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Abstract: Energy consumption and industrial activities are the primary sources of carbon emissions.
As the “world’s factory” and the largest carbon emitter, China has been emphasizing the core role
of technological innovation in promoting industrial structure upgrades (ISU) and energy efficiency
(EE) to reduce carbon emissions from industrial production and energy consumption. This study
investigated the mechanism (through ISU and EE) and spillover effect of technological innovation
on carbon emission reduction using the panel dataset of 30 Chinese provinces from 2008 to 2019
and spatial econometrics models. The study concluded that (1) technological innovation had a
negative direct effect on provincial carbon emissions, while it also showed a spatial spillover effect
on neighboring provinces; (2) technological innovation had an indirect effect on provincial carbon
emissions reduction through the mediation of energy efficiency improvement, while the mediation
effect of industrial structure upgrading is not yet significant; and (3) the effect of technological
innovation on carbon emission reduction showed heterogeneity in the eastern, central, and western
regions of China. This study provided empirical and theoretical references to decision-makers in
China and other developing countries in promoting technological and carbon control policies. More
specifically, direct technology investment and indirect investment in industrial structure upgrades
and energy efficiency could help with regional carbon emissions reduction.

Keywords: carbon emission reduction; technological innovation; spatial econometrics; spatial
mediation model; empirical analysis

1. Introduction

Since the industrial revolution, global climate change has been characterized by warm-
ing. The increasing demand for natural resources from human production and living
activities has led to massive carbon dioxide (CO2) greenhouse gas emissions and ultimately
negative impacts on the Earth’s ecology [1,2]. Due to global warming, extreme weather
events such as glacial melting, forest fires, intense hurricanes, floods, extreme cold in winter,
and extreme heatwaves in summer have occurred frequently in recent years [3,4]. The
frequency of extreme events underscores the urgency of taking action to achieve net-zero
CO2 emissions to improve environmental quality. By the middle of the 21st century, achiev-
ing net-zero CO2 emissions and promoting sustainable human development have become
common goals the international community pursues.

China plays a leading role in global green development as the largest developing
economy. The Chinese government has been committed to carbon emission reduction and
has incorporated the “dual carbon” goal into the national 14th Five-Year Plan and the 2035
Vision. The Intergovernmental Panel on Climate Change (IPCC) assessment report states
that innovation and technological advances are critical to reducing carbon emissions. The
scale and speed of technological development will determine the pace of future carbon
reductions [5]. However, previous literature on the relationship between technological

Int. J. Environ. Res. Public Health 2022, 19, 9543. https://doi.org/10.3390/ijerph19159543 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19159543
https://doi.org/10.3390/ijerph19159543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-6952-1416
https://doi.org/10.3390/ijerph19159543
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19159543?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 9543 2 of 19

innovation and carbon emissions showed mixed conclusions due to different perspectives
and research methodologies. Therefore, it is essential to explore further whether technolog-
ical innovation promotes or hinders carbon emissions, whether these effects have a spatial
spillover effect on neighboring regions, and the mechanism through which technological
progress could assist with regional carbon emissions reduction. Moreover, it is also crucial
to identify the heterogeneity in the effects due to the significant differences in regional
resource endowments. In this context, this study used spatial econometrics models to
empirically analyze the intrinsic mechanism of technological innovation on carbon emis-
sions from a provincial and a regional perspective and explored the effect of technological
innovation on regional carbon emission reduction.

The structure of the study is shown in Figure 1. Firstly, we used a DEA-Malmquist
method to calculate the total factor productivity of 30 Chinese provinces as an indicator
of technological innovation, where R&D investment and labor force were used as input
variables, and GDP was used as a desired output variable. Secondly, the spatial econometric
models were applied to analyze the relationship between carbon emissions and technologi-
cal innovation. In addition, the spatial mediation model was applied to investigate how
technological innovation affects carbon emissions using industrial structure upgrades and
energy efficiency improvements as mediators. Finally, we test the regional heterogeneity in
the eastern, central, and western regions.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 2 of 20 
 

 

carbon reductions [5]. However, previous literature on the relationship between techno-
logical innovation and carbon emissions showed mixed conclusions due to different per-
spectives and research methodologies. Therefore, it is essential to explore further whether 
technological innovation promotes or hinders carbon emissions, whether these effects 
have a spatial spillover effect on neighboring regions, and the mechanism through which 
technological progress could assist with regional carbon emissions reduction. Moreover, 
it is also crucial to identify the heterogeneity in the effects due to the significant differences 
in regional resource endowments. In this context, this study used spatial econometrics 
models to empirically analyze the intrinsic mechanism of technological innovation on car-
bon emissions from a provincial and a regional perspective and explored the effect of 
technological innovation on regional carbon emission reduction. 

The structure of the study is shown in Figure 1. Firstly, we used a DEA-Malmquist 
method to calculate the total factor productivity of 30 Chinese provinces as an indicator 
of technological innovation, where R&D investment and labor force were used as input 
variables, and GDP was used as a desired output variable. Secondly, the spatial econo-
metric models were applied to analyze the relationship between carbon emissions and 
technological innovation. In addition, the spatial mediation model was applied to inves-
tigate how technological innovation affects carbon emissions using industrial structure 
upgrades and energy efficiency improvements as mediators. Finally, we test the regional 
heterogeneity in the eastern, central, and western regions. 

 
Figure 1. Analysis framework. 

2. Literature Review 
The study of the key impact factors of carbon emissions is one of the major research 

hotspots at present. Scholars pointed out that economic development [6], urbanization [7], 
foreign direct investment [8], energy consumption [9], energy structure [10], and indus-
trial structure [11] are all potential drivers of carbon emissions. With the development of 
scientific research and social progress, technological innovation has been recognized as 
one of the critical drivers of economic growth [12] and the core of climate control [13]. Li 
Shasha et al. [14]) used a static panel model and a dynamic panel model to examine the 
effect of technological progress on carbon emissions and found that technological pro-
gress can significantly suppress CO2 emissions. 

Figure 1. Analysis framework.

2. Literature Review

The study of the key impact factors of carbon emissions is one of the major research
hotspots at present. Scholars pointed out that economic development [6], urbanization [7],
foreign direct investment [8], energy consumption [9], energy structure [10], and industrial
structure [11] are all potential drivers of carbon emissions. With the development of
scientific research and social progress, technological innovation has been recognized as
one of the critical drivers of economic growth [12] and the core of climate control [13]. Li
Shasha et al. [14]) used a static panel model and a dynamic panel model to examine the
effect of technological progress on carbon emissions and found that technological progress
can significantly suppress CO2 emissions.

