Determination, Separation and Application of 137Cs: A Review
Abstract
:1. Introduction
2. Sample Pretreatment
2.1. Pretreatment of Environmental Solid Samples
2.2. Pretreatment of Environmental Water Samples
2.3. Pretreatment of Biological Samples
3. Measurement
3.1. γ-Ray Spectrometry of 137Cs
3.2. Mass Spectrometric Techniques for the Determination of 135Cs/137Cs
3.2.1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
3.2.2. Resonance Ionization Mass Spectrometry (RIMS)
3.2.3. Thermal Ionization Mass Spectrometry (TIMS)
3.2.4. Accelerator Mass Spectrometry (AMS)
4. Separation and Purification
4.1. Extraction Chromatography
4.2. Ion Exchange
4.3. Adsorption
5. Evaluation of Measurement Data
6. Tracer Application of 137Cs
6.1. Application of 137Cs as Oceanographic Tracer
6.2. Application of Global Fallout 137Cs as a Tracer for Soil Erosion Investigation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tazoe, H.; Yamagata, T.; Tsujita, K.; Nagai, H.; Obata, H.; Tsumune, D.; Kanda, J.; Yamada, M. Observation of Dispersion in the Japanese Coastal Area of Released 90Sr, 134Cs, and 137Cs from the Fukushima Daiichi Nuclear Power Plant to the Sea in 2013. Int. J. Environ. Res. Public Health 2019, 16, 4094. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.C.; Croudace, I.W.; Warwick, P.E. Determination of 135Cs and 137Cs in environmental samples: A review. Anal. Chim. Acta 2015, 890, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Ješkovský, M.; Kaizer, J.; Kontuĺ, I.; Lujaniené, G.; Müllerová, M.; Povinec, P.P. Analysis of environmental radionuclides. In Handbook of Radioactivity Analysis; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2, pp. 137–261. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol. 2020, 52, 328–336. [Google Scholar] [CrossRef]
- Moreno, J.M.B.; Betti, M.; Nicolaou, G. Determination of caesium and its isotopic composition in nuclear samples using isotope dilution-ion chromatography-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1999, 14, 875–879. [Google Scholar] [CrossRef]
- Liu, W.S.; Chu, T.C.; Weng, P.S. Measurement of Strontium-90 and Caesium-137 in Milk. Jpn. J. Health Phys. 1970, 5, 195–198. [Google Scholar] [CrossRef]
- Lu, J.G.; Huang, Y.; Li, F.; Wang, L.; Li, S.; Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J. Environ. Radioact. 2006, 90, 89–99. [Google Scholar] [CrossRef]
- Desideri, D.; Grimani, C.; Monte, L. Migration processes of 137Cs and 90Sr in compartments of a lake ecosystem. J. Radioanal. Nucl. Chem. 2005, 266, 31–37. [Google Scholar] [CrossRef]
- Hirose, K.; Igarashi, Y.; Aoyama, M. Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl. Radiat. Isot. 2008, 66, 1675–1678. [Google Scholar] [CrossRef]
- Igarashi, Y.; Aoyama, M.; Hirose, K.; Miyao, T.; Yabuki, S. Is it possible to use 90Sr and 137Cs as tracers for the aeolian dust transport? Water Air Soil Pollut. 2001, 130, 349–354. [Google Scholar] [CrossRef]
- Igarashi, Y.; Aoyama, M.; Hirose, K.; Povinec, P.; Yabuki, S. What anthropogenic radionuclides (90sr and 137cs) in atmospheric deposition, surface soils and aeolian dusts suggest for dust transport over japan. Water Air Soil Pollut. Focus 2005, 5, 51–69. [Google Scholar] [CrossRef]
- Aoyama, M.; Hirose, K.; Igarashi, Y. Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J. Environ. Monit. 2006, 8, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Povinec, P.P. 90Sr and 137Cs as tracers of oceanic eddies in the sea of Japan/East sea. J. Environ. Radioact. 2020, 216, 106179. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Povinec, P.P. 137Cs and 90Sr in surface waters of the Sea of Japan: Variations and the Fukushima Dai-ichi Nuclear Power Plant accident impact. Mar. Pollut. Bull. 2019, 146, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Aarkrog, A. Input of anthropogenic radionuclides into the World Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2597–2606. [Google Scholar] [CrossRef]
- Davis, D.G.; Murphy, E.; London, R.E. Uptake of Cesium Ions by Human Erythrocytes and Perfused Rat Heart: A Cesium-133 NMR Study. Biochemistry 1988, 27, 3547–3551. [Google Scholar] [CrossRef]
- Evangeliou, N.; Balkanski, Y.; Cozic, A.; Moller, A.P. Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for radiocaesium (134Cs & 137Cs). Environ. Int. 2014, 64, 17–27. [Google Scholar] [CrossRef]
- Beyea, J.; Lyman, E.; Hippel, F. Damages from a Major Release of 137Cs into the Atmosphere of the United States. Sci. Glob. Secur. 2004, 12, 125–136. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S.; Liu, Y. Metal hexacyanoferrates-based adsorbents for cesium removal. Coord. Chem. Rev. 2018, 374, 430–438. [Google Scholar] [CrossRef]
- Qiao, J.; Nielsen, S. Radionuclide Monitoring. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, C.J.; Huang, C.C.; Lin, Y.M. Transfer Factors of 90Sr and 13’Cs from Paddy Soil to the Rice Plant in Taiwan. J. Environ. Radioact. 1998, 39, 23–34. [Google Scholar] [CrossRef]
- Amano, H.; Ueno, T.; Arkhipov, A.; Paskevich, S.; Onuma, Y. Transfer of long lived radionuclides in Chernobyl soils to edible plants. IRPA-10 2000, 1–6. Available online: https://www.irpa.net/irpa10/cdrom/01059.pdf (accessed on 10 April 2022).
- Maxwell, S.L.; Culligan, B.K.; Shaw, P.J. Rapid determination of radiostrontium in large soil samples. J. Radioanal. Nucl. Chem. 2012, 295, 965–971. [Google Scholar] [CrossRef]
- Choi, K.-S.; Lee, C.H.; Im, H.-J.; Ahn, H.-J.; Song, K. Sample pretreatment for the determination of gamma emitting nuclides in dry radioactive waste using a dry ashing and high-performance microwave digestion system. J. Radioanal. Nucl. Chem. 2014, 301, 567–571. [Google Scholar] [CrossRef]
- Ku, S.; Aoki, T.; Katayama, Y. Radioactivity of 137Cs in Plant Samples at Former USSR unclear test site. Radioisotopes 2002, 51, 496–500. [Google Scholar]
- Dion, M.P.; Springer, K.W.E.; Sumner, R.I.; Thomas, M.-L.P.; Eiden, G.C. Analytical determination of radioactive strontium and cesium by Thermal Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2020, 449, 116273. [Google Scholar] [CrossRef]
- Russell, B.C.; Croudace, I.W.; Warwick, P.E.; Milton, J.A. Determination of precise 135Cs/137Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 2014, 86, 8719–8726. [Google Scholar] [CrossRef]
- Taylor, V.F.; Evans, R.D.; Cornett, R.J. Preliminary evaluation of 135Cs/137Cs as a forensic tool for identifying source of radioactive contamination. J. Environ. Radioact. 2008, 99, 109–118. [Google Scholar] [CrossRef]
- Jurecic, S.; Benedik, L.; Planinsek, P.; Necemer, M.; Kump, P.; Pihlar, B. Analysis of uranium in the insoluble residues after decomposition of soil samples by various techniques. Appl. Radiat. Isot. 2014, 87, 61–65. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, Y.; Pan, S.; Song, X.; Zhang, K.; Guo, H.; Gu, Z. Sources of plutonium isotopes and 137Cs in coastal seawaters of Liaodong Bay and Bohai Strait, China and its environmental implications. Mar. Pollut. Bull. 2018, 130, 240–248. [Google Scholar] [CrossRef]
- Pike, S.M.; Buesseler, K.O.; Breier, C.F.; Dulaiova, H.; Stastna, K.; Sebesta, F. Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J. Radioanal. Nucl. Chem. 2012, 296, 369–374. [Google Scholar] [CrossRef]
- Povinec, P.P.; Froehlich, K.; Gastaud, J.; Oregioni, B.; Pagava, S.V.; Pham, M.K.; Rusetski, V. Distribution of 90Sr, 137Cs and 239,240Pu in Caspian Sea water and biota. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2835–2846. [Google Scholar] [CrossRef]
- Gaca, P.; Mietelski, J.W.; Kitowski, I.; Grabowska, S.; Tomankiewicz, E. 40K, 137Cs, 90Sr, 238,239+240Pu and 241Am in mammals' skulls from owls' pellets and owl skeletons in Poland. J. Environ. Radioact. 2005, 78, 93–103. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, J.S.; Lee, J.M.; Lee, K.B.; Park, T.S.; Lee, M.K.; Kim, S.H.; Choi, J.K. A preliminary study for the development of reference material using oyster for determination of 137Cs, 90Sr and plutonium isotopes. Appl. Radiat. Isot. 2016, 109, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Koarai, K.; Kino, Y.; Takahashi, A.; Suzuki, T.; Shimizu, Y.; Chiba, M.; Osaka, K.; Sasaki, K.; Urushihara, Y.; Fukuda, T.; et al. (90)Sr specific activity of teeth of abandoned cattle after the Fukushima accident—Teeth as an indicator of environmental pollution. J. Environ. Radioact. 2018, 183, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Altzitzoglou, T.; Larosa, J.J.; Nicholl, C. Measurement of 90Sr in Bone Ash. Appl. Radiat. Isot. 1998, 49, 1313–1317. [Google Scholar] [CrossRef]
- Brun, S.p.; Kergadallan, Y.; Boursier, B.; Fremy, J.-M.; Janin, F.O. Methodology for determination of radiostrontium in milk: A review. Lait 2003, 83, 1–15. [Google Scholar] [CrossRef]
- Kabai, E.; Hornung, L.; Savkin, B.T.; Poppitz-Spuhler, A.; Hiersche, L. Fast method and ultra fast screening for determination of 90Sr in milk and dairy products. Sci. Total Environ. 2011, 410–411, 235–240. [Google Scholar] [CrossRef]
- Kim, C.K.; Al-Hamwi, A.; Torvenyi, A.; Kis-Benedek, G.; Sansone, U. Validation of rapid methods for the determination of radiostrontium in milk. Appl. Radiat. Isot. 2009, 67, 786–793. [Google Scholar] [CrossRef]
- Vaney, B.; Friedli, C.; Geering, J.; Lerch, P. Rapid trace determination of radiostrontium in milk and drinking water. J. Radioanal. Nucl. Chem. 1989, 134, 87–95. [Google Scholar] [CrossRef]
- Kabai, E.; Savkin, B.; Mehlsam, I.; Poppitz-Spuhler, A. Combined method for the fast determination of pure beta emitting radioisotopes in food samples. J. Radioanal. Nucl. Chem. 2016, 311, 1401–1408. [Google Scholar] [CrossRef]
- Tenjović, B.; Stojković, I.; Nikolov, J.; Todorović, N.; Spasojević, J.; Agbaba, J.; Pajić, M.; Krmar, M. 90Sr/90Y determination in milk by Cherenkov radiation after microwave digestion. J. Radioanal. Nucl. Chem. 2019, 320, 679–687. [Google Scholar] [CrossRef]
- Karama, L.R.; Pibidaa, L.; McMahon, C.A. Use of resonance ionization mass spectrometry for determination of Cs ratios in solid samples. Appl. Radiat. Isot. 2002, 56, 369–374. [Google Scholar] [CrossRef]
- Sugiyama, H.; Terada, H.; Takahashi, M.; Iijima, I.; Isomura, K. Contents and Daily Intakes of Gamma-Ray Emitting Nuclides, 90Sr, and 238U using Market-Basket Studies in Japan. J. Health Sci. 2007, 53, 107–118. [Google Scholar] [CrossRef]
- Hult, M.; Preusse, W.; Gasparro, J.; Kohler, M. Underground Gamma-Ray Spectrometry. Acta Chim. Slov. 2006, 53, 1–7. [Google Scholar]
- Zheng, J.; Tagami, K.; Homma-Takeda, S.; Bu, W. The key role of atomic spectrometry in radiation protection. J. Anal. At. Spectrom. 2013, 28, 1676. [Google Scholar] [CrossRef]
- Haller, W.A.; Perkins, R.W.; Nielsen, J.M. Cesium-137 Determination in Fission Products by Direct Beta-Gamma Coincidence Counting. Nucl. Appl. 2017, 3, 436–443. [Google Scholar] [CrossRef]
- Boudias, M.; Gourgiotis, A.; Montavon, G.; Cazala, C.; Pichon, V.; Delaunay, N. 226Ra and 137Cs determination by inductively coupled plasma mass spectrometry: State of the art and perspectives including sample pretreatment and separation steps. J. Environ. Radioact. 2022, 244–245, 106812. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Zheng, J.; Liu, X.; Long, K.; Hu, S.; Uchida, S. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications. Spectrochim. Acta B At. Spectrosc. 2016, 119, 65–75. [Google Scholar] [CrossRef]
- Amr, M.A.; Helal, A.I.; Al-Kinani, A.T.; Balakrishnan, P. Ultra-trace determination of 90Sr, 137Cs, 238Pu, 239Pu, and 240Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments. J. Environ. Radioact. 2016, 153, 73–87. [Google Scholar] [CrossRef]
- Taylor, V.F.; Evans, R.D.; Cornett, R.J. Determination of 90Sr in contaminated environmental samples by tuneable bandpass dynamic reaction cell ICP-MS. Anal. Bioanal. Chem. 2007, 387, 343–350. [Google Scholar] [CrossRef]
- Vonderheide, A.P.; Zoriy, M.V.; Izmer, A.V.; Pickhardt, C.; Caruso, J.A.; Ostapczuk, P.; Hille, R.; Becker, J.S. Determination of 90Sr at ultratrace levels in urine by ICP-MS. J. Anal. At. Spectrom. 2004, 19, 675–680. [Google Scholar] [CrossRef]
- Al-Meer, S.H.; Amr, M.A.; Helal, A.I.; Al-Kinani, A.T. Ultratrace Determination of Strontium-90 in Environmental Soil Samples from Qatar by Collision/Reaction Cell-Inductively Coupled Plasma Mass Spectrometry (CRC-ICP-MS/MS). Am. Soc. Mech. Eng. 2013, 56024, V002T04A010. [Google Scholar]
- de las Heras, L.A. Determination of traces of radionuclides by hyphenated techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS). Rev. Soc. Catalana Química 2013, 61–67. [Google Scholar] [CrossRef]
- Zheng, J.; Bu, W.; Tagami, K.; Shikamori, Y.; Nakano, K.; Uchida, S.; Ishii, N. Determination of 135Cs and 135Cs/137Cs atomic ratio in environmental samples by combining ammonium molybdophosphate (AMP)-selective Cs adsorption and ion-exchange chromatographic separation to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal. Chem. 2014, 86, 7103–7110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, J.; Pan, S.; Dong, W.; Yamada, M.; Aono, T.; Guo, Q. Pu and 137Cs in the Yangtze River estuary sediments: Distribution and source identification. Environ. Sci. Technol. 2011, 45, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Dai, X. Environmental liquid scintillation analysis. In Handbook of Radioactivity Analysis; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 41–136. [Google Scholar] [CrossRef]
- Takatsuka, T.; Tomita, H.; Sonoda, T.; Sonnenschein, V.; Sakamoto, C.; Mita, H.; Noto, T.; Ito, C.; Maeda, S.; Iguchi, T.; et al. Development of high resolution resonance ionization mass spectrometry for trace analysis of 93mNb. Hyperfine Interact. 2013, 216, 41–46. [Google Scholar] [CrossRef]
- Kluge, H.-J. Resonance ionization mass spectroscopy for nuclear research and trace analysis. Hyperfine Interact. 1987, 37, 347–364. [Google Scholar] [CrossRef]
- Kratz, J.V. Ultratrace analysis of long-lived radionuclides by resonance ionization mass spectrometry (RIMS). J. Radioanal. Nucl. Chem. 2014, 303, 1361–1366. [Google Scholar] [CrossRef]
- Shibahara, Y.; Nakamura, S.; Uehara, A.; Fujii, T.; Fukutani, S.; Kimura, A.; Iwamoto, O. Measurement of cesium isotopic ratio by thermal ionization mass spectrometry for neutron capture reaction studies on 135Cs. J. Radioanal. