from 1996 to 2002, the driver with the highest influence
on urban sprawl was secondary industry share of GDP, with a q-statistic of 0.616. The
higher the level of secondary industry development in a city, the higher the extent of urban
sprawl that follows. The effect of private car ownership on urban sprawl is the second
with a q-statistic of 0.41. Private car ownership can indicate the level of urban accessibility,
and as cities become more accessible, residents are more inclined to live in the suburbs,
thus indirectly growing urban sprawl. The convenience of transportation will also reduce
the cost of transportation and land rent for developers, resulting in overdevelopment of
the peripheral areas of the city. From 2009 to 2015, the driver with the highest influence
on urban sprawl was green space per capita with a q-statistic of 0.396. The higher the
green space per capita, the more residents tend to live in places with a high quality of
urban life, thus contributing to urban sprawl. This finding is consistent with that of
Koprowska et al. [26], who also concluded that urban green spaces contribute to urban
sprawl. We can also observe the higher influence of the tertiary industry share of GDP
than the secondary industry share of GDP during this period. With the development of the
tertiary industry, residents are attracted to live in areas with a strong service sector, thus
contributing to urban sprawl.

From a dimensional perspective, from 1996 to 2002, the influence of economic de-
velopment on urban sprawl was clearly dominant. However, by 2009 to 2015, there is
no significant difference in the q-statistic of the dimensions, indicating that the dimen-
sions have comparable influence on urban sprawl, and there is no particularly significant
dominant influence factor.

4.4.2. Analysis of Urban Sprawl Influence Factor Interaction Detectors

Urban sprawl is a geographical process in which multiple factors interact. Interaction
detectors can measure the effect of interactions of various factors on urban sprawl. As
shown in Figure 8, after the interaction of the influencing factors, the q-statistic increases
significantly, and the impact on urban sprawl is also significantly enhanced. The interaction
detector judgment condition showed that from 1996 to 2002, the number of two-factor en-
hancements was 12, and the number of non-linear enhancements was 93. From 2009 to 2015,
the number of two-factor enhancements was 9, and the number of non-linear enhancements
was 96. This indicates that the interaction effect of any two influencing factors on urban
sprawl is an enhancing relationship, and there are no mutually independent influencing
factors, and the influence of each factor on urban sprawl is somewhat correlated, and all of
them have a higher degree of influence than individual factors.
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Figure 8. Interactive detection of driving factors. (a) 1996–2002; (b) 2009–2015.

From 1996 to 2002, the interaction between urban disposable income per capita and
urbanization rate has the highest effect on urban sprawl with a q-statistic of 0.98. The
interaction of the number of high schools and distance from major railroads has the lowest
effect on urban sprawl with a q-statistic of 0.26. The interaction effect of the secondary
industry share of GDP on the other factors is significantly enhanced with q-statistic ranging
from 0.72–0.97, indicating that the secondary industry share of GDP significantly enhances
the effect of the other factors on urban sprawl. From 2009 to 2015, the interaction between
the secondary industry share of GDP and the population has the highest effect on urban
sprawl with a q-statistic of 0.97. The interaction between GDP and distance from major
railroads has the lowest effect on urban sprawl with a q-statistic of 0.33. The interaction
effect of urban disposable income per capita on other factors is significantly stronger with
q-statistic ranging from 0.48–0.9, indicating that disposable income per capita amplifies the
effect of other factors on urban sprawl. Comparing the two time periods, the interaction
power of the number of high schools on other factors increases from 0.26–0.55 to 0.47–0.8,
indicating that the improvement of education quality can have a stronger influence in
combination with other factors.

5. Discussion
5.1. The Scale Effect of Urban Sprawl Spatial Pattern Evolution

The USI was determined during the four time periods of 1992–1996, 1996–2002,
2002–2009, and 2009–2015 to conduct a multiscale discussion of the characteristics of the
urban sprawl in the UYR (Figures 9–11). The following three spatial scales are used in this
study: city scale (megacity, large city, medium city, small city), urban agglomeration scale
(Chengdu-Chongqing urban agglomeration, the central Yunnan urban agglomeration, the
central Guizhou urban agglomeration), and provincial administrative scale (Chongqing,
Sichuan, Yunnan, Guizhou).
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(a–d) the four periods of 1992–1996, 1996–2002, 2002–2009, and 2009–2015, respectively.

From 1992 to 1996, with the exception of Chongqing, the other three provinces ex-
perienced severe urban sprawl. Among them, the areas experiencing severe sprawl in
Sichuan Province accounted for 10% of the province, the areas with slight sprawl accounted
for 5% of the province, and the remaining 85% of the areas did not experience urban
sprawl. In Guizhou Province, the areas suffering severe sprawl accounted for 12.5% of
the total province, the areas with slight sprawl accounted for 12.5% of the total province,
and the remaining 75% of the areas did not reveal urban sprawl. The areas with severe
sprawl in Yunnan Province accounted for 11.1% of the whole province, and the remain-
ing 88.89% of the areas did not experience sprawl, as shown in Figure 9a. From 1996 to
2002, Chongqing developed into a severely sprawling city. The areas experiencing severe
sprawl in Sichuan accounted for 30% of the province, an increase of 20% over the previous
period. The areas exhibiting severe sprawl in Guizhou Province accounted for 25% of the
province, an increase of 12.5% over the previous period. The areas with severe sprawl
in Yunnan Province accounted for 33.33% of the province, an increase of 8.33% over the
previous period, as shown in Figure 9b. From 2002 to 2009, Chongqing experienced slight
sprawl. The proportion of slight sprawl in Sichuan Province rose to 50%, an increase of
45% over the previous period, while the proportion of severe sprawl fell to 20%, a decrease
of 10% over the previous period. The proportion of slight sprawl in Guizhou and Yunnan
provinces rose to 37.5% and 33.33%, respectively, as shown in Figure 9c. From 2009 to 2015,
Chongqing continued to experience slight sprawl. The area with severe sprawl in Sichuan
Province accounted for 70% of the province, an increase of 50% over the previous period,
and the proportion of sprawl increased to 85%, reaching a sprawl peak. The phenomenon
of urban sprawl in Sichuan Province has continuously exhibited an upward trend. The
proportion of sprawl in Guizhou Province and Yunnan Province decreased to 50% and
27.78%, respectively, and they began to show a downward trend, as shown in Figure 9d.
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From 1992 to 1996, the phenomenon of urban sprawl in megacities became the domi-
nant phenomenon. The proportion of sprawl in the large cities was 20.84%, of which 16.67%
were areas with severe sprawl, and 4.17% were areas experiencing slight sprawl. The pro-
portion of the regions suffering severe sprawl in the medium cities was 8.33%, while urban
sprawl did not occur in small cities, as seen in Figure 10a. From 1996 to 2002, the urban
sprawl in megacities increased. Among the large cities, the proportion of severe sprawl
reached 50%, an increase of 33.33% over the previous period. The proportion of sprawl in
the medium cities was 25%, an increase of 16.67% over the previous period, of which 8.33%
were severely sprawled, and 16.67% were slightly sprawled. No urban sprawl occurred
in the small cities, as shown in Figure 10b. From 2002 to 2009, the USI in megacities was
mainly moderate. The urban sprawl during this period mainly occurred in large cities.
The proportion of USI in the large cities was 87.5%, an increase of 37.5% over the previous
period. Among them, the number of areas exhibiting severe sprawl accounted for 45.83% of
the total area, and the areas with slight sprawl accounted for 41.67% of the total area. The
proportion of the medium cities with sprawl reached 66.67%, an increase of 41.67% over
the previous period. Among them, the number of areas suffering severe sprawl accounted
for 16.67% of the total area, and the number of areas with slight sprawl accounted for 50%
of the total area. In the small cities, the area with severe sprawl accounted for 33.33% of the
total area, and the area experiencing slight sprawl accounted for 22.22% of the total area, as
shown in Figure 10c. From 2009 to 2015, the sprawl in megacities was predominantly slight,
and the degree of sprawl in the large cities began to decline. The medium cities contained
the largest number of cities with sprawl. The areas exhibiting severe sprawl accounted for
58.33% of the total area, and the areas with slight sprawl accounted for 16.67% of the total
area. The degree of sprawl in the small cities began to decrease, accounting for 11.11% of
the overall sprawl, a decrease of 44.44% over the previous period, as shown in Figure 10d.