It is important to note that technological innovation and carbon emissions are closely
related in neighboring regions of China regarding resource sharing, technology exchange,
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economic development, and policies. Therefore, the environmental improvements brought
about by technological innovation in one region are bound to impact the carbon emissions
of neighboring provinces. When studying the impact of technological innovation on
interregional carbon emissions, the results may be biased if the spatial spillover effect
is ignored [15]. With the expanding application of spatial econometrics, many scholars
have considered including spatial effects in studies related to technological innovation and
carbon emissions [16–18].

Scholars have explored the impact of technological innovation on carbon emissions
and have not yet reached a consensus. By exploring the relationship between the effects of
endogenous technologies on carbon emissions, Jaffe et al. [19] concluded that technological
innovation may either increase or decrease carbon emissions. Most scholars believe that
technological innovation contributes to the reduction of CO2 emissions and improvement
of environmental quality [20,21] and explain accordingly. For example, strengthening
environmental regulations has contributed to the increasing number of direct environmen-
tal innovations for carbon emission reduction [22], which have effectively advanced the
application of new technologies, thus directly improving energy efficiency and reducing
energy consumption. In addition, technological innovation contributes significantly to eco-
nomic restructuring and optimization by transforming traditional economic development
that relies on production factors into an innovation-driven model, which reduces the CO2
emissions caused by industrialization [23]. However, scholars who hold the opposite view
argue that technological progress can improve resource use efficiency with a diminishing
marginal effect, thus creating more demands on natural resources and energy. Due to the
rapidly growing economic size, technological advances will either show an increasing or
insignificant impact on carbon emissions [24,25].

In summary, the view that technological innovation affects carbon emissions is contro-
versial and deserves further exploration. First, when analyzing panel samples, relevant
studies rarely consider regional carbon emissions’ spatial dependence or spillover effects.
Second, the intrinsic mechanism through which technological innovation affects carbon
emissions lacks empirical analysis. Therefore, this study uses spatial econometric models to
empirically investigate technological innovation’s direct and indirect effect on promoting
carbon emission reduction in Chinese provinces.

The contribution of this study is mainly reflected in three aspects: First, through the
investigation of the direct and indirect effects, we were able to shed light on the debate on
the relationship between technological innovation and carbon emissions at the provincial
and regional levels. Second, through the spatial mediation model, we were able to explore
the intermediary transmission mechanisms of industrial structure upgrading and energy
efficiency improvements in promoting technology-driven carbon emission reduction. Third,
considering heterogeneities in resource endowment, technology level, and economic level
among Chinese provinces, we could identify the differences in the effects of technological
innovation on carbon emission reduction in the eastern, central, and western regions.
This research provides a theoretical and practical reference to regional decision-makers of
technology and carbon control policies in different development stages.

3. Hypotheses Development

From the geographic perspective of spatial interaction in the Chinese provinces, tech-
nological innovation drives regional carbon emission governance by accumulating and
transferring reticent knowledge or sticky knowledge in carbon emission reduction and
control. Developing and applying green and low-carbon technology also promote carbon
emission reduction. Provinces continuously learn from and imitate neighboring regions to
collect resources and knowledge for technological innovation. Meanwhile, areas close to
each other in geographical locations are more consistent in regional development levels
and technical capabilities; thus, technology innovation in one province could indirectly
influence carbon emissions in neighboring regions through the transfer and spillover of
knowledge and innovation. Therefore, we proposed that:
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Hypothesis 1a. Technological innovation is negatively associated with provincial carbon emissions.

Hypothesis 1b. Technological innovation is negatively associated with carbon emissions in neigh-
boring provinces (a spatial spillover effect).

Carbon intensity varies by industry. Provinces with different industrial structures may
significantly impact regional carbon emissions. The industrial structure determines the
allocation of production factors (such as labor, technology, energy, labor, etc.), which in turn
determines the emissions and pollution associated with industrial activities. At present,
China’s industrial sector is dominated by energy-intensive industries. The upgrading
of industrial structure will shift production from low-value-added, high-emission indus-
tries to high-value-added, low-carbon industries [26], thereby reducing the proportion of
pollution-intensive industries’ output value in the national economy and improving carbon
emission efficiency. Technological innovation is the strategic engine for upgrading the
industrial structure, improving the technical efficiency of factors, and promoting industrial
transformation and upgrading. By studying the Beijing-Tianjin-Hebei urban agglomeration,
Runde Gu et al. [27] found that government expenditure on science and technology can
promote the upgrading of industrial structure to a certain extent, thereby reducing carbon
emissions. Therefore, we propose that:

Hypothesis 2. The negative impact of technological innovation on carbon emissions is mediated by
industrial structure upgrades.

Energy consumption is the primary source of carbon emissions. China’s energy carbon
emissions account for more than 90%, and industrial carbon emissions account for more
than 70% of energy consumption carbon emissions. Energy efficiency refers to the ratio
of the amount of energy utilized to the amount of energy actually consumed. Improving
energy efficiency is generally through adopting more efficient technologies or production
processes or applying generally accepted methods of reducing energy losses. Technological
innovation promotes energy efficiency improvement, which reduces the energy required
to provide products or services of the same level. Through technological innovation, the
electric motor system could have a more efficient configuration, thus reducing the energy
consumption of the electric motors; at the same time, optimizing the control of the heating
and cooling systems through technical approaches could reduce the energy use of the
building. Furthermore, through technological innovation, energy can be recovered and
reused to improve the overall efficiency of energy consumption, thereby achieving the
effect of carbon emission reduction.

Technological innovations in energy conservation and emission reduction can im-
prove energy use efficiency. Green technology innovation in energy enhances the rate of
clean energy substitution in production. Many studies have concluded that technolog-
ical innovation can optimize energy structure and improve carbon emission reduction
performance [28]. Therefore, we propose:

Hypothesis 3. The negative impact of technological innovation on carbon emissions is mediated by
energy efficiency improvements.

The regions’ resource endowments, technology capabilities, and economic levels cause
significant differences in industrial structure and energy efficiency [29]. From the scale of
investment in science and technology, the eastern region is significantly ahead of other
regions. The scientific and technological investment intensity (ratio of R&D funds to GDP)
in the eastern region is higher than that in the central and western regions; the proportion
of R&D achievements and scientific researchers in the eastern region is higher than that in
the other two regions, and the number of high-tech industries and the number of patent
applications is the highest in the eastern region, and the central region also shows significant
growth potential, but that in the western region show a slow growth rate. Therefore, the
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effect of technological innovation on carbon emission reduction may show heterogeneity.
Thus, we propose:

Hypothesis 4. The direct and indirect effects of technological innovation on carbon emissions are
different in the eastern, central, and western regions of China.

4. Methodology and Data
4.1. Spatial Econometric Model

Technological innovation is non-competitive and partially non-exclusive, and therefore
prone to technological spillovers. Innovative activities in one region may benefit other re-
gions not involved in technological innovation. While promoting regional carbon emission
management, technological innovation causes neighboring provinces and regions to con-
tinuously learn and imitate, indirectly reducing carbon pollution in neighboring provinces
and regions. Therefore, ignoring the spatial correlation of technological innovation will lead
to inaccurate results. Since different spatial econometric models assume different spatial
transmission mechanisms and economic significance, the selection of spatial econometric
models is important [30]. In order to obtain a better fit, a spatial econometric model test
was conducted by referring to Elhorst [31] before performing the regression, and then the
spatial econometric model suitable for this study was selected. The LM and robust LM
tests were used first to determine the corresponding fitness of the SEM, SAR, and SDM
models. The LR and Wald tests were conducted to determine whether the SDM model
would degenerate into a SAR or SEM model. The Hausman test was used to determine
whether the random or fixed-effects model was chosen. The testing process followed the
path of ordinary least squares (OLS), spatial autoregressive model (SAR), spatial error
model (SEM), and spatial Durbin model (SDM). To eliminate the effect of heteroskedasticity,
we used the logarithm term of the non-ratio variables.

The OLS model does not consider the existence of spatial dependence between regions,
which can easily lead to biased estimation results. The expression is shown in Equation (1).

lnCO2it = β0 + β1Git + β2Uit + β3lnFDIit + β4lnPGDPit + β5lnENit + β6MDit+

β7 INit + β8lnPOPit + εit
(1)

In the SAR model, the spatial dependence between variables leads to spatial correla-
tion, with a unidirectional spatial correlation between regions. The model contains lagged
terms of the spatial dependent variables, as shown in Equation (2).

lnCO2it = β0 + δWlnCO2it + β1Git + β2Uit + β3lnFDIit + β4lnPGDPit + β5lnENit+

β6MDit + β7 INit + β8lnPOPit + εit
(2)

In the SEM model, the cause of technological innovation spillover is a random shock.
Compared to the OLS model, its spatial effect is mainly transmitted through the error term.
The model contains the random error autocorrelation term as the spatial error term. The
specific expression is shown in Equation (3).

lnCO2it = β0 + β1Git + β2Uit + β3lnFDIit + β4lnPGDPit + β5lnENit + β6MDit+

β7 INit + β8lnPOPit + µit
(3)

µit = λWµit

Regional carbon emissions are influenced not only by local independent variables
but also by other regional independent variables. In the SDM model, both the changes in
error terms caused by the spatial lag of the dependent variable and the spatial interactions
between regions are considered. The specific expression is shown in Equation (4).
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lnCO2it = β0 + δWlnCO2it + β1Git + β2Uit + β3lnFDIit + β4lnPGDPit + β5lnENit+

β6MDit + β7 INit + θ1WGit + θ2WUit + θ3WlnFDIit + θ4WlnPGDPit+

θ5WlnENit + θ6WMDit + θ7WINit + θ8WlnPOPit + εit

(4)

where CO2it represents the provincial carbon emissions; Git is the core explanatory variable,
which represents province-level technological innovation. In addition, seven control vari-
ables, urbanization level (Uit), foreign direct investment (FDIit), economic development
level (PGDPit), energy consumption (ENit), marketization level (MDit), industrialization
level (INit), and regional population size (POPit), are added to consider provincial charac-
teristics. The definition and sources of each variable are described in detail below. The µit
term and εit term are perturbations that follow an independent uniform distribution. W
term is the spatial weight matrix, and this study used the spatial distance weight matrix,
which means all main diagonal elements are 0 and all non-main diagonal elements are
1/d2, where d is the distance between the geographic center locations of two provinces.

4.2. Spatial Mediation Model

Technological innovation may affect provincial carbon emissions through industrial
structure upgrading and energy efficiency improvement. Therefore, a more normative
mediation model must be constructed to confirm Hypotheses 2 and 3. In the spatial
mediation models, Y refers to the amount of provincial carbon emissions, M refers to
industrial structure upgrades and energy efficiency, and X refers to technological innovation.
The relevant control variables are kept consistent with the original model, and then the
specific mediating effect test models are set in Equations (4)–(6). The test procedure draws
on the stepwise mediating effect test proposed by Baron and Kenny [32], and the steps are
shown in Figure 2.

ISSit = α0 + α1lnGit + α2Xcontrol + δ1WlnGit + δ2WXcontrol + εit (5)

lnCO2it = ρ0 + ρ1lnGit + ρ2 ISSit + σ1WlnGit + σ2WISSit + σ3WXcontrol + εit (6)

where ISSit represents the degree of advanced industrial structure in each province; Xcontrol
denotes the province characteristic variables, the same as the seven control variables of
the benchmark model above. The total effect of technological innovation on provincial
carbon emissions is ∂CO2it

∂Git
, and the mediating effect of the industrial structure upgrading is(

∂CO2it
∂ISSit

)
×
(

∂ISSit
∂Git

)
.
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Similarly, the mediation model with energy efficiency as a mediating variable is shown
in Equations (4), (7) and (8).

EEit = α0 + α1lnGit + α2Xcontrol + δ1WlnGit + δ2WXcontrol + εit (7)

ln CO2it = ρ0 + ρ1lnGit + ρ2EEit + σ1WlnGit + σ2WEEit + σ3WXcontrol + εit (8)

where EEit represents the energy efficiency of each province, and the corresponding medi-
ating effect is

(
∂CO2it
∂EEit

)
×
(

∂EEit
∂Git

)
.

4.2.1. Variable Selection
Dependent Variable

The dependent variable is the amount of Chinese provincial carbon emissions. In order
to scientifically characterize the total carbon emissions of each province, eight types of fossil
fuels (Eight types of fossil fuels: coal, coke, crude oil, gasoline, kerosene, diesel, natural
gas, fuel oil) consumption were selected and converted into 10,000 tons of standard coal,
then the IPCC method was introduced for scientific accounting. The calculation is shown
in Equation (9). Where i, j, t are provinces, energy categories, and the year in which they
are located; δ is the coefficient of corresponding energy sources converted into 10,000 tons
of standard coal; Qijt is the consumption of each energy source; CO2 is the total carbon
emission (unit: million tons); βj indicates the CO2 emission coefficient corresponding to the
eight energy sources. The standard coal and carbon emission coefficients of the eight fossil
energy sources are shown in Table 1.

CO2it =
8

∑
i=1

δj ×Qijt × β j (9)

Table 1. Eight types of fossil energy standard coal and carbon emission factors.

Types Unit Standard Coal Carbon Emission Factor

Raw coal kg of standard coal/kg 0.7143 0.7476
Coke kg of standard coal/kg 0.9700 0.1128

Crude oil kg of standard coal/kg 1.4300 0.5854
Gasoline kg of standard coal/kg 1.4700 0.5532
Kerosene kg of standard coal/kg 1.4717 0.3416

Diesel fuel kg of standard coal/kg 1.4600 0.5913
Natural gas t standard coal/million cubic meters 13.3000 0.4479

Fuel oil kg of standard coal/kg 1.4286 0.6176

Independent Variable

Since we cannot directly observe technological innovation, we proxied technological
innovation activities (Git) as total factor productivity (TFP) [33].

Data envelopment analysis (DEA), a common method for nonparametric approaches,
has many advantages. The DEA-Malmquist index method proposed by Färe et al. [34] was
used in this study to reflect the relative changes in productivity between different stages to
measure technological progress indicators.

Färe defines the distance function as follows:

Dt(Xt, Yt) = inf
{

∂ > 0 : (X, Y/∂) ∈ Ft} (10)

where X is the input variable matrix, Y is the output variable matrix, ∂ is the output
efficiency, and F denotes the frontier technology. Suppose

(
xt, yt) and

(
xt+1, yt+1) denote

the input and output quantities in periods t and t + 1, and Dt
i (·) and Dt+1

i (·) denote the
distance functions of different periods with reference to the data in periods t and t + 1,
respectively. For example, Dt

i
(
xt+1, yt+1) denotes the distance function for period t + 1
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when the technical data of period t is used as a reference. According to Caves et al. [35], the
Malmquist index for period t and period t + 1 can be expressed as:

Mt
i =

Dt
i
(
xt, yt)

Dt
i (xt+1, yt+1)

(11)

Mt+1
i =

Dt+1
i
(
xt, yt)

Dt+1
i (xt+1, yt+1)

(12)

Usually, to avoid possible bias in choosing whether period t or period t + 1 technology
is used as a reference, the geometric mean of the Mt

i and Mt+1
i indices for periods t and

t + 1 are considered to measure productivity change.

Mi

(
xt+1, yt+1; xt, yt

)
=

Dt
i
(

xt, yt)
Dt+1

i (xt+1, yt+1)
×
[

Dt+1
i
(
xt, yt)

Dt
i (xt+1, yt+1)

×
Dt+1

i
(

xt+1, yt+1)
Dt

i (xt, yt)

] 1
2

(13)

Therefore, this paper adopted the DEA-based input-oriented Malmquist index method
to measure the total factor productivity of each province in China as a decision unit
and converted it uniformly into a cumulative value with 2008 as the base period as the
technological innovation indicator. The specific input and output indicators involved in
the DEA-Malmquist index measurement are as follows.

(1) Capital Stock of R&D Investment (GI)

Drawing on the research results of Gu and Zhao [36], the capital stock of R&D invest-
ment was measured using the perpetual inventory system with the invested indicator. The
specific calculation is shown in Equation (14).

Kt = (1− δ)Kt−1 + RDIt
K0 = RDIt/(g + δ)

(14)

where, Kt and Kt−1 denote the R&D capital stock in T and T − 1 periods, respectively, RDIt
is the R&D expenditure in the Tth period, δ is the depreciation rate of R&D capital (δ was
taken as 15%), and g is the growth rate of R&D expenditure by the actual growth rate of
R&D expenditure corresponding to the sample period. The data are obtained from China
Science and Technology Yearbook.

(2) Labor Input (L)

It is generally believed that workers’ quality level and labor time are ideal indicators
to measure labor input. However, considering the availability of data, the number of
employed populations at the end of the year in each province and city, which is used by
most scholars, was selected to represent the amount of labor input. The data are obtained
from the statistical yearbooks of each province and city from 2009 to 2020.

(3) Total Output (Y)

Scholars generally use GDP as an indicator of total output, so the GDP of each region
from 2008 to 2019 was selected and converted into constant price GDP with 2000 as the
base period. The data are obtained from the statistical yearbooks of each province in the
calendar year.

4.2.2. Mediating Variables

(1) Industrial Structure Upgrading (ISU)

Scholars generally study industrial structure upgrading from two perspectives: ra-
tionalization of industrial structure and advanced industrial structure [37]. In order to
scientifically characterize the degree of industrial structure upgrading, this paper selects the
advanced industrial structure to measure it. The ratio of the tertiary industry’s value-added
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to the secondary industry was used to reflect the advanced industrial structure. The larger
the ratio is, the more advanced the industrial structure is.

(2) Energy Efficiency (EE)

Some scholars have explored the relationship between technological innovation and
energy efficiency [38]. In this study, energy efficiency was measured in terms of energy con-
sumption per unit of output value. The lower the energy input required for the same GDP
output, the more efficient the energy utilization, which means that the overall technological
progress has a more prominent “green bias”. Conversely, the higher the energy consumed
for the same output, the less efficient the energy utilization, which indicates that the overall
technological progress is less environmentally friendly.

4.2.3. Control Variables

(1) Urbanization (U)

Urbanization is characterized by the ratio of urban population to total population at
the end of the year in the region. The urbanization expansion, infrastructure construction,
and housing construction consume many energy-intensive products such as steel and
cement, leading to significant carbon emissions. Therefore, urbanization is another cause
of environmental degradation.

(2) Foreign Investment (FDI)

There are two hypotheses of foreign investment: “pollution paradise” and “pollution
halo”, which are inextricably linked to environmental pollution in host countries. The
logarithm of the actual total foreign use in the region was chosen to measure FDI [39],
demonstrating the relationship between foreign investment and provincial carbon emis-
sions in China.

(3) Economic Level (PGDP)

The level of economic development has a significant positive impact on carbon emis-
sions [40]. As the circulation of resources and goods accelerates with economic growth, the
demand for goods and services by individuals and enterprises expands, which leads to an
increase in industrial production activities and ultimately to the rise in carbon emissions.
The logarithm of regional GDP per capita was used.

(4) Energy Consumption (EN)

In national economic development, energy consumption mainly relies on fossil fuels,
which are also the primary source of carbon emissions. The logarithm of regional total
energy consumption was used to characterize energy consumption.

(5) Degree of Marketization (MD)

Technological innovation relies on government intervention in establishing a market-
oriented innovation system to optimize resource allocation and promote high-quality
economic development. The Fan Gang regional Marketization Index indicated the degree
of marketization, which was obtained from the China Marketization Index database.

(6) Population of the Region (POP)

According to the IPAT model (environmental impact = Population × Affluence ×
Technology) proposed by Ehrlich and Holdren [41], regional human activities can also
impact environmental change. Therefore, the regional mid-year population was included
in the model as a control variable.

4.2.4. Data Sources

Considering data availability, we used a panel dataset of 30 Chinese provinces (ex-
cluding Tibet, Hong Kong, Macao, and Taiwan due to missing data) from 2008 to 2019 to
explore the effect of technological innovation on carbon emission reduction. The original
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data sources are China Statistical Yearbook, China Environmental Statistical Yearbook,
China Science and Technology Yearbook, etc. To eliminate possible heteroskedasticity, we
used the logarithm terms of carbon emissions (CO2it), foreign investment (FDI), economic
level (PGDP), energy consumption (EN), and regional population (POP). Tables 2 and 3
show the definition, data source, descriptive statistics and pairwise zero-order correlations
of the variables. The VIFs are all less than 8, indicating no severe multicollinearity.

Table 2. Definition and data source of the variables.

Variable Definition Data Source

Dependent variable CO2
The amount of Chinese provincial

carbon emissions China Environmental Statistical Yearbook

Independent variables G Total factor productivity China Science and Technology Yearbook

Mediating variables ISU The ratio of the tertiary industry’s
value-added to the secondary industry China Statistical Yearbook

EE The terms of energy consumption per
unit of output value China Environmental Statistical Yearbook

Control variables

U
The ratio of urban population to total
population at the end of the year in

the region
China Statistical Yearbook

FDI The actual total foreign use in the region China Statistical Yearbook
PGDP Regional GDP per capita China Statistical Yearbook

EN Regional total energy consumption China Statistical Yearbook
MD Regional Marketability Index China Marketization Index database
POP The regional mid-year population China Statistical Yearbook

Table 3. Descriptive statistics and pairwise zero-order correlations.

Variables Obs Mean S.D. Min Max (1) (2)

(1) lnCO2 360 9.086 0.744 7.036 10.655
(2) G 360 1.121 0.313 0.463 2.416 0.093 *
(3) ISU 360 1.101 0.635 0.499 5.169 −0.315 *** 0.026
(4) EE 360 1.431 0.734 0.401 3.928 −0.049 −0.238 ***
(5) lnPGDP 360 10.141 0.476 8.739 11.354 −0.252 *** −0.042
(6) lnFDI 360 12.719 1.649 7.310 15.086 0.473 *** 0.219 ***
(7) U 360 55.521 13.186 29.112 89.632 −0.019 0.237 ***
(8) lnEN 360 9.377 0.672 7.034 10.625 0.926 *** 0.188 ***
(9) MD 360 6.445 1.926 2.33 11.4 0.288 *** 0.318 ***
(10) LnPOP 360 8.181 0.768 4.117 9.352 0.692 *** 0.126 **

Variables (3) (4) (5) (6) (7) (8) (9)

(1) lnCO2
(2) G
(3) ISU
(4) EE −0.304 ***
(5) lnPGDP −0.055 0.108 **
(6) lnFDI 0.119 ** −0.743 *** −0.259 ***
(7) U 0.567 *** −0.439 *** −0.261 *** 0.494 ***
(8) lnEN −0.242 *** −0.203 *** −0.237 *** 0.571 *** 0.068
(9) MD 0.233 *** −0.755 *** −0.184 *** 0.809 *** 0.677 *** 0.439 ***
(10) LnPOP −0.227 *** −0.462 *** −0.093 * 0.595 *** −0.141 *** 0.80 *** 0.419 ***

Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

5. Analysis of the Empirical Results
5.1. Spatial Correlation Test

The 0–1 proximity matrix was constructed with geographical proximity to measure
the Moran’s I of carbon emissions for 30 Chinese provinces from 2008 to 2019. Table 4
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shows the results of the global spatial autocorrelation test of carbon emissions, and all the
Moran’s indices of carbon emissions are positive and pass the significance level. It indicates
a spatial agglomeration effect of carbon emissions among Chinese provinces.

Table 4. Global Moran’s index CO2 under spatial distance weight matrix.

Year I Year I Year I

2008 315 *** 2012 280 ** 2016 252 **
2009 295 *** 2013 274 ** 2017 241 **
2010 296 *** 2014 263 ** 2018 243 **
2011 297 ** 2015 266 ** 2019 226 **

Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

The Global Moran index only reflects the average correlation but not the spatial
correlation of individual provinces and cities. In contrast, Moran’s I scatterplot is used to
test spatial correlation. For brevity, only data from 2008 and 2019 were selected as samples.
The Local Moran’s I (Moran) scatter plot of carbon emissions shown in Figure 3 was drawn
using Stata, where the numbers are the carbon emissions performance in each province or
city. The first quadrant (top right) and the third quadrant (bottom left) show the interaction
between homogeneous provinces. The first quadrant shows the interaction between high-
level provinces or cities and other high-level provinces or cities (i.e., high-high level). The
third quadrant shows the interaction between low-level and low-level provinces (i.e., low-
low levels). The second quadrant (top left) and the fourth quadrant (bottom right) show
interactions between heterogeneous provinces. The second quadrant shows the interaction
between low-level and high-level provinces (i.e., low-high level). The fourth quadrant
shows the interaction between high-level provinces and low-level provinces or cities (i.e.,
high-low level). Most provinces are located in the first and third quadrants, and their
carbon emissions are both spatially heterogeneous and spatially concentrated, showing a
strong spatial agglomeration effect.
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5.2. Baseline Regression Results

In order to select the suitable spatial econometric model, the residuals were tested for
spatial correlation based on the OLS results, shown in Table 5. In general, the SDM model
was chosen as the baseline regression model. In addition to Lagrange error, robust error,
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Lagrange lag, and robust lag are significant. In addition, the Hausman test results showed
that the p-value was 0, and the original hypothesis was rejected at the 1% significance level.
Therefore, the SDM fixed effect was finally selected.

Table 5. Model selection.

Indicator Statistic p-Value Indicator Statistic p-Value

LM-Spatial_Lag 29.052 0.000 Wald-Spatial_Lag 92.16 0.000
Robust-LM-
Spatial_Lag 38.240 0.000 LR-Spatial_Lag 81.71 0.000

LM-Spatial_Erro 0.002 0.969 Wald-Spatial_Erro 75.53 0.000
Robust-LM-Spatial

Erro 9.190 0.002 LR-Spatial_Erro 76.57 0.000

The Wald and likelihood ratio (LR) tests were performed on the SDM. The p-values of
the Wald and LR spatial lag tests and the spatial error test were 0 at the 1% significance
level, indicating that the SDM model had a better fit compared to the other models.

As shown in Table 6, W × CO2 (rho) in the spatial econometric model is not zero at
the 5% level, indicating that carbon emissions have a spatial spillover effect. The coefficient
of technological innovation (G) on carbon emissions is −0.083, which passes the 1% sig-
nificance test, indicating that technological innovation has a significant negative effect on
provincial carbon emissions. For each percentage point increase in technological innovation,
carbon emission decreases by 0.083%. In addition, energy consumption and urbanization
construction are still the driving factors of carbon emissions in control variables. China’s
energy consumption structure is still dominated by coal, and the clean energy industry
has not yet been able to overturn the market position of fossil fuels. During China’s
urbanization, many energy-intensive products such as steel and cement are consumed
for infrastructure and housing construction, leading to significant carbon emissions and
exacerbating regional carbon emission reduction pressure.

Table 6. Benchmark regression results.

CO2 Coef. Std. Err. Z P > z Confidence Interval

Main

G −0.083 0.021 −3.960 0.000 −0.123 −0.042
lnPGDP 0.005 0.009 0.530 0.594 −0.012 0.022

U 0.006 0.002 2.590 0.010 0.001 0.009
lnFDI −0.005 0.009 −0.580 0.563 −0.022 0.012
lnEN 1.159 0.059 19.540 0.000 1.043 1.275
MD 0.025 0.009 2.900 0.004 0.008 0.042

lnPOP 0.004 0.015 0.31 0.758 −0.024 0.033

W×
G −0.374 0.056 −6.620 0.000 −0.484 −0.263

lnPGDP 0.019 0.018 1.120 0.261 −0.015 0.054
U −0.006 0.004 −1.290 0.197 −0.014 0.003

lnFDI 0.069 0.013 5.190 0.000 0.043 0.096
lnEN −0.202 0.138 −1.460 0.143 −0.473 0.068
MD −0.040 0.016 −2.540 0.011 −0.071 −0.009

lnPOP 0.012 0.030 0.410 0.682 −0.047 0.072

Spatial

rho 0.177 0.084 2.100 0.036 0.012 0.341
Sigma2_e 0.004 0.001 13.38 0.000 0.003 0.004

The spatial effect is decomposed using partial differential equations to explore further
technological innovation’s spillover effect on provincial carbon emission reduction [42]. As
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shown in Table 7, the direct effect of technological innovation on provincial carbon emission
is significantly negative with a coefficient of −0.095, and the indirect effect coefficient is
−0.463, which passes the 1% significance test. Technological innovation promotes not
only local carbon emission reduction but also carbon emission reduction in neighboring
provinces through the radiation effect. For every 1% increase in technological innovation,
the amount of provincial carbon emission is reduced by 0.095%, while the amount of
carbon emissions in neighboring provinces is reduced by 0.463%. Therefore, Hypothesis 1
is supported.

Table 7. Direct effect, indirect effect, and the total effect of SDM.

Variables
Direct Effect Indirect Effect Total Effect

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

G −0.095 *** 0.022 −0.463 *** 0.078 −0.558 *** 0.084
lnPGDP 0.005 0.009 0.024 0.020 0.029 0.023

U 0.005 *** 0.002 −0.005 0.005 0.001 0.004
lnFDI −0.002 0.008 0.082 *** 0.016 0.080 *** 0.017
lnEN 1.161 *** 0.056 −0.007 0.110 1.154 *** 0.095
MD 0.024 *** 0.008 −0.044 ** 0.018 −0.020 0.018

lnPOP 0.005 0.015 0.017 0.037 0.022 0.044
Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

To test the robustness of the results, we used the geographic proximity 0–1 spatial
weight matrix and alternative measurement of technological innovation (G1) in the spatial
econometrics models. We calculated G1 similarly to G but substituted the input-output
indicators. The input indicators involve the variables: (1) R&D input capital stock (GI);
(2) R&D personnel annual equivalent (RDL); and output indicators involve the variables:
(1) patent applications (P); (2) technology market turnover (TY); and (3) total regional
output value (Y). As shown in Table 8, the results of both robustness tests are consistent
with the main models.

Table 8. Results of robustness tests.

Effect
Weight Substitution Measurement Substitution

Coef. Std. Err. Coef. Std. Err.

Direct effect −0.067 *** 0.022 −0.031 * 0.018
Indirect effect −0.402 *** 0.072 −0.211 *** 0.064

Total effect −0.469 *** 0.078 −0.243 *** 0.071
Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

5.3. Analysis of the Mediation Mechanism

We examined the mediating role of industrial structure upgrading and energy effi-
ciency improvement to test Hypotheses 2 and 3. Table 9 shows the empirical results of the
spatial mediation model.

Models 1–3 in Table 9 were used to test Hypothesis 2. Model 1 contained only the
core explanatory variables and control variables. The results of model 1 indicate that
technological innovation can effectively contribute to carbon emission reduction. Therefore,
Hypothesis 1 is further supported. Model 2 shows that the effect of technological innovation
on industrial structure upgrading is not statistically significant. Model 3 shows that
industrial structure upgrading and technological innovation both negatively impact carbon
emissions, the estimated coefficient of ISU is −0.072.

The spatial intermediation effect of industrial structure upgrading is examined using
models 1 to 3. Technological innovation and industrial structure upgrading have a signifi-
cant effect on carbon emissions (β1 and ρ2 are significant), but technological innovation
does not have a significant effect on industrial structure upgrading (α1 is not significant),
which requires a Sobel test. The Sobel test was applied, and the results did not show a
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significant mediation effect of industrial structure upgrading between technological inno-
vation and carbon emissions. These results are not entirely consistent with Hypothesis 2.
The possible reason is that current Chinese economic sectors are dominated by traditional
manufacturing and low-end services. Even though technological innovation leads to a
large inflow of labor, resources, and capital into emerging low-carbon and other high-tech
industries, it has little impact on reducing the proportion of traditional industries in the
economy, thus slowing down the process of technological innovation in promoting in-
dustrial structure transformation. Yet, the coefficient of industrial structure upgrading is
negative and significant, which partially supports our Hypothesis 2 that industrial structure
upgrading promotes carbon emission reduction.

Table 9. Results of the spatial mediation model.

Variables
Model 1 Model 2 Model 3 Model 4 Model 5

lnCO2 ISU lnCO2 EE lnCO2

G −0.083 *** −0.014 −0.086 *** −0.187 *** −0.064 ***
ISU −0.072 ***
EE 0.090 ***

lnPGDP 0.005 0.006 0.004 0.024 0.003
U 0.006 *** −0.031 *** 0.003 −0.018 *** 0.007 ***

lnFDI −0.005 0.039 * −0.002 −0.035 ** −0.002
lnEN 1.159 *** −0.345 ** 1.132 *** 1.059 *** 1.068 ***
MD 0.025 *** −0.038 * 0.023 *** −0.047 *** 0.028 ***

lnPOP 0.004 −0.079 ** −0.001 −0.017 0.005
Fixed effect YES YES YES YES YES

obs 360 360 360 360 360
R2 0.8307 0.6712 0.8366 0.7187 0.8355

Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

Models 1, 4, and 5 in Table 9 were used to test Hypothesis 3. Based on the significant
contribution of technological innovation to carbon emission reduction in model 1, the
effect of energy efficiency is further considered in model 5. The results show that energy
efficiency is positively related to carbon emissions, where the less energy used per GDP
unit, the less amount of carbon emissions it may cause. Model 4 analyzes the relationship
between technological innovation and energy efficiency. The results show that technological
innovation is significantly and negatively correlated with energy efficiency, indicating that
technological innovation substantially improves energy efficiency.

The spatial intermediation effect model of energy efficiency was constructed using
models 1, 4, and 5. The coefficients of the effects of technological innovation and energy
efficiency in the model are significant, indicating that energy efficiency plays a mediating
role in technological innovation affecting carbon emissions. Technological innovation
is negatively related to carbon emission via energy use efficiency. The improvement
of technology can improve energy utilization efficiency and ultimately promote carbon
emission reduction. These results verify Hypothesis 3.

Figure 4 shows the estimated coefficients of the theoretical model. Technological inno-
vation can significantly reduce carbon emissions, and for every 1% increase in technological
innovation, the amount of carbon emissions will be reduced by 0.083%. Both industrial
structure and energy efficiency play a mediating role. Among them, technological innova-
tion can significantly reduce carbon emissions by improving energy efficiency, while the
path of carbon reduction by upgrading industrial structure had not yet been formed.



Int. J. Environ. Res. Public Health 2022, 19, 9543 15 of 19

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 15 of 20 
 

 

economy, thus slowing down the process of technological innovation in promoting indus-
trial structure transformation. Yet, the coefficient of industrial structure upgrading is neg-
ative and significant, which partially supports our Hypothesis 2 that industrial structure 
upgrading promotes carbon emission reduction. 

Models 1, 4, and 5 in Table 9 were used to test Hypothesis 3. Based on the significant 
contribution of technological innovation to carbon emission reduction in model 1, the ef-
fect of energy efficiency is further considered in model 5. The results show that energy 
efficiency is positively related to carbon emissions, where the less energy used per GDP 
unit, the less amount of carbon emissions it may cause. Model 4 analyzes the relationship 
between technological innovation and energy efficiency. The results show that technolog-
ical innovation is significantly and negatively correlated with energy efficiency, indicating 
that technological innovation substantially improves energy efficiency. 

The spatial intermediation effect model of energy efficiency was constructed using 
models 1, 4, and 5. The coefficients of the effects of technological innovation and energy 
efficiency in the model are significant, indicating that energy efficiency plays a mediating 
role in technological innovation affecting carbon emissions. Technological innovation is 
negatively related to carbon emission via energy use efficiency. The improvement of tech-
nology can improve energy utilization efficiency and ultimately promote carbon emission 
reduction. These results verify Hypothesis 3. 

Figure 4 shows the estimated coefficients of the theoretical model. Technological in-
novation can significantly reduce carbon emissions, and for every 1% increase in techno-
logical innovation, the amount of carbon emissions will be reduced by 0.083%. Both in-
dustrial structure and energy efficiency play a mediating role. Among them, technological 
innovation can significantly reduce carbon emissions by improving energy efficiency, 
while the path of carbon reduction by upgrading industrial structure had not yet been 
formed. 

 
Figure 4. The impact of technology innovation on carbon emissions. Note: *: p < 0.1, **: p < 0.05, ***: 
p < 0.01. 

5.4. Heterogeneity Analysis 
Economic development in China’s eastern, central, and western regions is difficult to 

analyze due to differences in geographic location and early policy preferences [29]. There-
fore, this research classifies 30 Chinese provinces according to the significant differences 
in regional economic development and geographic location in eastern, central, and west-
ern regions and provides an in-depth analysis of the relationship between technological 
innovation and regional differences in carbon emissions. Among them, Guangdong, Fu-
jian, Zhejiang, Jiangsu, Shandong, Shanghai, Beijing, Tianjin, Hebei, Liaoning, and Hainan 
are located in the eastern region; the central region includes Hubei, Hunan, Henan, Anhui, 
Jiangxi, Shanxi, Jilin, and Heilongjiang; the western region includes Xinjiang, Qinghai, 

Figure 4. The impact of technology innovation on carbon emissions. Note: *: p < 0.1, **: p < 0.05,
***: p < 0.01.

5.4. Heterogeneity Analysis

Economic development in China’s eastern, central, and western regions is difficult
to analyze due to differences in geographic location and early policy preferences [29].
Therefore, this research classifies 30 Chinese provinces according to the significant differ-
ences in regional economic development and geographic location in eastern, central, and
western regions and provides an in-depth analysis of the relationship between technologi-
cal innovation and regional differences in carbon emissions. Among them, Guangdong,
Fujian, Zhejiang, Jiangsu, Shandong, Shanghai, Beijing, Tianjin, Hebei, Liaoning, and
Hainan are located in the eastern region; the central region includes Hubei, Hunan, Henan,
Anhui, Jiangxi, Shanxi, Jilin, and Heilongjiang; the western region includes Xinjiang,
Qinghai, Gansu, Ningxia, Yunnan, Guizhou, Sichuan, Shaanxi, Chongqing, Guangxi, and
Inner Mongolia.

As shown in Table 10, the effect of technological innovation on carbon emissions
shows significant spatial heterogeneity. The direct impact of technological innovation
on carbon emissions and the indirect effect via industrial structure upgrading is only
significant in the western regions (Figure 5c). In the eastern region, the indirect effect
of technological innovation on carbon emissions via energy efficiency improvements is
significant (Figure 5a). In the central region, technological innovation has little impact
on carbon emission, neither directly nor indirectly via industrial structure upgrades nor
energy efficiency improvements (Figure 5b).

Table 10. Heterogeneity results of the eastern, central, and western regions.

Regions Direct Effect Indirect Effect Total Effect

Eastern Region −0.029 −0.154 ** −0.184 **
Central Region −0.027 −0.092 *** −0.118 **
Western Region −0.141 *** −0.146 −0.287

Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01.

One of the possible reasons that the effects show significant regional heterogeneity is
that the eastern, central, and western regions are subject to substantial historical legacy and
economic development modes. The eastern region has a more open economic and political
environment, and resources such as capital, technical capabilities, and talents are more
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advanced among the three regions. Meanwhile, heavy industries in the eastern regions
have been relocated to the other areas, and the primary economic focus of the region is
high-value-added and high-tech industries. Thus, the industrial structure in the eastern
region is more rational and advanced than in the other two regions in China [37]. However,
due to its enormous economic size and economic activities, energy consumption in the
eastern region is considerable, leading to more carbon emissions. Therefore, technological
innovation in energy efficiency is the primary path to controlling carbon emissions and
maintaining economic growth in the eastern region.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 16 of 20 
 

 

Gansu, Ningxia, Yunnan, Guizhou, Sichuan, Shaanxi, Chongqing, Guangxi, and Inner 
Mongolia. 

As shown in Table 10, the effect of technological innovation on carbon emissions 
shows significant spatial heterogeneity. The direct impact of technological innovation on 
carbon emissions and the indirect effect via industrial structure upgrading is only signif-
icant in the western regions (Figure 5c). In the eastern region, the indirect effect of techno-
logical innovation on carbon emissions via energy efficiency improvements is significant 
(Figure 5a). In the central region, technological innovation has little impact on carbon 
emission, neither directly nor indirectly via industrial structure upgrades nor energy effi-
ciency improvements (Figure 5b). 

Table 10. Heterogeneity results of the eastern, central, and western regions. 

Regions Direct Effect Indirect Effect Total Effect 
Eastern Region −0.029 −0.154 ** −0.184 ** 
Central Region −0.027 −0.092 *** −0.118 ** 
Western Region −0.141 *** −0.146 −0.287 

Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01. 

 

Figure 5. The effect of technological innovation on carbon emissions in eastern, central, and western 
regions. Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01. z-values in parentheses. 

One of the possible reasons that the effects show significant regional heterogeneity is 
that the eastern, central, and western regions are subject to substantial historical legacy 
and economic development modes. The eastern region has a more open economic and 
political environment, and resources such as capital, technical capabilities, and talents are 
more advanced among the three regions. Meanwhile, heavy industries in the eastern re-
gions have been relocated to the other areas, and the primary economic focus of the region 
is high-value-added and high-tech industries. Thus, the industrial structure in the eastern 
region is more rational and advanced than in the other two regions in China [37]. How-
ever, due to its enormous economic size and economic activities, energy consumption in 
the eastern region is considerable, leading to more carbon emissions. Therefore, techno-
logical innovation in energy efficiency is the primary path to controlling carbon emissions 
and maintaining economic growth in the eastern region. 

The central region is the agricultural base, the energy and raw material base, and the 
modern equipment manufacturing and high-tech industrial base. The central region has 

Figure 5. The effect of technological innovation on carbon emissions in eastern, central, and western
regions. Note: *: p < 0.1, **: p < 0.05, ***: p < 0.01. z-values in parentheses.

The central region is the agricultural base, the energy and raw material base, and the
modern equipment manufacturing and high-tech industrial base. The central region has an
aggregation of advantageous industries and a complete industrial chain, but the industrial
structure has been “heavy” for a long time. Thus, significant and continuous investment in
technological innovation is required to upgrade industrial structures and reduce carbon
emissions. However, unbalanced and insufficient development is still a major challenge.

Due to the low concentration of pillar industries and low inter-industry coordination
ability, the industrial cluster of the western region is still in its infancy and is generally
scattered in various locations. The carbon emissions in the western region are also lower
than that of the other two regions due to fewer industrial activities and unique geographical
conditions. In terms of economic development, industrial clusters are not only conducive
to improving the overall competitiveness of the western region but also help to strengthen
the effective collaboration between firms in the cluster and could remarkably promote the
adjustment and upgrading of the industrial structure in the western region. Therefore,
technological innovation in industrial development and structure upgrading could be the
primary path to the western region’s carbon control and economic development.

In summary, technological innovation affects regional carbon emissions through vari-
ous mechanisms, supporting Hypothesis 4.

6. Conclusions

Technological innovation plays an essential role in achieving China’s “double carbon”
target and deserves more attention. Understanding the mechanism and effect of techno-
logical innovation in provincial carbon reduction will be helpful in the development of
carbon reduction policies and approaches. In this study, we studied 30 Chinese provinces,
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considering the direct and spatial spillover effects. We also explored the intermediary role
of industrial structure upgrading and energy efficiency improvement.

The main conclusions and contributions are summarized as follows. First, techno-
logical innovation not only helps with carbon emission reduction in a province but also
helps to promote carbon emission reduction in surrounding areas. Second, technological
innovation could help reduce carbon emissions via improving energy efficiency in energy
consumption, while the mediating effect of industrial structure upgrading is not yet signif-
icant. Finally, the impact of technological innovation on carbon emission reduction is of
significant regional heterogeneity. In the eastern region, technological innovation promotes
carbon emission reduction through energy efficiency improvement. Still, the effect of tech-
nological innovation on carbon emission reduction via industrial structure upgrades is not
significant. In the central region, regional carbon emission reduction is under pressure from
the industrial transfer. Sufficient and continuous investment in technological innovation
may provide opportunities for carbon emission reduction through industrial changes and
clean energy substitution. In the western region, technological innovation can directly
promote carbon emission reduction and carbon emission reduction through industrial
structure upgrading.

7. Research Implications
7.1. Implications

The following policy implications are proposed to help decision-makers in China and
in other developing countries adjust to more appropriate carbon control and technological
policies. First, local governments should notice the spatial spillover effect of technological
innovation on reducing provincial carbon emissions and establish knowledge exchange
and communication mechanisms to enhance technical collaboration in green and low-
carbon technologies. It is necessary to strengthen communication and cooperation among
neighboring provinces through regular meetings and communication to ensure the synergy
effect of technology and carbon control policies. Provinces with a high carbon emission level
should play a leading role in setting up regular information exchange with surrounding
regions on advanced technologies.

Second, technological investments in upgrading regional industrial structure and im-
proving energy use efficiency will both strengthen the effect on carbon emission reduction.
Improving the technology innovation system and promoting the innovation-driven strategy
in economic development and industrial activities will lead to a greener development mode.
The incentive mechanism for technological innovation in regional industrial structure and
energy efficiency and providing subsidies for adopting clean energy could help industrial
sectors transform toward low-emission structures and increase energy efficiency—building
R&D investment platforms and guiding investors on the direction of technology trends to
help develop green technologies. Adhering to market orientation and optimizing the flow
of innovation factors, policies should highlight the leading position of industrial firms in
innovative activities and encourage the commercialization of low-carbon technologies.

Finally, policymakers should develop unique carbon control and environmental regula-
tions according to local conditions due to regional differences in the effects and mechanism
of technological innovation on carbon emission reduction. Since historical legacy formed
the current regional industrial and energy structures, local decision-makers should adjust
their regulations and carbon governance accordingly. For instance, governments in the
eastern region should optimize factor allocation and support low-carbon and green energy
consumption along with promoting the commercialization of energy-saving technology.
The central region should gradually improve the industrial structure, promote the de-
velopment of low-end manufacturing industries to the middle and high-end, and fully
use information technology such as big data and the Internet of Things to build technical
capabilities. The western region should leverage its comparative advantage of abundant
resources to promote the coordinated development of advanced technologies and indus-
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tries, thus supporting the green and sustainable development of the regional economy
and society.

7.2. Limitation

This paper focuses on the impact of technological innovation on provincial carbon
emissions in China. The spatial mediated effect model sheds light on the mechanisms
through which technological innovation promotes carbon emission reduction. The hetero-
geneity analysis of different regions provides guidance for developing local carbon control
policies. However, this study has a few limitations that need to be further considered. First,
this study does not consider non-desired output when calculating total factor productivity
as an indicator of technological innovation. Second, we used a province-level panel dataset
because of city-level data unavailability. Finally, we did not consider the impact of current
environmental regulations on carbon emission. Environmental regulations are critical to
regional industrial and economic development and need further investigation along with
carbon emission reduction.
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