How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Geo-Accumulation Index
2.4. Potential Ecological Risk Index
2.5. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of Metals in Surface Soils and Their Corresponding River Sediments under Different Types of Land Use
3.2. Metal Pollution in Surface Soil and Sediment
3.3. Potential Ecological Risk of Metals
3.4. Identification of Possible Sources of Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Xu, X.; Jiang, B.; Tan, Y.; Costanza, R.; Yang, G. Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosyst. Serv. 2018, 33, 19–28. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Xu, W.; Fan, X.; Ma, J.; Pimm, S.L.; Kong, L.; Zeng, Y.; Li, X.; Xiao, Y.; Zheng, H.; Liu, J.; et al. Hidden Loss of Wetlands in China. Curr. Biol. 2019, 29, 3065–3071. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Huang, X.; Mu, H.; Yin, W. Impacts of Land-Use Changes on the Lakes across the Yangtze Floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Yao, S.; Xue, B. Nutrients and heavy metals in multi-cores from Zhushan Bay at Taihu Lake, the largest shallow lake in the Yangtze Delta, China. Quat. Int. 2010, 226, 23–28. [Google Scholar]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, W.; Wang, S.; Zhang, B.; Hu, J. Initial identification of heavy metals contamination in Taihu Lake, a eutrophic lake in China. J. Environ. Sci. 2012, 24, 1539–1548. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Y.; Yang, J.; Zhu, L.; Zhong, W. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J. Environ. Sci. 2017, 62, 31–38. [Google Scholar] [CrossRef]
- Ali, M.M.; Ishiga, H.; Wakatsuki, T. Distribution and changes in heavy metal contents of paddy soils in different physiographic units of Bangladesh. J. Soil Sci. Plant Nutr. 2003, 49, 527–538. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, Z.; Xiaona, H.; Wei, M. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol. Environ. Saf. 2012, 81, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, I.; Al-Rouqi, R.; Obsum, C.A.; Shinwari, N.; Mashhour, A.; Billedo, G.; Al-Sarraj, Y.; Rabbah, A. Mercury (Hg) and oxidative stress status in healthy mothers and its effect on birth anthropometric measures. Int. J. Hyg. Environ. Health 2014, 217, 567–585. [Google Scholar] [CrossRef] [PubMed]
- Żukowska, J.; Biziuk, M. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci. 2008, 73, R21–R29. [Google Scholar] [CrossRef] [PubMed]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Y.; Liu, X.; Hu, W.; Zhu, J.; Zhu, L. Spatial distribution and risk assessment of heavy metals and As pollution in the sediments of a shallow lake. Environ. Monit. Assess. 2016, 188, 296. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, W.; Tang, C.; Li, Y.; Wang, Z.; Lin, S.; Zeng, F. Targeting Remediation Dredging by Ecological Risk Assessment of Heavy Metals in Lake Sediment: A Case Study of Shitang Lake, China. Sustainability 2019, 11, 7251. [Google Scholar] [CrossRef]
