Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Participants
2.2. Predictive Variable Selection
2.3. Data Partitioning
2.4. Intrapersonal Features
2.4.1. Waist-to-Height Ratio Z-Scores
2.4.2. Pubertal Stage
2.4.3. Race and Hispanic Ethnicity
2.4.4. Dietary Information
2.4.5. Physical Activity
2.5. Interpersonal Features
2.5.1. Developmental History Measures
2.5.2. Parent Demographics and Familial Environment
2.6. Community Features
Model Training
3. Results
3.1. Summary of Random Forest Prediction Models
3.2. Interpersonal and Community Level Interactions
3.3. Intrapersonal and Community Interactions
3.4. Interactions between Community Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzpatrick, K.M.; Willis, D. Chronic Disease, the Built Environment, and Unequal Health Risks in the 500 Largest U.S. Cities. Int. J. Environ. Res. Public Health 2020, 17, 2961. [Google Scholar] [CrossRef] [PubMed]
- Cooksey-Stowers, K.; Schwartz, M.B.; Brownelsl, K.D. Food Swamps Predict Obesity Rates Better than Food Deserts in the United States. Int. J. Environ. Res. Public Health 2017, 14, 1366. [Google Scholar] [CrossRef] [Green Version]
- Roberto, C.A.; Swinburn, B.; Hawkes, C.; Huang, T.T.K.; Costa, S.A.; Ashe, M.; Zwicker, L.; Cawley, J.H.; Brownell, K.D. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015, 385, 2400–2409. [Google Scholar] [CrossRef]
- Glass, T.A.; McAtee, M.J. Behavioral science at the crossroads in public health: Extending horizons, envisioning the future. Soc. Sci. Med. 2006, 62, 1650–1671. [Google Scholar] [CrossRef] [PubMed]
- Theall, K.P.; Chaparro, M.P.; Denstel, K.; Bilfield, A.; Drury, S.S. Childhood obesity and the associated roles of neighborhood and biologic stress. Prev. Med. Rep. 2019, 14, 100849. [Google Scholar] [CrossRef]
- Daniels, K.M.; Schinasi, L.H.; Auchincloss, A.H.; Forrest, C.B.; Diez Roux, A.V. The built and social neighborhood environment and child obesity: A systematic review of longitudinal studies. Prev. Med. 2021, 153, 106790. [Google Scholar] [CrossRef] [PubMed]
- McLeroy, K.R.; Bibeau, D.; Steckler, A.; Glanz, K. An Ecological Perspective on Health Promotion Programs. Health Educ. Q. 1988, 15, 351–377. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.M.; Gaulton, K.; Knight, R.; Patrick, K.; Sears, D.D. Neighborhoods to Nucleotides—Advances and Gaps for an Obesity Disparities Systems Epidemiology Model. Curr. Epidemiol. Rep. 2019, 6, 476–485. [Google Scholar] [CrossRef]
- Minh, A.; Muhajarine, N.; Janus, M.; Brownell, M.; Guhn, M. A review of neighborhood effects and early child development: How, where, and for whom, do neighborhoods matter? Health Place 2017, 46, 155–174. [Google Scholar] [CrossRef] [PubMed]
- Setiono, F.J.; Guerra, L.A.; Leung, C.; Leak, T.M. Sociodemographic characteristics are associated with prevalence of high-risk waist circumference and high-risk waist-to-height ratio in U.S. adolescents. BMC Pediatr. 2021, 21, 215. [Google Scholar] [CrossRef]
- Klebanov, P.K.; Evans, G.W.; Brooks-Gunn, J. Poverty, ethnicity, and risk of obesity among low birth weight infants. J. Appl. Dev. Psychol. 2014, 35, 245–253. [Google Scholar] [CrossRef]
- Hoehner, C.M.; Handy, S.L.; Yan, Y.; Blair, S.N.; Berrigan, D. Association between neighborhood walkability, cardiorespiratory fitness and body-mass index. Soc. Sci. Med. 2011, 73, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.Y.; Li, C. Determinants of physical activity: A path model based on an ecological model of active living. PLoS ONE 2019, 14, e0220314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogeltanz-Holm, N.; Holm, J. Changes in Body Mass Index During a 3-Year Elementary School–Based Obesity Prevention Program for American Indian and White Rural Students. Health Educ. Behav. 2018, 45, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Bronfenbrenner, U. Ecology of the family as a context for human development: Research perspectives. Dev. Psychol. 1986, 22, 723–742. [Google Scholar] [CrossRef]
