Does the Element Availability Change in Soils Exposed to Bioplastics and Plastics for Six Months?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesocosm Setting Up
2.2. Sampling and Analyses
2.3. Assessment of Soil Metal Contamination
2.4. Statistical Analyses
3. Results
3.1. Soil Total Metal Concentrations
3.2. Soil Available Fractions
3.3. Percentages of Metal Availability with Respect to Total Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koelmans, B.; Pahl, S. A Scientific Perspective on Microplastics in Nature and Society; SAPEA: Berlin, Germany, 2019. [Google Scholar]
- Rillig, M.C.; Lehmann, A. Microplastic in terrestrial ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [PubMed]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- De Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef] [Green Version]
- Halden, R.U. Plastics and health risks. Annu. Rev. Public Health 2010, 31, 179–194. [Google Scholar]
- Zhang, G.S.; Hu, X.B.; Zhang, X.X.; Li, J. Effects of plastic mulch and crop rotation on soil physical properties in rain-fed vegetable production in the mid-Yunnan plateau. China Soil Tillage Res. 2015, 145, 111–117. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.Y.; Cizdziel, J.V. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ. Poll. 2020, 260, 113988. [Google Scholar] [CrossRef]
- Serrano, S.; Garridoa, F.; Campbellb, C.G.; GarcıàLa-GonzaàLlez, M.T. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 2004, 125, 94–105. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Xua, G.; Yu, Y.W.Y. Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Sci. Total Environ. 2021, 760, 144037. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.; An, Y.J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
- Iqbal, S.; Xu, J.; Allen, S.D.; Khan, S.; Nadir, S.; Arif, M.S.; Yasmeen, T. Unraveling consequences of soil micro-and nano-plastic pollution for soil-plant system with implications for nitrogen (N) cycling and soil microbial activity. Chemosphere 2020, 260, 127578. [Google Scholar] [CrossRef]
- Ya, H.; Jiang, B.; Xing, Y.; Zhang, T.; Lv, M.; Wang, X. Recent advances on ecological effects of microplastics on soil environment. Sci. Total Environ. 2021, 798, 149338. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wu, C.; Xue, Q.; Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2019, 654, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Zeb, A.; Cheng, L.; Lian, Y.; Sun, H. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 2021, 318, 128571. [Google Scholar] [CrossRef]
- Yang, W.; Cheng, P.; Adams, C.A.; Zhang, S.; Sun, Y.; Yu, H.; Wang, F. Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biol. Biochem. 2021, 155, 108179. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Wang, P.Y.; Wang, Y.B.; Zhou, R.; Koskei, K.; Munyasya, A.N.; Liu, S.T.; Wang, W.; Su, Y.Z.; Xiong, Y.C. Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks. J. Hazard. Mater. 2021, 416, 125954. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Onandia, G.; Maass, S.; Zhao, T.; Rillig, M.C. Effects of microplastics and drought on ecosystem functions and multifunctionality. J. Appl. Ecol. 2021, 58, 988–996. [Google Scholar] [CrossRef]
- Chen, R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Z.; Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bull. Environ. Contam. Toxicol. 2021, 107, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.E.; Duffus-Hodson, C.A.; Clark, A.; Prendergast-Miller, M.T.; Thorpe, K.L. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ. Sci. Technol. 2017, 51, 4714–4721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef] [PubMed]
- Amery, F.; Degryse, F.; Degeling, W.; Smolders, E.; Merckx, R. The copper-mobilizing potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures. Environ. Sci. Technol. 2007, 41, 2277–2281. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Zhou, Y.; Dou, L.; Cai, L.; Mo, L.; You, J. Bioavailability and soilto- crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012, 160, 42–48. [Google Scholar] [CrossRef]
- Santos-Echeandia, J.; Rivera-Hernández, J.R.; Rodrigues, J.P.; Molto, V. Interaction of mercury with beached plastics with special attention to zonation, degradation status and polymer type. Mar. Chem. 2020, 222, 103788. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kgel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar]
- Tsia, H.Y.; Tsen, W.C.; Shu, Y.C.; Chuang, F.S.; Chen, C.C. Compatibility and characteristics of poly (butylene succinate) and propylene-coethylene copolymer blend. Polym. Test. 2009, 28, 875–885. [Google Scholar] [CrossRef]
- Di Mola, I.; Ventorino, V.; Cozzolino, E.; Ottaiano, L.; Romano, I.; Duri, L.G.; Pepe, O.; Mori, M. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management. Appl. Soil Ecol. 2021, 163, 103921. [Google Scholar] [CrossRef]
- Moreno, M.M.; Moreno, A.; Mancebo, I. Comparison of different mulch materials in a tomato (Solanum lycopersicum L.) crop. Span. J. Agric. Res. 2009, 7, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Saraiva, A.; Carvalho, L.; Duarte, E. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 2014, 173, 65–70. [Google Scholar] [CrossRef]
- Cozzolino, E.; Giordano, M.; Fiorentino, N.; El-Nakhel, C.; Pannico, A.; Di Mola, I.; Mori, M.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Appraisal of Biodegradable Mulching Films and Vegetal-Derived Biostimulant Application as Eco-Sustainable Practices for Enhancing Lettuce Crop Performance and Nutritive Value. Agronomy 2020, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Waterer, D. Evaluation of biodegradable mulches for production of warm-season vegetable crops. Can. J. Plant Sci. 2010, 90, 737–743. [Google Scholar]
- Lindsay, W.N.; Norwell, W.A. Development of a DTPA micronutrient soil test. Agron. Abstr. 1969, 84, 69–87. [Google Scholar]
- Luo, W.; Lu, Y.; Gisey, J.P.; Wang, T.; Shi, Y.; Wang, G.; Xing, Y. Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environ. Geochem. Health 2007, 29, 459–471. [Google Scholar] [CrossRef]
- Memoli, V.; Esposito, F.; Panico, S.P.; DeMarco, A.; Barile, R.; Maisto, G. Evaluation of tourism impact on soil metal accumulation through single and integrated indices. Sci. Total Environ. 2019, 682, 685–691. [Google Scholar] [CrossRef]
- Cicchella, D.; De Vivo, B.; Lima, A. Background and baseline concentration values of harmful to human health in the volcanic soils of the metropolitan and provincial areas of Naples (Italy). Geochem. Explor. Environ. Anal. 2005, 5, 29–40. [Google Scholar] [CrossRef]
- Madrid, L.; Dıaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Banu, Z.; Chowdhury, M.; Hossain, M.; Nakagami, K. Contamination and ecological risk assessment of heavy metal in the sediment of Turag River, Bangladesh: An index analysis approach. J. Water Resour. Prot. 2013, 5, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Giusti, L.; Taylor, J.H.; Davison, W.; Hewitt, C.N. Artefacts in sorption experiments with trace-metals. Sci. Total Environ. 1994, 152, 227–238. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.N.; Li, J.; Wang, G.Y.; Luan, Y.N.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotox. Environ. Safe. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, W.; Tomasik, P. Complexes of amylose and amylopectins with multivalent metal salts. J. Inorg. Biochem. 2004, 98, 2039–2051. [Google Scholar] [CrossRef]
- Zuo, L.Z.; Li, H.X.; Lin, L. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate-co-terephthalate) microplastics. Chemosphere 2019, 215, 25–32. [Google Scholar] [CrossRef]
- Kijchavengkul, T.; Auras, R.; Rubino, M.; Alvarado, E.; Montero, J.R.C.; Rosales, J.M. Atmospheric and soil degradation of aliphaticearomatic polyester films. Polym. Degrad. Stabil. 2010, 95, 99–107. [Google Scholar] [CrossRef]
- Nakajima-Kambe, T.; Ichihashi, F.; Matsuzoe, R.; Kato, S.; Shintani, N. Degradation of aliphaticearomatic copolyesters by bacteria that can degrade aliphatic polyesters. Polym. Degrad. Stabil. 2009, 94, 1901–1905. [Google Scholar] [CrossRef]
- Li, M.; Wu, D.; Wu, D.; Guo, H.; Han, S. Influence of polyethylene-microplastic on environmental behaviors of metals in soil. Environ. Sci. Pollut. 2021, 28, 28329–28336. [Google Scholar] [CrossRef]
Abiotic Properties | Mean Values ± s.e. |
---|---|
pH | 7.4 ± 0.07 |
WC | 39.4 ± 0.63 |
C | 4.2 ± 0.10 |
N | 0.4 ± 0.01 |
Corg | 3.2 ± 0.05 |
C/N | 10.8 ± 0.64 |
CF | ||
---|---|---|
Metals | Plastic | Bioplastic |
Al | 1.47 | 1.81 * |
Ca | 2.12 | 2.51 |
Cu | 0.62 | 0.74 |
Fe | 1.10 | 1.33 ** |
K | 1.55 | 1.58 |
Mg | 1.29 | 1.74 * |
Mn | 0.96 | 1.02 |
Na | 2.57 | 2.69 |
Ni | 0.78 | 1.11 |
Pb | 1.05 | 0.98 |
Zn | 1.68 | 1.28 |
PLI | 1.11 | 1.26 |
Metals | Plastic | Bioplastic |
---|---|---|
Al | 0.003 | 0.002 ** |
Ca | 13.1 | 8.83 ** |
Cu | 42.2 | 36.1 * |
Fe | 0.12 | 0.11 |
K | 4.80 | 4.56 |
Mg | 5.91 | 4.61 ** |
Mn | 0.93 | 1.00 |
Na | 4.41 | 4.96 |
Ni | 2.23 | 2.64 |
Pb | 9.23 | 8.00 * |
Zn | 18.5 | 20.6 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, G.; Maisto, G.; Memoli, V.; Di Natale, G.; Trifuoggi, M.; Santorufo, L. Does the Element Availability Change in Soils Exposed to Bioplastics and Plastics for Six Months? Int. J. Environ. Res. Public Health 2022, 19, 9610. https://doi.org/10.3390/ijerph19159610
Santini G, Maisto G, Memoli V, Di Natale G, Trifuoggi M, Santorufo L. Does the Element Availability Change in Soils Exposed to Bioplastics and Plastics for Six Months? International Journal of Environmental Research and Public Health. 2022; 19(15):9610. https://doi.org/10.3390/ijerph19159610
Chicago/Turabian StyleSantini, Giorgia, Giulia Maisto, Valeria Memoli, Gabriella Di Natale, Marco Trifuoggi, and Lucia Santorufo. 2022. "Does the Element Availability Change in Soils Exposed to Bioplastics and Plastics for Six Months?" International Journal of Environmental Research and Public Health 19, no. 15: 9610. https://doi.org/10.3390/ijerph19159610
APA StyleSantini, G., Maisto, G., Memoli, V., Di Natale, G., Trifuoggi, M., & Santorufo, L. (2022). Does the Element Availability Change in Soils Exposed to Bioplastics and Plastics for Six Months? International Journal of Environmental Research and Public Health, 19(15), 9610. https://doi.org/10.3390/ijerph19159610