Ammunition Waste Pollution and Preliminary Assessment of Risks to Child Health from Toxic Metals at the Greek Refugee Camp Mavrovouni
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Soil
2.2. Chemical Analysis
2.3. Statistical Analysis
Pb | Sb | Bi | Cu | U | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Site # | N | Average ± SD (mg/kg) | RSD (%) | Average ± SD (mg/kg) | RSD (%) | Average ± SD (mg/kg) | RSD (%) | Average ± SD (mg/kg) | RSD (%) | Average ± SD (mg/kg) | RSD (%) |
1 | 7 | 46 ± 2.2 | 4.8 | 1.2 ± 0.13 | 11 | 0.17 ± 0.014 | 8.3 | 40 ± 1.5 | 3.7 | 1.5 ± 0.16 | 11 |
2 | 7 | 150 ± 44 | 29 | 1.5 ± 0.12 | 7.7 | 0.19 ± 0.010 | 5 | 39 ± 1.4 | 3.6 | 2.3 ± 0.14 | 6.1 |
3 | 7 | (8 ± 3.2) × 103 | 41 | (1.6 ± 0.65) 102 | 40 | 2.0 ± 1.1 | 55 | 240 ± 63 | 27 | 3.0 ± 0.15 | 4.8 |
4 | 7 | 590 ± 32 | 5.4 | 9.2 ± 0.83 | 9.1 | 0.26 ± 0.036 | 14 | 92 ± 8.9 | 10 | 2.0 ± 0.13 | 6.7 |
5 | 1 | 6.9 | 0.49 | <0.03 | 6.7 | 0.73 | |||||
6 | 7 | 41 ± 1.1 | 2.6 | 1.3 ± 0.076 | 5.7 | 0.23 ± 0.008 | 3.2 | 43 ± 2.3 | 5.4 | 2.7 ± 0.076 | 2.8 |
7 | 7 | (6 ± 10) × 103 | 192 | (2 ± 47) 102 | 215 | 3.3 ± 7.8 | 233 | 100 ± 22 | 23 | 2.4 ± 0.15 | 6.3 |
8 | 7 | 240 ± 48 | 20 | 2.5 ± 0.18 | 7.1 | 0.25 ± 0.013 | 5 | 44 ± 2.0 | 4.5 | 3.1 ± 0.13 | 4.4 |
Ref 1 | 7 | 18 ± 2.9 | 17 | 1.5 ± 0.18 | 12 | 0.058 ± 0.029 | 51 | 23 ± 2.5 | 11 | 0.8 ±0.12 | 13 |
Ref 2 | 1 | 13 | 1.4 | 0.074 | 21 | 1.3 |
2.4. Reference Values
- 100 mg/kg: normal quality criteria;
- 100–300 mg/kg: no action indicated;
- 300–700 mg/kg: immediate measures should be considered and the site prioritized in the action phase;
- 700–2500 mg/kg: immediate action should be taken.
3. Results
4. Comparison to Previous Report
5. Discussion
5.1. Metal Toxicity
5.2. Choice of Reference Values
5.3. Comparison with Previous Findings
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hellenic Republic Ministry of Migration and Asylum. Response Letter from Minister Notis Mitarachi to Judith Sunderland of Human Rights Watch. Available online: https://www.hrw.org/sites/default/files/media_2020/12/Letter%20of%20Minister%20Mitarachi%20to%20HRW.pdf (accessed on 20 June 2022).