- Padez, C.M.P.; Nogueira, H.G.D.S.M. Describing studies on childhood obesity determinants by Socio-Ecological Model level: A scoping review to identify gaps and provide guidance for future research. Int. J. Obes. 2019, 43, 1883–1890. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A. Explainable AI: From black box to glass box. J. Acad. Mark. Sci. 2020, 48, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Lipton, Z.C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 2018, 16, 31–57. [Google Scholar] [CrossRef]
- Hagras, H. Toward Human-Understandable, Explainable AI. Computer 2018, 51, 28–36. [Google Scholar] [CrossRef]
- Gunning, D.; Vorm, E.; Wang, J.Y.; Turek, M. DARPA’s Explainable AI (XAI) Program: A Retrospective. Appl. AI Lett. 2021, 2, e61. [Google Scholar] [CrossRef]
- Carrieri, A.P.; Haiminen, N.; Maudsley-Barton, S.; Gardiner, L.J.; Murphy, B.; Mayes, A.E.; Paterson, S.; Grimshaw, S.; Winn, M.; Shand, C. Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Kumbier, K.; Brown, J.B.; Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. USA 2018, 115, 1943–1948. [Google Scholar] [CrossRef] [Green Version]
- Kumbier, K.; Basu, S.; Brown, J.B.; Celniker, S.; Yu, B. Refining interaction search through signed iterative Random Forests. arXiv 2018, arXiv:181007287. Available online: http://arxiv.org/abs/1810.07287 (accessed on 4 November 2021).
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.K.; Metzger, D.L.; Daymont, C.; Hadjiyannakis, S.; Rodd, C.J. LMS tables for waist-circumference and waist-height ratio Z-scores in children aged 5–19 y in NHANES III: Association with cardio-metabolic risks. Pediatr. Res. 2015, 78, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.J. CDC Growth Charts: United States (No. 314); US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyatsville, MD, USA, 2000. [Google Scholar]
- Petersen, A.C.; Crockett, L.; Richards, M.; Boxer, A. A self-report measure of pubertal status: Reliability, validity, and initial norms. J. Youth Adolesc. 1988, 17, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Kind, A.J.H.; Buckingham, W.R. Making Neighborhood-Disadvantage Metrics Accessible—The Neighborhood Atlas. N. Engl. J. Med. 2018, 378, 2456–2458. [Google Scholar] [CrossRef] [PubMed]
- Lantos, P.M.; Hoffman, K.; Permar, S.R.; Jackson, P.; Hughes, B.L.; Kind, A.; Swamy, G. Neighborhood Disadvantage is Associated with High Cytomegalovirus Seroprevalence in Pregnancy. J. Racial Ethn. Health Disparities 2018, 5, 782–786. [Google Scholar] [CrossRef]
- Chen, E.; Paterson, L.Q. Neighborhood, family, and subjective socioeconomic status: How do they relate to adolescent health? Health Psychol. 2006, 25, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.R.; Waitzman, N.J. Double jeopardy: Interaction effects of marital and poverty status on the risk of mortality. Demography 1994, 31, 487–507. [Google Scholar] [CrossRef]
- Miller, M.; Saldarriaga, E.M.; Jones-Smith, J.C. Household socioeconomic status modifies the association between neighborhood SES and obesity in a nationally representative sample of first grade children in the United States. Prev. Med. Rep. 2020, 20, 101207. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Scanlon, K.S.; Grummer-Strawn, L.M.; Freedman, D.S.; Yip, R.; Trowbridge, F.L. Increasing Prevalence of Overweight Among US Low-income Preschool Children: The Centers for Disease Control and Prevention Pediatric Nutrition Surveillance, 1983 to 1995. Pediatrics 1998, 101, e12. [Google Scholar] [CrossRef] [Green Version]
- French, S.A.; Story, M.; Jeffery, R.W. Environmental Influences on Eating and Physical Activity. Annu. Rev. Public Health 2001, 22, 309–335. [Google Scholar] [CrossRef] [Green Version]
- Donohue, B.; Gavrilova, E.; Strong, M.; Allen, D.N. A sport-specific optimization approach to mental wellness for youth in low-income neighborhoods. Eur. Phys. Educ. Rev. 2020, 26, 695–712. [Google Scholar] [CrossRef]
