Serum Adipocyte Fatty-Acid Binding Protein as an Independent Marker of Peripheral Artery Disease in Patients with Type-2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric and Body Composition Analysis
2.3. Biochemical Analyses
2.4. Ankle–Brachial Index Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Rao Kondapally Seshasai, S.; Kaptoge, S.; Thompson, A.; Di Angelantonio, E.; Gao, P.; Sarwar, N.; Whincup, P.H.; Mukamal, K.J.; Gillum, R.F.; Holme, I.; et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar]
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.; Murray, G.D.; Butcher, I.; Heald, C.L.; Lee, R.J.; Chambless, L.E.; Folsom, A.R.; Hirsch, A.T.; Dramaix, M.; deBacker, G.; et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: A meta-analysis. JAMA 2008, 300, 197–208. [Google Scholar] [PubMed] [Green Version]
- Marone, E.M.; Cozzolino, P.; Ciampichini, R.; Chiodini, V.; Ferraresi, R.; Rinaldi, L.F.; Mantovani, L.G.; Cesana, G. Peripheral arterial disease in diabetic patients: A long-term population-based study on occurrence, outcomes and cost. J. Cardiovasc. Surg. 2018, 59, 572–579. [Google Scholar] [CrossRef]
- Lia, A.C.; Maria, G.G.; Marc, C.C.; Jordi, B.; Anna, P.; Ruth, M.L.; Marc, E.B.; Dídac, P.; Lourdes, C.; Rafel, R. Role of low ankle-brachial index in cardiovascular and mortality risk compared with major risk conditions. J. Clin. Med. 2019, 8, 870. [Google Scholar]
- Grzegorz, K.J.; Natalia, P.; Grzegorz, C.; Agata, S. Pathogenesis and clinical significance of in-stent restenosis in patients with diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar]
- Tavintharan, S.; Cheung, N.; Lim, S.C.; Tay, W.; Shankar, A.; Shyong Tai, E.; Wong, T.Y. Prevalence and risk factors for peripheral artery disease in an Asian population with diabetes mellitus. Diab. Vasc. Dis. Res. 2009, 6, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Aboyans, V. Epidemiology of peripheral artery disease. Circ. Res. 2015, 116, 1509–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thejasvi, T.; Caitlin, E.K.; Ehrin, J.A. Peripheral artery disease in patients with diabetes: Epidemiology, mechanisms, and outcomes. World J. Diabetes 2015, 6, 961–969. [Google Scholar]
- Leibson, C.L.; Ransom, J.E.; Olson, W.; Zimmerman, B.R.; O’Fallon, W.M.; Palumbo, P.J. Peripheral arterial disease, diabetes, and mortality. Diabetes Care 2004, 27, 2843–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzegorz, K.J.; Natalia, P.; Grzegorz, C.; Agata, S. Chronic Lower extremity ischemia and its association with the frailty syndrome in patients with diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar]
- Chen, M.C.; Hsu, B.G.; Lee, C.J.; Yang, C.F.; Wang, J.H. High serum adipocyte fatty acid binding protein level as a potential biomarker of aortic arterial stiffness in hypertensive patients with metabolic syndrome. Clin. Chim. Acta 2017, 473, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Boord, J.B.; Maeda, K.; Makowski, L.; Babaev, V.R.; Fazio, S.; Linton, M.F.; Hotamisligil, G.S. Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1686–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, L.; Boord, J.B.; Maeda, K.; Babaev, V.R.; Uysal, K.T.; Morgan, M.A.; Parker, R.A.; Suttles, J.; Fazio, S.; Hotamisligil, G.S.; et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 2001, 7, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Eynatten, M.; Breitling, L.P.; Roos, M.; Baumann, M.; Rothenbacher, D.; Brenner, H. Circulating adipocyte fatty acid-binding protein levels and cardiovascular morbidity and mortality in patients with coronary heart disease: A 10-year prospective study. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2327–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.L.; Zhu, L.Y.; Han, R.; Sun, L.L.; Li, J.X.; Dou, J.T. Pathophysiology of peripheral arterial disease in diabetes mellitus. J. Diabetes 2017, 9, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.H.; Nam, M.; Jung, M.; Suh, Y.J.; Ahn, S.H.; Hong, S.; Kim, S.H. Serum levels of adipocyte fatty acid-binding protein are associated with rapid renal function decline in patients with type 2 diabetes mellitus and preserved renal function. Diabetes Metab. J. 2020, 44, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Hsu, B.G.; Lee, C.J.; Ho, C.C.; Ho, G.J.; Lee, M.C. Serum adipocyte fatty acid-binding protein level is associated with arterial stiffness quantified with cardio-ankle vascular index in kidney transplant patients. Clin. Exp. Nephrol. 2018, 22, 188–195. [Google Scholar] [CrossRef]
- Lai, Y.H.; Lin, Y.L.; Wang, C.H.; Kuo, C.H.; Hsu, B.G. Positive association of serum adipocyte fatty acid binding protein level with peripheral artery disease in hemodialysis patients. Ther. Apher. Dial. 2020, 24, 300–306. [Google Scholar] [CrossRef]
- Li, J.C.; Wu, D.A.; Hou, J.S.; Subeq, Y.M.; Chen, H.D.; Hsu, B.G. High serum adipocyte fatty acid binding protein is associated with metabolic syndrome in patients with type 2 diabetes. J. Diabetes Res. 2016, 2016, 8380279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, B.G.; Lee, C.J.; Yang, C.F.; Chen, Y.C.; Wang, J.H. High serum resistin levels are associated with peripheral artery disease in the hypertensive patients. BMC Cardiovasc. Disord. 2017, 17, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Macedo, F.Y.B. A review of simple, non-invasive means of assessing peripheral arterial disease and implications for medical management. Ann. Med. 2010, 42, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Duprez, D.A.; De Buyzere, M.M.; De Bruyne, L.; Clement, D.L.; Cohn, J.N. Small and large artery elasticity indices in peripheral arterial occlusive disease (PAOD). Vasc. Med. 2001, 6, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.H.; Lin, Y.L.; Wang, C.H.; Kuo, C.H.; Hsu, B.G. Negative correlation of serum adiponectin level with peripheral artery occlusive disease in hemodialysis patients. Tzu Chi Med. J. 2020, 32, 70–74. [Google Scholar]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.; Bell, K.; Caporusso, J.; Durand-Zaleski, I.; Komori, K.; et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 2007, 45 (Suppl. S), S5–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, K.; Ballew, S.H.; Coresh, J.; Arima, H.; Ärnlöv, J.; Cirillo, M.; Ebert, N.; Hiramoto, J.S.; Kimm, H.; Shlipak, M.G.; et al. Measures of chronic kidney disease and risk of incident peripheral artery disease: A collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2017, 5, 718–728. [Google Scholar] [CrossRef] [Green Version]
- Murabito, J.M.; D’Agostino, R.B.; Silbershatz, H.; Wilson, W.F. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 1997, 96, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Hung, P.H.; Tsai, H.B.; Lin, C.H.; Hung, K.Y. Abdominal obesity is associated with peripheral artery disease in hemodialysis patients. PLoS ONE 2013, 8, e67555. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Parhofer, K.G.; Pittrow, D.; Binz, C.; Schwertfeger, M.; Limbourg, T.; Röther, J. Risk factor profile, management and prognosis of patients with peripheral arterial disease with or without coronary artery disease: Results of the prospective German REACH registry cohort. Clin. Res. Cardiol. 2009, 98, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, S.; Hisatake, S.; Watanabe, I.; Toda, M.; Kabuki, T.; Oka, T.; Dobashi, S.; Ikeda, T.; Kiuchi, S.; Hisatake, S.; et al. Pulse pressure and upstroke time are useful parameters for the diagnosis of peripheral artery disease in patients with normal ankle brachial index. Cardiol. Res. 2016, 7, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Reymond, P.; Westerhof, N.; Stergiopulos, N. Systolic hypertension mechanisms: Effect of global and local proximal aorta stiffening on pulse pressure. Ann. Biomed. Eng. 2012, 40, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Faxon, D.P.; Fuster, V.; Libby, P.; Beckman, J.A.; Hiatt, W.R.; Thompson, R.W.; Topper, J.N.; Annex, B.H.; Rundback, J.H.; Fabunmi, R.P.; et al. Atherosclerotic vascular disease conference: Writing group III: Pathophysiology. Circulation 2004, 109, 2617–2625. [Google Scholar] [CrossRef] [PubMed]
- Peeters, W.; de Kleijn, D.P.; Vink, A.; van de Weg, S.; Schoneveld, A.H.; Sze, S.K.; van der Spek, P.J.; de Vries, J.P.; Moll, F.L.; Pasterkamp, G. Adipocyte fatty acid binding protein in atherosclerotic plaques is associated with local vulnerability and is predictive for the occurrence of adverse cardiovascular events. Eur. Heart J. 2011, 32, 1758–1768. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Rhee, E.J.; Lee, W.Y.; Kim, W.J.; Yoo, S.H.; Bae, J.C.; Choi, E.S.; Park, C.Y.; Oh, K.W.; Park, S.W.; et al. The role of serum adipocyte fatty acid-binding protein on the development of metabolic syndrome is independent of pro-inflammatory cytokines. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Flink, L.; Mochari-Greenberger, H.; Mosca, L. Gender differences in clinical outcomes among diabetic patients hospitalized for cardiovascular disease. Am. Heart J. 2013, 165, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaman, D.; Ilhan, N.; Akbulut, M. Adipocyte fatty acid binding protein levels in patients with coronary artery disease and its relationship to alternative biomarkers. Kardiol. Pol. 2015, 73, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Tuncman, G.; Görgün, C.Z.; Makowski, L.; Atsumi, G.; Vaillancourt, E.; Kono, K.; Babaev, V.R.; Fazio, S.; Linton, M.F.; et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 2007, 447, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Höbaus, C.; Herz, C.T.; Pesau, G.; Wrba, T.; Koppensteiner, R.; Schernthaner, G.H. FABP4 and cardiovascular events in peripheral arterial disease. Angiology 2018, 69, 424–430. [Google Scholar] [CrossRef]
- Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, T.; Onoue, G.; Hirohata, A.; Hirohata, S.; Usui, S.; Hina, K.; Kawamura, H.; Doi, M.; Kusano, K.F.; Kusachi, S.; et al. Serum adipocyte fatty acid-binding protein is independently associated with coronary atherosclerotic burden measured by intravascular ultrasound. Atherosclerosis 2010, 211, 164–169. [Google Scholar] [CrossRef]