- Yin, H.; Gao, Y.; Fan, C. Distribution, sources and ecological risk assessment of heavy metals in surface sediments from Lake Taihu, China. Environ. Res. Lett. 2011, 6, 044012. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Liu, E.; Yang, X. Assessment of heavy metal enrichment and its human impact in lacustrine sediments from four lakes in the mid-low reaches of the Yangtze River, China. J. Environ. Sci. 2013, 25, 1300–1309. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, L.; Li, J.; Wang, C.; Ji, J. Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China. Catena 2014, 119, 52–60. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Rong, Q.; Zhu, C.; Han, J.; Li, P. Distribution, Sources, and Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Estuary of Hongze Lake, China. Environments 2019, 6, 92. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, R.; Xu, Y.; Han, J.; Li, P. Statistical Assessment of Water Quality Issues in Hongze Lake, China, Related to the Operation of a Water Diversion Project. Sustainability 2018, 10, 1885. [Google Scholar] [CrossRef]
- Ruan, R.; Zhang, L. Changes of Hongze Lake wetlands in the past three decades. In Proceedings of the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu, China, 23–25 September 2010; pp. 1–4. [Google Scholar]
- Wu, Y.; Xu, Y.; Han, J.; Li, P. Spatial and temporal changes in wetland use in the meeting place of Hung-tse Lake and Huaihe River. J. Nanjing For. Univ. 2016, 40, 22–28. [Google Scholar]
- Yu, H.; Zhang, W.-B.; Yu, J.-P. Distribution and potential ecological risk assessment of heavy metals in surface sediments of Hongze Lake. Environ. Sci. 2011, 32, 437–444. [Google Scholar]
- Xu, Y.; Chen, Z.; Wu, Y.; Zhu, Y.; Li, P. Advances on agricultural non-point source pollution and the control in regions around Hung-tse Lake. J. Nanjing For. Univ. 2016, 40, 1–8. [Google Scholar]
- Zhang, W.-B.; Yu, H. Vertical distribution characteristics of nutrients and heavy metals in sediments of Lake Hongze. Environ. Sci. 2012, 33, 399–406. [Google Scholar]
- Wang, Z.; Lu, A. Simultaneous Determination of Mercury, Arsenic and Antimony in Soil and River Sediment. Bull. Mineral. Petrol. Geochem. 2007, 26, 141–143. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Soil and Sediment-Determination of Aqua Regia Extracts of 12 Metal Elements-Inductively Coupled Plasma Mass Spectrometry; China Environment Publishing Group: Beijing, China, 2016; Volume HJ 803-2016. [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Tiwari, M.; Sahu, S.; Bhangare, R.; Ajmal, P.; Pandit, G.J.A.R. Depth profile of major and trace elements in estuarine core sediment using the EDXRF technique. Appl. Radiat. Isot. 2013, 80, 78–83. [Google Scholar] [CrossRef]
- Chaudhary, M.; Ahmad, N.; Mashiatullah, A.; Ghaffar, A. Geochemical assessment of metal concentrations in sediment core of Korangi Creek along Karachi Coast, Pakistan. Environ. Monit. Assess. 2013, 185, 6677–6691. [Google Scholar] [CrossRef] [PubMed]
- CNEMC. Chinese Soil Element Background Value; China Enviromental Science Press: Beijing, China, 1990. [Google Scholar]
- Hakanson, L.J.W.R. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Gao, D.; Zhang, F.; Zeng, C.; Xiang, W.; Zhang, M. Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. Int. J. Environ. Res. Public Health 2013, 10, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, Z.; Ji, J.; Yu, T.; Chen, G.; Li, J.; Xia, X.; Zhang, M.; Yuan, X. Annual net input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta, China. J. Geochem. Explor. 2014, 139, 68–84. [Google Scholar] [CrossRef]
- Poersch, L.H.; Bauer, W.; Kersanach, M.W.; Wasielesky, W. Assessment of trace metals, total organic carbon and total nitrogen of a shrimp farm system in Southern Brazil. Reg. Stud. Mar. Sci. 2020, 39, 101452. [Google Scholar] [CrossRef]