- Howie, E.K.; Guagliano, J.M.; Milton, K.; Vella, S.A.; Gomersall, S.R.; Kolbe-Alexander, T.L.; Richards, J.; Pate, R.R. Ten Research Priorities Related to Youth Sport, Physical Activity, and Health. J. Phys. Act. Health 2020, 17, 920–929. [Google Scholar] [CrossRef]
- Weintraub, D.L.; Tirumalai, E.C.; Haydel, K.F.; Fujimoto, M.; Fulton, J.E.; Robinson, T.N. Team Sports for Overweight Children: The Stanford Sports to Prevent Obesity Randomized Trial (SPORT). Arch. Pediatr. Adolesc. Med. 2008, 162, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Akpınar, A. Green Exercise: How Are Characteristics of Urban Green Spaces Associated with Adolescents’ Physical Activity and Health? Int. J. Environ. Res. Public Health 2019, 16, 4281. [Google Scholar] [CrossRef] [Green Version]
- Gardsjord, H.S.; Tveit, M.S.; Nordh, H. Promoting Youth’s Physical Activity through Park Design: Linking Theory and Practice in a Public Health Perspective. Landsc. Res. 2014, 39, 70–81. [Google Scholar] [CrossRef]
- Fiese, B.H.; Hammons, A.; Grigsby-Toussaint, D. Family mealtimes: A contextual approach to understanding childhood obesity. Econ. Hum. Biol. 2012, 10, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Kimbro, R.T.; Denney, J.T. Neighborhood context and racial/ethnic differences in young children’s obesity: Structural barriers to interventions. Soc. Sci. Med. 2013, 95, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.D.; Arterburn, D. The geographic distribution of obesity by census tract among 59,767 insured adults in King County, WA. Int. J. Obes. 2014, 38, 833–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehm, C.D.; Moudon, A.V.; Hurvitz, P.M.; Drewnowski, A. Residential property values are associated with obesity among women in King County, WA, USA. Soc. Sci. Med. 2012, 75, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajat, A.; Kaufman, J.S.; Rose, K.M.; Siddiqi, A.; Thomas, J.C. Do the wealthy have a health advantage? Cardiovascular disease risk factors and wealth. Soc. Sci. Med. 2010, 71, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
Sex | |
Male, n (%) | 5811 (52.3%) |
Female, n (%) | 5301 (47.7%) |
Age (years) | |
Mean (SD) | 9.92 (0.626) |
Median [Min, Max] | 9.92 [8.92, 11.1] |
Waist-to-Height Ratio (Z-score) | |
Mean (SD) | 0.208 (1.05) |
Median [Min, Max] | 0.215 [−3.99, 3.93] |
Feature A | Feature B |
---|---|
Parent Education < Bachelor’s Degree | <92% of Neighborhood with High School Degree |
Household Income < $50,000 | ≥18% of Neighborhood Living in Poverty |
Household Income < $50,000 | Neighborhood Small Particle Pollution <7.9 µg/m3 |
Median Neighborhood Income < $72,341 | <23 min of weekly sports |
<92% of Neighborhood with High School Degree | Median home values ≥ $215,825 |
≥18% of Neighborhood below poverty line | <16% Single-parent homes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, B.; Lane, M.; Steeves, E.A.; Raynor, H. Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity. Int. J. Environ. Res. Public Health 2022, 19, 9447. https://doi.org/10.3390/ijerph19159447
Allen B, Lane M, Steeves EA, Raynor H. Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity. International Journal of Environmental Research and Public Health. 2022; 19(15):9447. https://doi.org/10.3390/ijerph19159447
Chicago/Turabian StyleAllen, Ben, Morgan Lane, Elizabeth Anderson Steeves, and Hollie Raynor. 2022. "Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity" International Journal of Environmental Research and Public Health 19, no. 15: 9447. https://doi.org/10.3390/ijerph19159447
APA StyleAllen, B., Lane, M., Steeves, E. A., & Raynor, H. (2022). Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity. International Journal of Environmental Research and Public Health, 19(15), 9447. https://doi.org/10.3390/ijerph19159447