- Yeung, D.C.; Xu, A.; Cheung, C.W.; Wat, N.M.; Yau, M.H.; Fong, C.H.; Chau, M.T.; Lam, K.S. Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1796–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Y.; Lu, Z.; Zhou, M.; Li, H.; Wang, Y.; Gao, M.; Wei, M.; Jia, W. Serum levels of adipocyte fatty acid-binding protein are associated with the severity of coronary artery disease in Chinese women. PLoS ONE 2011, 6, e19115. [Google Scholar] [CrossRef]
- Ding, M.; Shi, J.Y.; Xing, Y.Z.; Sun, B.; Fang, Q.H.; Zhang, J.Y.; Zhang, Q.M.; Chen, L.M.; Yu, D.M.; Li, C.J. Serum adipocyte fatty acid-binding protein levels are associated with peripheral arterial disease in women, but not men, with type 2 diabetes mellitus. J. Diabetes 2018, 10, 478–486. [Google Scholar] [CrossRef]
- Camplain, R.; Meyer, M.L.; Tanaka, H.; Palta, P.; Agarwal, S.K.; Aguilar, D.; Butler, K.R.; Heiss, G. Smoking behaviors and arterial stiffness measured by pulse wave velocity in older adults: The Atherosclerosis Risk in Communities (ARIC) study. Am. J. Hypertens. 2016, 29, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.; Daskalopoulou, M.; Rapsomaniki, E.; George, J.; Britton, A.; Bobak, M.; Casas, J.P.; Dale, C.E.; Denaxas, S.; Shah, A.D.; et al. Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population based cohort study using linked health records. BMJ 2017, 356, j909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batzias, K.; Antonopoulos, A.S.; Oikonomou, E.; Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Mistakidi, C.V.; Noutsou, M.; Katsiki, N.; Karopoulos, P.; et al. Effects of newer antidiabetic drugs on endothelial function and arterial stiffness: A systematic review and meta-analysis. J. Diabetes Res. 2018, 2018, 1232583. [Google Scholar] [CrossRef]
- Upala, S.; Wirunsawanya, K.; Jaruvongvanich, V.; Sanguankeo, A. Effects of statin therapy on arterial stiffness: A systematic review and meta-analysis of randomized controlled trial. Int. J. Cardiol. 2017, 227, 338–341. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (n = 120) | Control Group (n = 100) | Low ABI Group (n = 20) | p Value |
---|---|---|---|---|
Age (years) | 61.50 ± 12.74 | 61.32 ± 11.96 | 62.40 ± 16.38 | 0.731 |
Height (cm) | 162.97 ± 8.27 | 163.23 ± 8.40 | 161.68 ± 7.63 | 0.444 |
BW (kg) | 71.88 ± 14.35 | 71.10 ± 13.36 | 75.75 ± 18.49 | 0.188 |
Body mass index (kg/m2) | 26.94 ± 4.25 | 26.58 ± 3.90 | 28.75 ± 5.45 | 0.037 * |
Body fat mass (%) | 30.23 ± 7.28 | 29.54 ± 7.21 | 33.70 ± 6.75 | 0.019 * |
Left ABI | 1.06 (1.00–1.13) | 1.09 (1.03–1.14) | 0.89 (0.82–0.90) | <0.001 * |
Right ABI | 1.08 (1.02–1.14) | 1.10 (1.06–1.15) | 0.92 (0.88–0.96) | <0.001 * |
SBP (mmHg) | 139.31 ± 18.87 | 136.92 ± 16.85 | 151.25 ± 23.89 | 0.002 * |
DBP (mmHg) | 81.32 ± 10.25 | 80.77 ± 9.36 | 84.05 ± 13.86 | 0.193 |
Total cholesterol (mg/dL) | 160.54 ± 30.39 | 159.29 ± 29.51 | 166.80 ± 34.58 | 0.315 |
Triglyceride (mg/dL) | 109.00 (78.50–182.00) | 110.50 (75.50–187.25) | 103.00 (86.75–172.50) | 0.863 |
HDL-C (mg/dL) | 46.30 ± 12.36 | 46.43 ± 12.37 | 45.65 ± 12.63 | 0.798 |
LDL-C (mg/dL) | 99.17 ± 26.99 | 98.66 ± 25.67 | 101.70 ± 33.50 | 0.648 |
Fasting glucose (mg/dL) | 138.00 (119.50–171.75) | 138.00 (121.00–175.00) | 136.50 (102.00–169.00) | 0.481 |
Glycated hemoglobin (%) | 7.20 (6.50–9.00) | 7.20 (6.50–8.88) | 7.25 (6.15–9.85) | 0.972 |
BUN (mg/dL) | 15.00 (12.00–18.00) | 15.00 (12.00–18.00) | 18.00 (12.25–19.00) | 0.282 |
Creatinine (mg/dL) | 0.8 (0.70–1.00) | 0.80 (0.70–1.00) | 0.80 (0.70–0.90) | 0.718 |
eGFR (mL/min) | 91.12 ± 26.39 | 91.34 ± 26.00 | 90.00 ± 28.93 | 0.837 |
C-reactive protein (mg/dL) | 0.08 (0.05–0.23) | 0.06 (0.05–0.15) | 0.51 (0.11–1.02) | <0.001 * |
UACR (mg/g) | 14.00 (7.13–54.27) | 12.19 (6.06–33.55) | 67.68 (22.99–182.07) | 0.001 * |
A-FABP (ng/mL) | 21.80 ± 9.02 | 19.88 ± 6.70 | 31.44 ± 12.61 | <0.001 * |
Male, n (%) | 75 (62.5) | 65 (65.0) | 10 (50.0) | 0.206 |
Hypertension, n (%) | 58 (48.3) | 46 (46.0) | 12 (60.0) | 0.253 |
Statin usage, n (%) | 56 (46.7) | 45 (45.0) | 11 (55.0) | 0.413 |
Fibrate usage, n (%) | 4 (3.3) | 4 (4.0) | 0 (0) | 0.363 |
Metformin usage, n (%) | 66 (55.0) | 56 (56.0) | 10 (50.0) | 0.622 |
Sulfonylurea usage, n (%) | 68 (56.7) | 54 (54.0) | 14 (70.0) | 0.187 |
DDP-4 inhibitor usage, n (%) | 71 (59.2) | 60 (60.0) | 11 (55.0) | 0.678 |
Insulin usage, n (%) | 31 (25.8) | 26 (26.0) | 5 (25.0) | 0.926 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Adipocyte fatty-acid binding protein, 1 ng/mL | 1.138 | 1.023–1.266 | 0.017 * |
Systolic blood pressure, 1 mmHg | 1.041 | 1.004–1.079 | 0.028 * |
C-reactive protein, 0.1 mg/dL | 1.275 | 1.067–1.523 | 0.008 * |
Body mass index, 1 kg/m2 | 0.974 | 0.808–1.174 | 0.780 |
Body fat mass, 1 % | 1.012 | 0.912–1.123 | 0.823 |
Urine albumin-to-creatinine ratio, 1 mg/g | 0.999 | 0.998–1.001 | 0.287 |
Variables | Spearman Coefficient of Correlation | p Value |
---|---|---|
Age (years) | 0.088 | 0.340 |
Body mass index (kg/m2) | 0.271 | 0.003 * |
Body fat mass (%) | 0.379 | <0.001 * |
Left ankle–brachial index | –0.418 | <0.001 * |
Right ankle–brachial index | −0.474 | <0.001 * |
Systolic blood pressure (mmHg) | 0.249 | 0.006 * |
Diastolic blood pressure (mmHg) | 0.116 | 0.208 |
Total cholesterol (mg/dL) | 0.081 | 0.378 |
Triglyceride (mg/dL) | 0.319 | <0.001 * |
HDL-C (mg/dL) | –0.186 | 0.042 * |
LDL-C (mg/dL) | 0.048 | 0.606 |
Fasting glucose (mg/dL) | 0.165 | 0.072 |
eGFR (mL/min) | –0.249 | 0.006 * |
C-reactive protein (mg/dL) | 0.382 | <0.001 * |
UACR (mg/g) | 0.362 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, B.-G.; Mah, C.-Y.; Wu, D.-A.; Chen, M.-C. Serum Adipocyte Fatty-Acid Binding Protein as an Independent Marker of Peripheral Artery Disease in Patients with Type-2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2022, 19, 9459. https://doi.org/10.3390/ijerph19159459
Hsu B-G, Mah C-Y, Wu D-A, Chen M-C. Serum Adipocyte Fatty-Acid Binding Protein as an Independent Marker of Peripheral Artery Disease in Patients with Type-2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2022; 19(15):9459. https://doi.org/10.3390/ijerph19159459
Chicago/Turabian StyleHsu, Bang-Gee, Chin-Yee Mah, Du-An Wu, and Ming-Chun Chen. 2022. "Serum Adipocyte Fatty-Acid Binding Protein as an Independent Marker of Peripheral Artery Disease in Patients with Type-2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 19, no. 15: 9459. https://doi.org/10.3390/ijerph19159459
APA StyleHsu, B. -G., Mah, C. -Y., Wu, D. -A., & Chen, M. -C. (2022). Serum Adipocyte Fatty-Acid Binding Protein as an Independent Marker of Peripheral Artery Disease in Patients with Type-2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 19(15), 9459. https://doi.org/10.3390/ijerph19159459