Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Set-Up
2.3. Calibration Procedure and Manual Drift Correction
2.4. Experimental Procedure
2.4.1. Conditions
2.4.2. Groups
3. Data Processing
3.1. Color Change Task: Decoding Where the Scotoma Was Displayed
3.2. Data Analysis
3.2.1. Gaze-Target Distancing: Influence of Condition Type over the Gaze Distance
3.2.2. Gaze Position in Relation to Target: Directional Change across Conditions
4. Results
4.1. Color Change Task: Decoding Where the Scotoma Was Displayed
4.2. Data Analysis
4.2.1. Gaze-Target Distancing: Influence of Condition Type over the Gaze Distance
4.2.2. Gaze Position in Relation to Target: Directional Change across Conditions
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Gehrs, K.M.; Anderson, D.H.; Johnson, L.V.; Hageman, G.S. Age-related macular degeneration—Emerging pathogenetic and therapeutic concepts. Ann. Med. 2009, 38, 450–471. [Google Scholar] [CrossRef] [PubMed]
- Poletti, M.; Rucci, M. Active Vision: Adapting How to Look. Curr. Biol. 2013, 23, R718–R720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, D.V.; Liu, L. Adaptation to a simulated central scotoma during visual search training. Vis. Res. 2014, 96, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Jonas, J.B. Global prevalence of age-related macular degeneration. Lancet Glob. Health 2014, 2, e65–e66. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, A.J.; Margrain, T.H.; Bunce, C.V.; Binns, A.M. How effective is eccentric viewing training? A systematic literature review. Ophthalmic Physiol. Opt. 2014, 34, 427–437. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet. Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Fine, E.M.; Rubin, G.S. Reading with simulated scotomas: Attending to the right is better than attending to the left. Vis. Res. 1999, 39, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- Petre, K.L.; Hazel, C.A.; Fine, E.M.; Rubin, G.S. Reading with eccentric fixation is faster in inferior visual field than in left visual field. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2000, 77, 34–39. [Google Scholar] [CrossRef]
- Pidcoe, P.E.; Wetze, P.A. Oculomotor tracking strategy in normal subjects with and without simulated scotoma. Investig. Ophthalmol. Vis. Sci. 2006, 47, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Scherlen, A.C.; Bernard, J.B.; Calabrese, A.; Castet, E. Page mode reading with simulated scotomas: Oculo-motor patterns. Vis. Res. 2008, 48, 1870–1878. [Google Scholar] [CrossRef]
- Crossland, M.D.; Engel, S.A.; Legge, G.E. The preferred retinal locus in macular disease: Toward a consensus definition. Retina 2011, 31, 2109–2114. [Google Scholar] [CrossRef] [Green Version]
- Rosenholtz, R. Capabilities and Limitations of Peripheral Vision. Annu. Rev. Vis. Sci. 2016, 2, 437–457. [Google Scholar] [CrossRef] [Green Version]
- Brulé, E.; Tomlinson, B.J.; Metatla, O.; Jouffrais, C.; Serrano, M. Review of Quantitative Empirical Evaluations of Technology for People with Visual Impairments. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Htike, H.M.; Margrain, T.H.; Lai, Y.K.; Eslambolchilar, P. Ability of Head-Mounted Display Technology to Improve Mobility in People With Low Vision: A Systematic Review. Transl. Vis. Sci. Technol. 2020, 9, 1–27. [Google Scholar] [CrossRef]
- Manjari, K.; Verma, M.; Singal, G. A survey on Assistive Technology for visually impaired. Internet Things 2020, 11, 100188. [Google Scholar] [CrossRef]
- Butler, M.; Holloway, L.; Reinders, S.; Goncu, C.; Marriott, K. Technology developments in touch-based accessible graphics: A systematic review of research 2010–2020. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021. [Google Scholar] [CrossRef]
- Kasowski, J.; Johnson, B.A.; Neydavood, R.; Beyeler, M.; Akkaraju, A. Furthering Visual Accessibility with Extended Reality (XR): A Systematic Review. arXiv 2021, arXiv:2109.04995. [Google Scholar]
- Lang, F.; Machulla, T. Pressing a Button You Cannot See: Evaluating Visual Designs to Assist Persons with Low Vision through Augmented Reality. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, Osaka Japan, 8–10 December 2021; p. 10. [Google Scholar] [CrossRef]
- Altpeter, E.; Mackeben, M.; Trauzettel-Klosinski, S. The importance of sustained attention for patients with maculopathies. Vis. Res. 2000, 40, 1539–1547. [Google Scholar] [CrossRef] [Green Version]
- Trauzettel-Klosinski, S.; Dieling, C.; Pietsch, B. The influence of visual field defects and other clinical parameters on reading performance: A retrospective study in a low vision population. Vis. Impair. Res. 2003, 5, 83–100. [Google Scholar] [CrossRef]
- Nguyen, N.X.; Trauzettel-Klosinski, S. Effectiveness of magnifying low vision aids in patients with age-related macular degeneration. Neuro-Ophthalmology 2009, 33, 115–119. [Google Scholar] [CrossRef]
- Barraza-Bernal, M.J.; Ivanov, I.V.; Nill, S.; Rifai, K.; Trauzettel-Klosinski, S.; Wahl, S. Can positions in the visual field with high attentional capabilities be good candidates for a new preferred retinal locus? Vis. Res. 2017, 140, 1–12. [Google Scholar] [CrossRef]
- Sipatchin, A.; García, M.G.; Wahl, S. Target Maintenance in Gaming via Saliency Augmentation: An Early-Stage Scotoma Simulation Study Using Virtual Reality (VR). Appl. Sci. 2021, 11, 7164. [Google Scholar] [CrossRef]
- Martin-Gonzalez, A.; Kotliar, K.; Rios-Martinez, J.; Lanzl, I.; Navab, N. Mediated-reality magnification for macular degeneration rehabilitation. J. Mod. Opt. 2014, 61, 1400–1408. [Google Scholar] [CrossRef]
- Stearns, L.; DeSouza, V.; Yin, J.; Findlater, L.; Froehlich, J.E. Augmented reality magnification for low vision users with the microsoft hololens and a finger-worn camera. In Proceedings of the ASSETS 2017—19th International ACM SIGACCESS Conference on Computers and Accessibility, Baltimore, MD, USA, 20 October–1 November 2017; pp. 361–362. [Google Scholar] [CrossRef]
- de Lange, C. Vision restored with virtual reality. New Sci. 2018, 239, 4. [Google Scholar] [CrossRef]
- Zhaoping, L. Attention capture by eye of origin singletons even without awareness—A Hallmark of a bottom-up saliency map in the primary visual cortex. J. Vis. 2008, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.J. The Interaction between Visual Resolution and Task-Relevance in Guiding Visual Selective Attention. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2012. [Google Scholar]
- Peterson, J.; Erickson, G.; Johnson, A.; Dendurent, J.; Loschky, L. The Effects of Blur on Selective Visual Attention. J. Vis. 2015, 15, 1071. [Google Scholar] [CrossRef]
- Peterson, J.; Ringer, R.; Sisco, E.; De La Torre, M.; Talkington, H.; Shanahan, M.; Loschky, L. The Effects of Unique Blur/Clarity Contrast on Visual Selective Attention as Measured by Eye Movements: Strong Clarity Capture and Weak Blur Repulsion. J. Vis. 2017, 17, 1119. [Google Scholar] [CrossRef]
- Bowers, A.R. Eye movements and reading with plus-lens magnifiers. Optom. Vis. Sci. 2000, 77, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Ashmore, M.; Duchowski, A.T.; Shoemaker, G. Efficient Eye Pointing with a Fisheye Lens. In Proceedings of the Graphics Interface, Victoria, BC, Canada, 9–11 May 2005. [Google Scholar] [CrossRef]
- Janssen, J.; Verschuren, O.; Renger, W.J.; Ermers, J.; Ketelaar, M.; Van Ee, R. Gamification in physical therapy: More than using games. Pediatr. Phys. Ther. 2017, 29, 95–99. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, Y.; Sundstedt, V.; Fagerström, C. A Survey of Possibilities and Challenges with AR/VR/MR and Gamification Usage in Healthcare. In Proceedings of the 14th International Conference on Health Informatics, Porto Alegre, Brazil, 11–13 March 2021; pp. 733–740. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, Y.; Sundstedt, V.; Forsell, Y. Conceptual Design of an Extended Reality Exercise Game for the Elderly. Appl. Sci. 2022, 12, 6436. [Google Scholar] [CrossRef]
- Vive Pro Eye. Available online: https://web.archive.org/web/20201111190618/https://www.vive.com/eu/product/vive-pro-eye/overview/ (accessed on 11 November 2020).
- Sipatchin, A.; Wahl, S.; Rifai, K. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye’s Usability. Healthcare 2021, 9, 180. [Google Scholar] [CrossRef]
- Stein, N.; Niehorster, D.C.; Watson, T.; Steinicke, F.; Rifai, K.; Wahl, S.; Lappe, M. A Comparison of Eye Tracking Latencies Among Several Commercial Head-Mounted Displays. i-Perception 2021, 12, 2041669520983338. [Google Scholar] [CrossRef] [PubMed]
- Sauer, Y.; Sipatchin, A.; Wahl, S.; García García, M. Assessment of consumer VR-headsets’ objective and subjective field of view (FoV) and its feasibility for visual field testing. Virtual Real. 2022, 1, 1–13. [Google Scholar] [CrossRef]
- Tobii AB. Tobii Pro SDK v1.7.1.1081. Available online: https://web.archive.org/web/20200622201031/https://www.tobiipro.com/product-listing/tobii-pro-sdk/ (accessed on 22 June 2020).
- VIVE Eye Tracking SDK (SRanipal). Available online: https://web.archive.org/web/20200923043350/https://developer.vive.com/resources/vive-sense/sdk/vive-eye-tracking-sdk-sranipal/ (accessed on 23 September 2020).
- Lintu, A.; Carbonell, N. Gaze Guidance through Peripheral Stimuli. HAL-Inria 2009. [Google Scholar]
- Hata, H.; Koike, H.; Sato, Y. Visual guidance with unnoticed blur effect. In Proceedings of the Workshop on Advanced Visual Interfaces AVI, Bari, Italy, 7–10 June 2016; pp. 28–35. [Google Scholar] [CrossRef]
- Goldstein, R.B.; Apfelbaum, H.; Luo, G.; Peli, E. 37.3: Dynamic Magnification of Video for People with Visual Impairment. SID Symp. Dig. Tech. Pap. 2003, 34, 1152–1155. [Google Scholar] [CrossRef]
- Goldstein, R.B.; Woods, R.L.; Peli, E. Where people look when watching movies: Do all viewers look at the same place? Comput. Biol. Med. 2007, 37, 957–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchowski, A.T. Incorporating the viewer’s point of regard (POR) in gaze-contingent virtual environments. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems, San Jose, CA, USA, 24–30 January 1998; SPIE: San Jose, CA, USA, 1998; Volume 3295, pp. 332–343. [Google Scholar] [CrossRef]
- Wilson, M.; McGrath, J.; Vine, S.; Brewer, J.; Defriend, D.; Masters, R. Psychomotor control in a virtual laparoscopic surgery training environment: Gaze control parameters differentiate novices from experts. Surg. Endosc. 2010, 24, 2458–2464. [Google Scholar] [CrossRef] [Green Version]
- Galley, N.; Betz, D.; Biniossek, C. Fixation durations-Why are they so highly variable? In Advances in Visual Perception Research; Heinen, T., Ed.; Nova Science Publishers: New York, NY, USA, 2015; pp. 83–106. [Google Scholar]
- Fei-Fei, L.; Iyer, A.; Koch, C.; Perona, P. What do we perceive in a glance of a real-world scene? J. Vis. 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, A.; Hendry, J.; Loschky, L. Scene Gist Meets Event Perception: The Time Course of Scene Gist and Event Recognition. J. Vis. 2012, 12, 1077. [Google Scholar] [CrossRef]
- Loschky, L.C.; Larson, A.M.; Smith, T.J.; Magliano, J.P. The Scene Perception & Event Comprehension Theory (SPECT) Applied to Visual Narratives. Top. Cogn. Sci. 2020, 12, 311–351. [Google Scholar] [CrossRef] [Green Version]
- Nelson, W.W.; Loftus, G.R. The functional visual field during picture viewing. J. Exp. Psychol. Hum. Learn. Mem. 1980, 6, 391–399. [Google Scholar] [CrossRef]
- Deubel, H.; Schneider, W.X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vis. Res. 1996, 36, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.H.; Kotval, X.P. Computer interface evaluation using eye movements: Methods and constructs. Int. J. Ind. Ergon. 1999, 24, 631–645. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Nyström, M.; Holmqvist, K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behav. Res. Methods 2010, 42, 188–204. [Google Scholar] [CrossRef] [Green Version]
- Ebisawa, Y.; Minamitani, H.; Mori, Y.; Takase, M. New methods for removing saccades in analysis of smooth pursuit eye movement. Biol. Cybern. 1988, 60, 111–119. [Google Scholar] [CrossRef]
- Berens, P. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 2009, 31, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Mulder, K.T. Bayesian Circular Statistics: Von Mises-Based Solutions for Practical Problems. Ph.D Thesis, Utrecht University, Utrecht, The Netherlands, 2019. [Google Scholar]
- Mulder, K.; Klugkist, I.; van Renswoude, D.; Visser, I. Mixtures of peaked power Batschelet distributions for circular data with application to saccade directions. J. Math. Psychol. 2020, 95, 102309. [Google Scholar] [CrossRef]
- Jones, M.C.; Pewsey, A. A family of symmetric distributions on the circle. J. Am. Stat. Assoc. 2005, 100, 1422–1428. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.C.; Pewsey, A. Inverse Batschelet distributions for circular data. Biometrics 2012, 68, 183–193. [Google Scholar] [CrossRef]
- Mackeben, M. Sustained focal attention and peripheral letter recognition. Spat. Vis. 1999, 12, 51–72. [Google Scholar] [CrossRef]
- Trauzettel-Klosinski, S.; Besch, D.; Mackeben, M. Reading disorders due to visual field defects: A neuro-ophthalmological view. Neuro-Ophthalmology 2009, 27, 79–90. [Google Scholar] [CrossRef]
- Yantis, S. How visual salience wins the battle for awareness. Nat. Neurosci. 2005, 8, 975–977. [Google Scholar] [CrossRef]
- Parr, T.; Friston, K.J. Attention or salience? Curr. Opin. Psychol. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Lisberger, S.G. Visual guidance of smooth-pursuit eye movements: Sensation, action, and what happens in between. Neuron 2010, 66, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Barraza-Bernal, M.J.; Rifai, K.; Wahl, S. A preferred retinal location of fixation can be induced when systematic stimulus relocations are applied. J. Vis. 2017, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Barraza-Bernal, M.J.; Rifai, K.; Wahl, S. Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks. J. Vis. 2017, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, U.L.; Frennesson, C.; Nilsson, S.E.G. Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vis. Res. 2003, 43, 1777–1787. [Google Scholar] [CrossRef]
- Nilsson, U.L.; Nilsson, S.E.G. Rehabilitation of the visually handicapped with advanced macular degeneration. Doc. Ophthalmol. 1986, 62, 345–367. [Google Scholar] [CrossRef]
- Virtanen, P.; Laatikainen, L. Primary success with low vision aids in age-related macular degeneration. Acta Ophthalmol. 1991, 69, 484–490. [Google Scholar] [CrossRef]
- Cheong, A.M.; Lovie-Kitchin, J.E.; Bowers, A.R.; Brown, B. Short-term in-office practice improves reading performance with stand magnifiers for people with AMD. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2005, 82, 114–127. [Google Scholar] [CrossRef]
- Watson, G.R.; Maino, J.; De l’Aune, W. Comparison of low-vision reading with spectacle-mounted magnifiers. J. Rehabil. Res. Dev. 2005, 42, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.X.; Besch, D.; Bartz-Schmidt, K.; Gelisken, F.; Trauzettel-Klosinski, S. Reading performance with low-vision aids and vision-related quality of life after macular translocation surgery in patients with age-related macular degeneration. Acta Ophthalmol. Scand. 2007, 85, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.; Mao, A.; Powell, A.M.; Sheidow, T. Digital reader vs print media: The role of digital technology in reading accuracy in age-related macular degeneration. Eye 2013, 27, 639–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipatchin, A.; García García, M.; Sauer, Y.; Wahl, S. Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training. Int. J. Environ. Res. Public Health 2022, 19, 9571. https://doi.org/10.3390/ijerph19159571
Sipatchin A, García García M, Sauer Y, Wahl S. Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training. International Journal of Environmental Research and Public Health. 2022; 19(15):9571. https://doi.org/10.3390/ijerph19159571
Chicago/Turabian StyleSipatchin, Alexandra, Miguel García García, Yannick Sauer, and Siegfried Wahl. 2022. "Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training" International Journal of Environmental Research and Public Health 19, no. 15: 9571. https://doi.org/10.3390/ijerph19159571
APA StyleSipatchin, A., García García, M., Sauer, Y., & Wahl, S. (2022). Application of Spatial Cues and Optical Distortions as Augmentations during Virtual Reality (VR) Gaming: The Multifaceted Effects of Assistance for Eccentric Viewing Training. International Journal of Environmental Research and Public Health, 19(15), 9571. https://doi.org/10.3390/ijerph19159571