From 1992 to 1996, the number of cities in the Chengdu-Chongqing urban agglomera-
tion area accounted for 25% of the entire Chengdu-Chongqing area, of which the lightly
sprawling areas accounted for 12.5%, and the severely sprawling areas accounted for 12.5%
of the total area. The urban agglomeration in central Yunnan experienced severe sprawl
occupied for 20% of the central Yunnan. The urban agglomeration of central Guizhou
suffered severe sprawl accounted for 16.67% of the entire central Guizhou area, as shown
in Figure 11a. From 1996 to 2002, the area of the Chengdu-Chongqing urban agglomeration
exhibited severe sprawl accounted for 43.75% of the entire Chengdu-Chongqing area, an
increase of 31.25% over the previous period. The overall evolution of the central Yunnan
urban agglomeration involved severe sprawl. The urban agglomeration in the central
Guizhou developed into a severely sprawled area accounted for 33.33% of the entire central
Guizhou area, an increase of 16.67% over the previous period. During this period, the
three major urban agglomerations presented a relatively fast urban sprawl speed, as shown
in Figure 11b. From 2002 to 2009, the area where Chengdu-Chongqing urban agglomer-
ation sprawl occurred accounted for 81.25% of the entire Chengdu-Chongqing area, an
increase of 37.50% over the previous period. The urban agglomeration in central Yunnan
experienced sprawl as a whole, of which 80% was severe sprawl, and 20% was slight
sprawl. The urban agglomeration in central Guizhou accounted for the same proportions
of severe sprawl, slight sprawl, and no sprawl, as shown in Figure 11c. From 2009 to
2015, the degree of sprawl in the Chengdu-Chongqing urban agglomeration continued to
increase, and the sprawled region is occupied for 93.75% of the Chengdu-Chongqing urban
agglomeration, as shown in Figure 11d. There was no urban sprawl in the central Yunnan
urban agglomeration. The sprawl in the urban agglomeration area in central Guizhou also
decreased, and the amount of urban sprawl decreased by 16.67% over the previous period.

5.2. The Scale Effect of the Urban Sprawl under Different Time Scenarios

Similarly, to more clearly reflect the differences in urban sprawl between the different
scales, statistical analysis was conducted at the various city scales and different urban
agglomeration scales. At the different urban scales, the large cities exhibited the largest
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sprawl, with a net increase of 26,808.61 km2 from 6580.47 km2 in 2020 to 33,389.07 km2

in 2035, accounting for approximately 48.16% of the sprawl of the entire study area, as
indicated in Table 3. From 2020 to 2035, the small cities revealed the lowest sprawl, with a
net growth of 4199 km2, accounting for approximately 7.54% of the sprawl of the entire
study area. Among them, Chongqing exhibited the highest urban sprawl from 2020 to 2035,
increasing from 2415.742 km2 to 12,332.95 km2, accounting for 23.72% of the UYR. Zunyi
city exhibited the lowest urban sprawl, adding from 157.28 km2 in 2020 to 919.28 km2 in
2035, accounting for 1% of the UYR.

Table 3. The sprawl rate of the urban under the four scenarios.

Scale Type 2020 2025 2030 2035

Urban size

Megacity 3001.275 5204.275 8927.358 15,101.67
21.88% 22.13% 22.09% 21.78%

Large city 6580.468 11,244.46 19,326.38 33,389.08
47.98% 47.81% 47.83% 48.16%

Medium city 3101.561 5298.561 9081.561 15,606.56
22.61% 22.53% 22.47% 22.51%

Small city 1031.342 1772.342 3072.342 5230.342
7.52% 7.54% 7.60% 7.54%

Urban agglomeration

Chengdu-Chongqing 6987.412 12,089.41 20,684.41 35,299.41
50.95% 51.40% 51.19% 50.92%

The central Yunnan
1550.725 2652.725 4549.725 7858.725
11.31% 11.28% 11.26% 11.34%