- Bannon, D.I.; Drexler, J.W.; Fent, G.M.; Casteel, S.W.; Hunter, P.J.; Brattin, W.J.; Major, M.A. Evaluation of Small Arms Range Soils for Metal Contamination and Lead Bioavailability. Environ. Sci. Technol. 2009, 43, 9071–9076. [Google Scholar] [CrossRef]
- Bellinger, D.C.; Burger, J.; Cade, T.J.; Cory-Slechta, D.A.; Finkelstein, M.; Hu, H.; Kosnett, M.; Landrigan, P.J.; Lanphear, B.; Pokras, M.A.; et al. Health Risks from Lead-Based Ammunition in the Environment. Environ. Health Perspect. 2013, 121, a178–a179. [Google Scholar] [CrossRef] [PubMed]
- Fayiga, A.O.; Saha, U.K. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016, 216, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.S.; Filippelli, G.; Mielke, H.; Gulson, B.; Ball, A.S. Lead exposure at firing ranges—A review. Environ. Health 2017, 16, 34. [Google Scholar]
- Sanderson, P.; Qi, F.; Seshadri, B.; Wijayawardena, A.; Naidu, R. Contamination, Fate and Management of Metals in Shooting Range Soils—A Review. Curr. Pollut. Rep. 2018, 4, 175–187. [Google Scholar] [CrossRef]
- Mielke, H.W.; Reagan, P.L. Soil is an important pathway of human lead exposure. Environ. Health Perspect. 1998, 106, 13. [Google Scholar]
- Schachter, A.E.; Gailey, A.; Egendorf, S.P.; Mielke, H.W. Mechanisms of children’s soil exposure. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100742. [Google Scholar]
- CDC. CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in “Low Level Lead Exposure Harms Children: A Renewed Call of Primary Prevention”. 2012; p. 16. Available online: https://www.cdc.gov/nceh/lead/acclpp/cdc_response_lead_exposure_recs.pdf (accessed on 20 June 2022).
- Landrigan, P.J.; Etzel, R.A. Textbook of Children’s Environmental Health; Oxford University Press: Oxford, UK, 2013; Available online: https://oxfordmedicine.com/view/10.1093/med/9780199929573.001.0001/med-9780199929573 (accessed on 2 February 2021).
- Moya, J.; Bearer, C.F.; Etzel, R.A. Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 2004, 113 (Suppl. 4), 996–1006. [Google Scholar] [CrossRef]
- U.S. EPA. Exposure Factors Handbook Chapter 5 (Update): Soil and Dust Ingestion; U.S. EPA Office of Research and Development: Washington, DC, USA, 2017; Report No.: EPA/600/R-17/384F. Available online: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-5 (accessed on 13 December 2021).
- Heindel, J.J.; Balbus, J.; Birnbaum, L.; Brune-Drisse, M.N.; Grandjean, P.; Gray, K.; Landrigan, P.J.; Sly, P.D.; Suk, W.A.; Cory Slechta, D.; et al. Developmental Origins of Health and Disease: Integrating Environmental Influences. Endocrinology 2015, 156, 3416–3421. [Google Scholar] [CrossRef]
- Lanphear, B.P. The Impact of Toxins on the Developing Brain. Annu. Rev. Public Health 2015, 36, 211–230. [Google Scholar] [CrossRef]
- Schwaba, T.; Bleidorn, W.; Hopwood, C.J.; Gebauer, J.E.; Rentfrow, P.J.; Potter, J.; Gosling, S.D. The Impact of Childhood Lead Exposure on Adult Personality: Evidence from the United States, Europe, and a Large-Scale Natural Experiment. Proc. Natl. Acad. Sci. USA 2021, 118, e2020104118. Available online: https://www.pnas.org/content/118/29/e2020104118 (accessed on 13 December 2021). [CrossRef] [PubMed]
- Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Laidlaw, M.A.S.; Berry, K.J.; Mielke, P.W.; Egendorf, S.P. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. USA 2019, 116, 22058–22064. [Google Scholar] [CrossRef] [PubMed]
- UNICEF, Pure Earth. The Toxic Truth: Children’s Exposure to Lead Pollution Undermines a Generation of Future Potential. Available online: https://www.unicef.org/reports/toxic-truth-childrens-exposure-to-lead-pollution-2020 (accessed on 28 May 2021).
- Lupone, C.D.; Daniels, D.; Lammert, D.; Borsuk, R.; Hobart, T.; Lane, S.; Shaw, A. Lead Exposure in Newly Resettled Pediatric Refugees in Syracuse, NY. J. Immigr. Minor. Health. 2020, 22, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Caron, R.M.; Tshabangu-Soko, T.S. Environmental Inequality: Childhood Lead Poisoning as an Inadvertent Consequence of the Refugee Resettlement Process. J. Progress. Hum. Serv. 2012, 23, 208–222. [Google Scholar] [CrossRef]
- Kaplowitz, S.A.; Perlstadt, H.; Dziura, J.D.; Post, L.A. Behavioral and Environmental Explanations of Elevated Blood Lead Levels in Immigrant Children and Children of Immigrants. J. Immigr. Minor. Health 2016, 18, 979–986. [Google Scholar] [CrossRef] [PubMed]
- EAGME. Geochemical Quality Control of Soil and Groundwater in Lesvos Prefecture (Original Title: Γεωχημικός ποιοτικός έλεγχος εδάφους και υπόγειου ύδατος περιοχών ν. Λέσβου); EAGME: Athens, Greece, 2021. Available online: https://www.scribd.com/document/492488195/EAGME-Lesvos-Fin-Jan2021-Min (accessed on 28 May 2021).
- Tanaka, M.; Petsios, K.; Dikalioti, S.K.; Poulopoulou, S.; Matziou, V.; Theocharis, S.; Pavlopoulou, I.D. Lead Exposure and Associated Risk Factors among New Migrant Children Arriving in Greece. Int. J. Environ. Res. Public Health 2018, 15, 1057. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.E. Child health crisis in Moria: A call to attention. Arch. Dis. Child. 2019, 104, 717. [Google Scholar] [CrossRef]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; XLSTAT: New York, NY, USA, 2020; Available online: https://www.xlstat.com (accessed on 10 January 2021).
- SFT. Jordforurensning i Barnehager og på Lekeplasser. Veileder for Utføring av Tiltak i Eksisterende Barnehager. Fjerning av Jordforurensning og Impregnert Trevirke (Soil Pollution in Kindergartens and Playgrounds). Statens forurensningstilsyn: Miljødirektoratet/Norwegian Environment Agency. 2009; Report No.: TA-2567/2009. Available online: https://www.miljodirektoratet.no/publikasjoner/publikasjoner-fra-klif/2009/november/jordforurensning-i-barnehager-og-pa-lekeplasser.veileder-for-utforing-av-tiltak-i-eksisterende-barnehager.-fjerning-av-jordforurensning-og-impregnert-trevirke/ (accessed on 13 December 2021).
- Alexander, J. Anbefalte Kvalitetskriterier for Jord i Barnehager, Lekeplasser og Skoler Basert på Helsevurderinger (Health-Based Soil Quality Criteria for Day-Care Centers, Playgrounds and Schoolyards). Avdeling for Næringsmiddeltoksikologi, Divisjon for Miljømedisin, Nasjonalt Folkehelseinstitutt. 2006. Available online: https://docplayer.me/17497951-Anbefalte-kvalitetskriterier-for-jord-i-barnehager-lekeplasser-og-skoler-basert-pa-helsevurderinger.html (accessed on 13 December 2021).
- Etzel, R.A. The special vulnerability of children. Int. J. Hyg. Environ. Health 2020, 227, 113516. [Google Scholar] [CrossRef]
- Belanteri, R.A.; Hinderaker, S.G.; Wilkinson, E.; Episkopou, M.; Timire, C.; De Plecker, E.; Mabhala, M.; Takarinda, K.C.; Bergh, R.V.D. Sexual violence against migrants and asylum seekers. The experience of the MSF clinic on Lesvos Island, Greece. PLoS ONE 2020, 15, e0239187. [Google Scholar] [CrossRef]
- De Montgomery, C.J.; Stathopoulou, T.; Eikemo, T.A. Asylum-seeking Parents’ Reports of Health Deterioration in Their Children since Fleeing Their Home Country. J. Refug. Stud. 2019, 32, i52–i62. [Google Scholar] [CrossRef]
- Vonen, H.D.; Olsen, M.L.; Eriksen, S.S.; Jervelund, S.S.; Eikemo, T.A. Refugee camps and COVID-19: Can we prevent a humanitarian crisis? Scand. J. Public Health. 2021, 49, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Medgyesi, D.N.; Brogan, J.M.; Sewell, D.K.; Creve-Coeur, J.P.; Kwong, L.H.; Baker, K.K. Where Children Play: Young Child Exposure to Environmental Hazards during Play in Public Areas in a Transitioning Internally Displaced Persons Community in Haiti. Int. J. Environ. Res. Public Health 2018, 15, 1646. [Google Scholar] [CrossRef] [PubMed]
- Canfield, R.L.; Henderson, C.R.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual Impairment in Children with Blood Lead Concentrations below 10 μg per Deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Dong, Z.; Wijayawardena, M.A.A.; Liu, Y.; Li, Y.; Naidu, R. The source of lead determines the relationship between soil properties and lead bioaccessibility. Environ. Pollut. 2019, 246, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Chakravarty, J. Antimony Toxicity. Int. J. Environ. Res. Public Health 2010, 7, 4267–4277. [Google Scholar] [CrossRef]
- Karagas, M.R.; Wang, A.; Dorman, D.C.; Hall, A.L.; Pi, J.; Sergi, C.M.; Symanski, E.; Ward, E.M.; Arrandale, V.H.; Azuma, K.; et al. Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy. Lancet Oncol. 2022, 23, 577–578. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Amstätter, K.; Bue, H.L.; Cornelissen, G.; Breedveld, G.D.; Henriksen, T.; Mulder, J. Antimony (Sb) Contaminated Shooting Range Soil: Sb Mobility and Immobilization by Soil Amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef]
- Ainsworth, N.; Cooke, J.A.; Johnson, M.S. Distribution of antimony in contaminated grassland: 2—small mammals and invertebrates. Environ. Pollut. 1990, 65, 79–87. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Antimony and Compounds. 2019; p. 282. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp23.pdf (accessed on 10 December 2021).