- McDowell, R.W. Is cadmium loss in surface runoff significant for soil and surface water quality: A study of flood-irrigated pastures? Water Air Soil Pollut. 2010, 209, 133–142. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, L.; Liu, G.; Liu, W. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf. 2014, 107, 200–206. [Google Scholar] [CrossRef]
- Bai, J.; Xiao, R.; Zhang, K.; Gao, H. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J. Hydrol. 2012, 450, 244–253. [Google Scholar] [CrossRef]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, J.; Zhang, S.; Lian, Y.; Ding, H.; Du, X.; Li, Z.; De Silva, S.S. Sustainable farming practices of the Chinese mitten crab (Eriocheir sinensis) around Hongze Lake, lower Yangtze River Basin, China. Ambio 2015, 45, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Van Gils, S.; van der Putten, W.H.; Kleijn, D. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops? J. Appl. Ecol. 2016, 53, 1186–1194. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Shi, J.; Chen, Y.; Sun, C.; Zhang, P.; Shen, Z. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions. Sci. Total Environ. 2014, 468, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Bruun Hansen, H.C.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Zi, X.; Zhang, M.; Gu, X.; Kan, K.; Mao, Z.; Chen, H.; Zeng, Q. Impact of Enclosure Culture on Heavy Metal Content in Surface Sediments of Hongze Lake and Ecological Risk Assessment. Huan Jing Ke Xue 2021, 42, 5355–5363. [Google Scholar]
- Karstens, S.; Buczko, U.; Jurasinski, G.; Peticzka, R.; Glatzel, S. Impact of adjacent land use on coastal wetland sediments. Sci. Total Environ. 2016, 550, 337–348. [Google Scholar] [CrossRef]
- Bai, J.; Xiao, R.; Cui, B.; Zhang, K.; Wang, Q.; Liu, X.; Gao, H.; Huang, L. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ. Pollut. 2011, 159, 817–824. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Zhang, Z.; Juying, L.; Mamat, Z.; QingFu, Y. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol. Environ. Saf. 2016, 126, 94–101. [Google Scholar] [CrossRef]
- Novotny, V. Integrating diffuse non-point source pollution control and water body restoration into watershed management. J. Am. Water Resour. Assoc. 1999, 35, 717–727. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Wu, S.; Xia, X.; Lin, C.; Chen, X.; Zhou, C. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). J. Hazard. Mater. 2010, 179, 860–868. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, C.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Wu, H.; Hua, S. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Process. 2016, 30, 1929–1939. [Google Scholar] [CrossRef]
- Dankoub, Z.; Ayoubi, S.; Khademi, H.; Sheng-Gao, L. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere 2012, 22, 33–47. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef]
Igeo | ≤0 | 0–1 | 1–2 | 2–3 | 3–4 | 4–5 | ≥5 |
---|---|---|---|---|---|---|---|
Pollution degree | Practically unpolluted | Unpolluted to moderately polluted | Moderately polluted | Moderately to heavily polluted | Heavily polluted | Heavily to extremely polluted | Extremely polluted |
Levels | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Assessment Criterion | Low Risk | Moderate Risk | High Risk | Very High Risk | Extremely High Risk |
---|---|---|---|---|---|
Eri | ≤40 | 40 < Eri ≤ 80 | 80 < Eri ≤ 160 | 160 < Eri ≤ 320 | >320 |
RI | ≤150 | 150 <RI ≤ 300 | 300 < RI ≤ 600 | RI > 600 |
Land Uses | pH | SOM (g/kg) | As (mg/kg) | Cd (mg/kg) | Cr (mg/kg) | Cu (mg/kg) | Hg (mg/kg) | Mn (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | CPso | 8.03 ± 0.15 b | 3.84 ± 0.96 b | 48.40 ± 13.97 *a | 0.18 ± 0.14 c | 35.55 ± 8.26 bc | 19.65 ± 2.87 *c | 0.006 ± 0.005 *b | 418.85 ± 53.31 *b | 15.40 ± 2.26 *b | 70.30 ± 13.53 *bc |
FLso | 8.09 ± 0.26 ab | 10.35 ± 1.69 *a | 53.00 ± 14.97 a | 0.26 ± 0.04 *a | 71.25 ± 24.51 *a | 36.20 ± 5.69 *a | 0.012 ± 0.006 ab | 453.20 ± 65.00 *b | 23.65 ± 3.38 *a | 110.95 ± 16.97 *a | |
RLso | 8.39 ± 0.21 *a | 1.77 ± 0.25 *c | 38.01 ± 11.54 *b | 0.13 ± 0.01 *d | 32.80 ± 4.89 bc | 18.55 ± 2.95 c | 0.017 ± 0.008 a | 413.85 ± 39.74 *b | 13.20 ± 1.24 *c | 63.30 ± 7.63 c | |
PFso | 8.25 ± 0.25 ab | 2.95 ± 0.46 bc | 27.64 ± 20.20 *b | 0.21 ± 0.07 *bc | 31.50 ± 3.22 c | 20.20 ± 1.28 c | 0.008 ± 0.006 *b | 441.55 ± 31.12 *b | 12.94 ± 1.17 *c | 69.55 ± 9.31 bc | |
WFso | 8.28 ± 0.20 ab | 3.16 ± 1.31 bc | 31.73 ± 18.56 *b | 0.24 ± 0.08 *ab | 40.80 ± 10.56 *b | 24.45 ± 4.48 *b | 0.016 ± 0.011 a | 493.30 ± 92.81 a | 15.20 ± 2.84 *b | 76.15 ± 14.75 *b | |
Sediment | CPsd | 8.07 ± 0.36 b | 2.60 ± 1.12 b | 9.62 ± 1.85 *b | 0.28 ± 0.20 a | 36.72 ± 3.74 b | 15.55 ± 1.72 *c | 0.021 ± 0.008 *a | 480.97 ± 35.48 *b | 14.11 ± 1.11 *b | 53.56 ± 4.57 *c |
FLsd | 8.30 ± 0.08 ab | 5.07 ± 0.34 *a | 53.65 ± 16.39 a | 0.17 ± 0.02 *b | 52.30 ± 8.57 *a | 29.20 ± 2.48 *a | 0.014 ± 0.012 b | 670.90 ± 182.75 *a | 17.45 ± 1.67 *a | 89.55 ± 10.83 *a | |
RLsd | 8.06 ± 0.05 *b | 4.93 ± 1.40 *a | 7.90 ± 4.66 *b | 0.16 ± 0.04 *b | 36.25 ± 8.28 bc | 21.95 ± 6.20 b | 0.013 ± 0.010 b | 617.25 ± 117.25 *a | 16.30 ± 2.77 *a | 70.70 ± 15.32 b | |
PFsd | 8.27 ± 0.13 ab | 4.57 ± 1.60 a | 7.52 ± 1.24 *b | 0.13 ± 0.02 *b | 35.30 ± 11.23 bc | 21.10 ± 3.70 b | 0.014 ± 0.008 *b | 632.70 ± 103.55 *a | 15.90 ± 3.55 *a | 67.65 ± 12.05 b | |
WFsd | 8.37 ± 0.07 a | 3.64 ± 0.78 ab | 6.54 ± 1.49 *b | 0.14 ± 0.02 *b | 31.40 ± 4.17 *c | 16.05 ± 3.76 *c | 0.012 ± 0.006 b | 542.00 ± 70.40 a | 13.10 ± 1.68 *b | 52.55 ± 10.57 *c | |
BVSJ | Soils | - | - | 10.00 | 0.13 | 77.80 | 22.30 | 0.29 | 585.00 | 26.20 | 62.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Xu, Y.; Zhu, C.; Li, P.; Zhu, Y.; Han, J. How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland? Int. J. Environ. Res. Public Health 2022, 19, 10079. https://doi.org/10.3390/ijerph191610079
Guo Y, Xu Y, Zhu C, Li P, Zhu Y, Han J. How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland? International Journal of Environmental Research and Public Health. 2022; 19(16):10079. https://doi.org/10.3390/ijerph191610079
Chicago/Turabian StyleGuo, Yanhui, Yongfeng Xu, Chenming Zhu, Pingping Li, Yongli Zhu, and Jiangang Han. 2022. "How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland?" International Journal of Environmental Research and Public Health 19, no. 16: 10079. https://doi.org/10.3390/ijerph191610079
APA StyleGuo, Y., Xu, Y., Zhu, C., Li, P., Zhu, Y., & Han, J. (2022). How Does Adjacent Land Use Influence Sediment Metals Content and Potential Ecological Risk in the Hongze Lake Wetland? International Journal of Environmental Research and Public Health, 19(16), 10079. https://doi.org/10.3390/ijerph191610079