The central Guizhou
1165.393 1921.393 3275.393 5648.393

8.50% 8.17% 8.11% 8.15%

At the different scales of the urban agglomerations, the three major urban agglom-
erations all experienced severe urban sprawl, as indicated in Table 3. From 2020 to 2035,
the urban sprawl area in the Chengdu-Chongqing urban agglomeration increased from
6987.412 km2 to 35,299.412 km2, a net increase of 28,312 km2, accounting for 50.92% of the
sprawl of the entire study area. From 2020 to 2035, the urban sprawl area in the central
Yunnan urban agglomeration expanded from 1550.725 km2 to 7858.725 km2, a net increase
of 6308 km2, accounting for 11.34% of the sprawl of the entire study area. From 2020 to
2035, the urban sprawl area in central Guizhou added from 1165.393 km2 to 5468.393 km2,
a net increase of 4483 km2, accounting for 8.15% of the sprawl of the entire UYR. It can be
summarized that the Chengdu-Chongqing urban agglomeration experienced the largest
sprawl trend, while the Guizhou urban agglomeration exhibited the smallest sprawl trend.

6. Conclusions

This study measured the level and characteristics of urban sprawl under different
scales; assessed the spatial pattern change law of urban sprawl from 1992 to 2015; simulated
the evolution trend of different scenarios in 2020, 2025, 2030, and 2035; and analyzed the
influence of driving factors and factor interactions on urban sprawl in different periods.
The proportions of the areas where urban sprawl occurred during the four time periods of
1992–1996, 1996–2002, 2002–2009, and 2009–2015 were 17.02%, 36.17%, 76.59%, and 57.45%,
respectively. Thus, urban sprawl conditions were observed in the UYR from 1992 to 2015,
but urban sprawl fluctuated significantly over time, showing an intensification from 1992
to 2009 and a weakening from 2009 to 2015.

From 1992 to 2009, the hot spots of urban sprawl in the UYR were mainly concentrated
in Chengdu, Chongqing, Kunming, and Guiyang, showing signs of sprawl dominated
by individual cities. From 2009 to 2015, the cities around these four cities were added as
new hot spots. The newly added hot-spot cities connected the sub-hot-spot cities in the
surrounding area, thereby forming a small radiation center and driving the development
of the surrounding area. The layout of the hot spots of the urban sprawl was fragmented.
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In the scenario simulations at the different scales, the spatial pattern of urban sprawl in
the UYR from 1992 to 2015 underwent a transformation of “decentralized layout-edge type-
concentric belt”. The cities with the highest degree of sprawl were Chongqing, Lijiang, and
Kunming, with their sprawled areas accounting for 25.84%, 7.37%, and 5.11%, respectively,
of the UYR. Under the different time scenarios, the large cities revealed the most sprawl,
accounting for more than 47% of the UYR, and the small cities experienced the least sprawl,
accounting for less than 7.6% of the UYR. The Chengdu-Chongqing urban agglomeration
attained the largest sprawled area, accounting for 50.92% of the UYR.

The driving factor with the highest influence on urban sprawl changed from the
secondary industry share of GDP from 1996 to 2002 to the green space per capita from
2009 to 2015. Residents prefer to live in areas with complete urban infrastructure and high
quality of life, which contributes to urban sprawl. The interaction of any two influencing
factors on urban sprawl is higher than the influence of a single factor. The number of
high schools interacts significantly higher compared to the other factors, indicating that
the improvement of education quality can have a stronger influence on urban sprawl in
combination with other factors.

This study is based on the concept of “identification—spatial pattern—scenario
simulation—influencing factors” to simulate the evolution of future urban sprawl and to
analyze the influencing factors of urban sprawl and the interaction of factors in different
time periods The study contributes to policy makers understanding of the state of urban
development. It is conducive to planning a more rational urban spatial layout, targeting to
curb disorderly urban sprawl, and achieving smart and rational growth of urban space and
sustainable and competitive healthy urban development.

Urban sprawl to accommodate growing urban populations has caused cities to expand
spatially beyond their boundaries into their hinterlands and surrounding areas, which
means that urban sustainability and population health is reduced. Currently, China has
adopted spatial planning measures to control uncontrolled urban sprawl and to protect
the land and ecological environment. Although overall urban sprawl has slowed in recent
years, it remains severe in major large cities. We suggest setting urban spatial growth
boundaries in large cities and clarifying the boundaries of non-construction land such
as agricultural protection land, water protection land, natural habitat, and development
reserves in the region. We recommend spatial land planning as a whole to control land
concessions, increase the compactness of land use, reasonably distribute the layout and
density of production and living land, and improve the land-use efficiency.
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