- Yang, N.; Sun, H. Bismuth: Environmental Pollution and Health Effects. Encycl. Environ. Health 2011, 414–420. [Google Scholar] [CrossRef]
- Gad, S.C. Bismuth. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 512–513. Available online: https://www.sciencedirect.com/science/article/pii/B9780123864543008228 (accessed on 13 December 2021).
- Ottesen, R.T.; Alexander, J.; Langedal, M.; Haugland, T.; Høygaard, E. Soil pollution in day-care centers and playgrounds in Norway: National action plan for mapping and remediation. Environ. Geochem. Health 2008, 30, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Carlon, C. (Ed.) Derivation Methods of Soil Screening Values in Europe: A Review of National Procedures towards Harmonisation; EU Joint Research Centre, Institute for Environment and Sustainability: Luxembourg, 2007. [Google Scholar]
- Eisenberg, K.W.; van Wijngaarden, E.; Fisher, S.G.; Korfmacher, K.S.; Campbell, J.R.; Fernandez, I.D.; Cochran, J.; Geltman, P.L. Blood lead levels of refugee children resettled in Massachusetts, 2000 to 2007. Am. J. Public Health 2011, 101, 48–54. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Question Reference E-005890/2020; Answer Given by Ms Johanssonon Behalf of the European Commission. Available online: https://www.europarl.europa.eu/doceo/document/E-9-2020-005890-ASW_EN.html (accessed on 25 January 2021).
- Sripada, K. “Beginning with the Smallest Intake”: Children’s Brain Development and the Role of Neuroscience in Global Environmental Health. Neuron 2017, 95, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glatz Brubakk, K.; Gjengedal, E.L.F.; Enger, Ø.; Sripada, K. Ammunition Waste Pollution and Preliminary Assessment of Risks to Child Health from Toxic Metals at the Greek Refugee Camp Mavrovouni. Int. J. Environ. Res. Public Health 2022, 19, 10086. https://doi.org/10.3390/ijerph191610086
Glatz Brubakk K, Gjengedal ELF, Enger Ø, Sripada K. Ammunition Waste Pollution and Preliminary Assessment of Risks to Child Health from Toxic Metals at the Greek Refugee Camp Mavrovouni. International Journal of Environmental Research and Public Health. 2022; 19(16):10086. https://doi.org/10.3390/ijerph191610086
Chicago/Turabian StyleGlatz Brubakk, Katrin, Elin Lovise Folven Gjengedal, Øyvind Enger, and Kam Sripada. 2022. "Ammunition Waste Pollution and Preliminary Assessment of Risks to Child Health from Toxic Metals at the Greek Refugee Camp Mavrovouni" International Journal of Environmental Research and Public Health 19, no. 16: 10086. https://doi.org/10.3390/ijerph191610086
APA StyleGlatz Brubakk, K., Gjengedal, E. L. F., Enger, Ø., & Sripada, K. (2022). Ammunition Waste Pollution and Preliminary Assessment of Risks to Child Health from Toxic Metals at the Greek Refugee Camp Mavrovouni. International Journal of Environmental Research and Public Health, 19(16), 10086. https://doi.org/10.3390/ijerph191610086