The Effect of Governance on Industrial Wastewater Pollution in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Outcome Measures
2.3. Covariates
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Estimated Results: Panel Fixed Effect Model
3.3. Estimated Results: SYS-GMM Model
3.4. Robustness Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Kahn, M.E.; Liu, Y.; Wang, Z. The consequences of spatially differentiated water pollution regulation in China. J. Environ. Econ. Manag. 2018, 88, 468–485. [Google Scholar] [CrossRef]
- Cai, H.; Mei, Y.; Chen, J.; Wu, Z.; Lan, L.; Zhu, D. An analysis of the relation between water pollution and economic growth in China by considering the contemporaneous correlation of water pollutants. J. Clean. Prod. 2020, 276, 122783. [Google Scholar] [CrossRef]
- Rao, C.; Yan, B. Study on the interactive influence between economic growth and environmental pollution. Environ. Sci. Pollut. Res. 2020, 27, 39442–39465. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yang, M. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput. Inform. Syst. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- National Bureau of Statistic of the People’s Republic of China. China Environmental Yearbook (1981–2021); National Bureau of Statistic of the People’s Republic of China: Beijing, China, 2021.
- He, Y.; Liu, X.; Wang, X. How can environment get better? A research review of pollution governance. Manag. Environ. Qual. Int. J. 2021, 33, 406–418. [Google Scholar] [CrossRef]
- Report of the 19th CPC National Congress. Accelerate the Reform of Ecological Civilization System and Build a Beautiful China; Communist Party of China: Beijing, China, 2017.
- Teng, M.M.; Han, C.F. Investment in Regional Environmental Governance: A Game between the Government and the Enterprise. Adv. Mater. Res. 2014, 838–841, 2639–2642. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Xue, B.; Mitchell, B.; Geng, Y.; Ren, W.; Müller, K.; Ma, Z.; Puppim de Oliveira, J.A.; Fujita, T.; Tobias, M. A review on China’s pollutant emissions reduction assessment. Ecol. Indic. 2014, 38, 272–278. [Google Scholar] [CrossRef]
- Zhang, C.C. The Public Participation in Environmental Protection and the Sustainable Development. Adv. Mater. Res. 2014, 838–841, 2477–2480. [Google Scholar] [CrossRef]
- Gao, M.; Huang, Q. Further testing of the relationship between environmental protection investment and industrial pollution emission reduction—Analysis of threshold effect based on the investment structure of governance. Econ. Manag. 2015, 2, 167–177. [Google Scholar]
- Wu, L.; Ma, T.; Bian, Y.; Li, S.; Yi, Z. Improvement of regional environmental quality: Government environmental governance and public participation. Sci. Total Environ. 2020, 717, 137265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, G. Environmental decentralization, environmental protection investment, and green technology innovation. Environ. Sci. Pollut. Res. 2022, 29, 12740–12755. [Google Scholar] [CrossRef] [PubMed]
- Vliet, B.J.M. van Sustainable innovation in network-bound systems: Implications for the consumption of water, waste water and electricity services. J. Environ. Policy Plan. 2012, 14, 263–278. [Google Scholar] [CrossRef]
- Heikkila, T.; Weible, C.M.; Olofsson, K.L.; Kagan, J.A.; You, J.; Yordy, J. The structure of environmental governance: How public policies connect and partition California’s oil and gas policy landscape. J. Environ. Manag. 2021, 284, 112069. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Tadikamalla, P.R.; Gao, X. The Relationship among Government, Enterprise, and Public in Environmental Governance from the Perspective of Multi-Player Evolutionary Game. Int. J. Environ. Res. Public Health 2019, 16, 3351. [Google Scholar] [CrossRef] [Green Version]
- Berthe, A.; Elie, L. Mechanisms explaining the impact of economic inequality on environmental deterioration. Ecol. Econ. 2015, 116, 191–200. [Google Scholar] [CrossRef]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, S.; Lu, Y.; Zhao, Y. Study on the effect of the environmental protection industry and investment for the national economy: An input-output perspective. J. Clean. Prod. 2019, 227, 1093–1106. [Google Scholar] [CrossRef]
- Kormishkina, L.; Kormishkin, E.; Gorin, V.; Koloskov, D.; Koroleva, L. Environmental investment: The most adequate neo-industrial response to the growth dilemma of the economy. Entrep. Sustain. Issues 2019, 7, 929–948. [Google Scholar] [CrossRef]
- Fan, W.; Yan, L.; Chen, B.; Ding, W.; Wang, P. Environmental governance effects of local environmental protection expenditure in China. Resour. Policy 2022, 77, 102760. [Google Scholar] [CrossRef]
- Levytska, O.; Romanova, A. Assessment of the impact of government expenditure on environmental protection on the GDP in the context of environmental legislation. J. East. Eur. Cent. Asian Res. 2020, 7, 375–384. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, Y.; Zhang, Y.; Li, X.; Miao, X. Effects of FDI on the Efficiency of Government Expenditure on Environmental Protection Under Fiscal Decentralization: A Spatial Econometric Analysis for China. Int. J. Environ. Res. Public Health 2019, 16, 2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, T.C.; Nguyen, H.N. The Role of Institution on FDI and Environmental Pollution Nexus: Evidence from Developing Countries. J. Asian Financ. Econ. Bus. 2021, 8, 609–620. [Google Scholar] [CrossRef]
- Salam, M.; Xu, Y. Trade openness and environment: A panel data analysis for 88 selected BRI countries. Environ. Sci. Pollut. Res. 2022, 29, 23249–23263. [Google Scholar] [CrossRef]
- Kustanto, A. Does Trade Openness Cause Deforestation? A Case Study from Indonesia. J. Ekon. Pembang. 2022, 19, 165–182. [Google Scholar] [CrossRef]
- Jayanthakumaran, K.; Liu, Y. Openness and the Environmental Kuznets Curve: Evidence from China. Econ. Model. 2012, 29, 566–576. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K. Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. Renew. Energy 2021, 172, 1063–1072. [Google Scholar] [CrossRef]
- Chen, J.; Wang, B.; Huang, S.; Song, M. The influence of increased population density in China on air pollution. Sci. Total Environ. 2020, 735, 139456. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Wu, H.; Gai, Z.; Guo, Y.; Li, Y.; Hao, Y.; Lu, Z.-N. Does environmental pollution inhibit urbanization in China? A new perspective through residents’ medical and health costs. Environ. Res. 2020, 182, 109128. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Bond, S.R.; Hoeffler, A.; Temple, J.R.W. GMM Estimation of Empirical Growth Models; Social Science Research Network: Rochester, NY, USA, 2001. [Google Scholar]
- Baum, C.F.; Schaffer, M.E.; Stillman, S. Instrumental Variables and GMM: Estimation and Testing. Stata J. 2003, 3, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, M.; Davidson, J.; Curtis, A.; Stratford, E.; Griffith, R. Multi-level Environmental Governance: Lessons from Australian natural resource management. Aust. Geogr. 2009, 40, 169–186. [Google Scholar] [CrossRef]
- Kostka, G.; Nahm, J. Central–Local Relations: Recentralization and Environmental Governance in China. China Q. 2017, 231, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Yang, L. Efficiency effect of changing investment structure on China׳s power industry. Renew. Sustain. Energy Rev. 2014, 39, 403–411. [Google Scholar] [CrossRef]
- Song, C. Increasing Environmental Protection Investment is an Important Measure to Prompt Enterprises to Reduce Pollutants Emission. Int. J. Econ. Financ. 2011, 4, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yang, W.; Wan, W.; Zhang, J.; Zhou, W.; Yang, H.; Yang, H.; Xiao, H.; Deng, S.; Shen, F.; et al. The influences of industrial gross domestic product, urbanization rate, environmental investment, and coal consumption on industrial air pollutant emission in China. Environ. Ecol. Stat. 2018, 25, 429–442. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Zhang, R.; Deng, S.; Zhang, Y.; Wu, J.; Li, Y.; Lin, L.; Li, L.; Wang, Y.; et al. Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renew. Sustain. Energy Rev. 2013, 18, 259–270. [Google Scholar] [CrossRef]
Variables | Definition | Source |
---|---|---|
Inorganic | Emissions of inorganic pollutants | 1 |
Organic | Emissions of organic Pollutants | 1 |
Investment | Per capita investment in industrial wastewater governance | 1 |
Rate | Investment in industrial wastewater governance divided by total investment in environmental governance | 1 |
Industry | Industrial added value divided by GDP | 2 |
GDP | GDP divided by the population at the end of the year | 2 |
FDI | Foreign direct investment (FDI) divided by GDP | 2 |
Openness | Total export-import volume divided by GDP | 2 |
Density | The resident population at the end of the year divided by provincial area | 3 |
Urbanization | An urban population divided by total population | 2 |
Variable | Observations | Mean (SD) | Min | Max |
---|---|---|---|---|
Inorganic | 480 | 1.3 (3.1) × 103 | 1 | 3.5 × 104 |
Organic | 480 | 1.3 (1.0) × 105 | 1028 | 7.2 × 105 |
Investment | 480 | 230 (201) | 5.3 | 1416 |
Rate | 480 | 0.02 (0.05) | 0 | 0.64 |
Industry | 480 | 0.37 (0.08) | 0.1 | 0.53 |
GDP | 480 | 2.0 (1.8) × 104 | 543 | 1.1 × 105 |
FDI | 480 | 0.003 (0.002) | 0 | 0.01 |
Openness | 480 | 0.30 (0.37) | 0.01 | 1.78 |
Density | 480 | 412 (512) | 7.59 | 3061 |
Urbanization | 480 | 0.55 (0.14) | 0.27 | 0.90 |
Variables | Log (Inorganic) | Log (Organic) | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Log(Investment) | 0.32 *** | 0.33 *** | 0.34 *** | 0.10 ** | 0.13 *** | 0.10 ** |
(0.10) | (0.11) | (0.11) | (0.04) | (0.04) | (0.04) | |
Industry | 1.46 | 1.49 | 1.74 | −1.95 *** | −1.85 *** | −1.86 *** |
(1.29) | (1.29) | (1.30) | (0.52) | (0.52) | (0.51) | |
Log(GDP) | −3.59 *** | −3.66 *** | −4.02 *** | 1.65 *** | 1.70 *** | 1.89 *** |
(0.75) | (0.78) | (0.81) | (0.30) | (0.31) | (0.31) | |
(Log(GDP))2 | 0.07 ** | 0.08 * | 0.09 ** | −0.06 *** | −0.06 *** | −0.88 *** |
(0.06) | (0.04) | (0.04) | (0.01) | (0.02) | (0.02) | |
FDI | −10.3 | −5.82 | −24.1 ** | −26.6 ** | ||
(26.9) | (26.9) | (10.74) | (10.48) | |||
Openness | 0.07 | 0.62 | −0.14 | −0.85 *** | ||
(0.33) | (0.49) | (0.13) | (0.19) | |||
Log(Density) | 1.96 * | −1.04 ** | ||||
(1.04) | (0.41) | |||||
Urbanization | 0.56 | 3.52 *** | ||||
(2.43) | (0.95) | |||||
Constant | 30.1 *** | 30.34 *** | 21.44 *** | 2.53 | 2.26 | 6.63 *** |
(4.03) | (4.15) | (6.31) | (1.62) | (1.66) | (2.46) | |
Observations | 480 | 480 | 480 | 480 | 480 | 480 |
R2 | 0.39 | 0.39 | 0.40 | 0.51 | 0.52 | 0.55 |
Prob > F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variables | Log (Inorganic) | Log (Organic) | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
L.log (P) | 0.85 *** | 0.83 *** | 0.69 *** | 0.94 *** | 0.96 *** | 0.87 *** |
(0.09) | (0.09) | (0.11) | (0.03) | (0.05) | (0.07) | |
Log (Investment) | 0.07 | 0.09 | 0.18 | 0.03 | 0.03 | 0.05 |
(0.33) | (0.34) | (0.49) | (0.04) | (0.04) | (0.04) | |
Industry | 1.70 | 2.44 | 0.39 | 0.92 *** | 0.87 * | 0.60 |
(2.28) | (2.78) | (1.24) | (0.34) | (0.50) | (0.58) | |
Log (GDP) | −0.95 | −0.83 | 0.63 | −0.74 | −0.64 | −0.19 |
(2.70) | (3.83) | (3.74) | (0.69) | (0.57) | (0.43) | |
Log (GDP)2 | 0.04 | 0.04 | −0.04 | 0.03 | 0.03 | 0.01 |
(0.15) | (0.21) | (0.21) | (0.03) | (0.03) | (0.02) | |
FDI | −0.02 | −0.10 | −0.04 | −0.02 | ||
(0.20) | (0.40) | (0.04) | (0.04) | |||
Openness | −0.22 | −0.13 | 0.09 | 0.09 | ||
(0.16) | (0.30) | (0.04) | (0.06) | |||
Log (Density) | 0.18 | −0.06 | ||||
(0.61) | (0.06) | |||||
Urbanization | −2.07 | −0.88 *** | ||||
(1.85) | (0.29) | |||||
Constant | 6.01 *** | 3.63 | −4.29 | 3.85 | 3.13 | 1.71 |
(2.29) | (17.2) | (21.51) | (3.34) | (2.77) | (2.16) | |
AR(2) | 0.182 | 0.198 | 0.214 | 0.115 | 0.129 | 0.102 |
Sargan | 0.171 | 0.119 | 0.103 | 0.961 | 0.969 | 0.832 |
Variables | Log (Inorganic) | Log (Organic) | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Rate | 0.87 | 1.06 | 0.96 | −2.69 *** | −3.00 *** | −2.74 *** |
(0.88) | (0.92) | (0.94) | (0.33) | (0.33) | (0.34) | |
Industry | 1.96 | 1.87 | 2.15 | −1.57 *** | −1.41 *** | −1.46 *** |
(1.29) | (1.30) | (1.31) | (0.48) | (0.48) | (0.47) | |
Log(GDP) | −3.09 *** | −3.30 *** | −3.60 *** | 2.09 *** | 2.43 *** | 2.47 *** |
(0.74) | (0.79) | (0.81) | (0.27) | (0.29) | (0.29) | |
Log(GDP)2 | 0.06 | 0.07 * | 0.07 * | −0.08 *** | −0.10 *** | −0.11 *** |
(0.04) | (0.04) | (0.04) | (0.01) | (0.01) | (0.01) | |
FDI | 4.41 | 8.41 | −11.2 | −15.1 | ||
(26.55) | (26.71) | (9.77) | (9.64) | |||
Openness | 0.26 | 0.58 | −0.42 *** | −0.96 *** | ||
(0.34) | (0.50) | (0.13) | (0.18) | |||
Log(Density) | 1.73 | −0.73 * | ||||
(1.05) | (0.38) | |||||
Urbanization | 1.96 | 3.00 *** | ||||
(2.44) | (0.88) | |||||
Constant | 27.77 *** | 28.70 *** | 20.62 *** | 0.33 | −1.22 | 2.25 |
(3.99) | (4.17) | (6.47) | (1.49) | (1.53) | (2.33) | |
Observations | 480 | 480 | 480 | 480 | 480 | 480 |
R2 | 0.38 | 0.38 | 0.38 | 0.57 | 0.58 | 0.60 |
Prob > F | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variables | Log (Inorganic) | Log (Organic) | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
L.log (P) | 0.83 *** | 0.70 ** | 0.67 *** | 0.68 *** | 0.70 *** | 0.75 *** |
(0.08) | (0.10) | (0.11) | (0.13) | (0.11) | (0.08) | |
Rate | −0.09 | −0.17 ** | −0.02 | −0.13 *** | −0.11 ** | −0.06 ** |
(0.06) | (0.08) | (0.08) | (0.05) | (0.05) | (0.03) | |
Industry | 0.52 * | 0.74 | 0.30 | 0.72 ** | 0.66 ** | 0.40 *** |
(0.31) | (0.53) | (0.60) | (0.30) | (0.26) | (0.15) | |
Log(GDP) | −0.59 | −0.80 | −0.91 | 0.95 | 0.35 | 0.38 |
(2.43) | (2.88) | (2.37) | (0.62) | (0.40) | (0.45) | |
Log(GDP)2 | 0.03 | 0.04 | 0.06 | −0.05 | −0.02 | −0.02 |
(0.13) | (0.15) | (0.12) | (0.03) | (0.02) | (0.03) | |
FDI | 0.10 | 0.06 | −0.06 | −0.03 | ||
(0.16) | (0.12) | (0.04) | (0.03) | |||
Openness | −0.06 | 0.15 | −0.02 | 0.05 | ||
(0.16) | (0.20) | (0.05) | (0.04) | |||
Log(Density) | −0.16 | −0.01 | ||||
(0.17) | (0.04) | |||||
Urbanization | −2.14 | −0.81 *** | ||||
(1.47) | (0.28) | |||||
Constant | 3.94 | 4.21 | 5.10 | −0.11 | 1.83 | 0.57 |
(11.64) | (14.11) | (12.23) | (0.03) | (1.96) | (2.24) | |
AR(2) | 0.183 | 0.197 | 0.191 | 0.167 | 0.231 | 0.103 |
Sargan | 0.9402 | 0.9428 | 0.9561 | 0.9679 | 0.974 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Shi, Y.; Huang, Y.; Xing, A.; Xue, H. The Effect of Governance on Industrial Wastewater Pollution in China. Int. J. Environ. Res. Public Health 2022, 19, 9316. https://doi.org/10.3390/ijerph19159316
Li L, Shi Y, Huang Y, Xing A, Xue H. The Effect of Governance on Industrial Wastewater Pollution in China. International Journal of Environmental Research and Public Health. 2022; 19(15):9316. https://doi.org/10.3390/ijerph19159316
Chicago/Turabian StyleLi, Lili, Yaobo Shi, Yun Huang, Anlu Xing, and Hao Xue. 2022. "The Effect of Governance on Industrial Wastewater Pollution in China" International Journal of Environmental Research and Public Health 19, no. 15: 9316. https://doi.org/10.3390/ijerph19159316
APA StyleLi, L., Shi, Y., Huang, Y., Xing, A., & Xue, H. (2022). The Effect of Governance on Industrial Wastewater Pollution in China. International Journal of Environmental Research and Public Health, 19(15), 9316. https://doi.org/10.3390/ijerph19159316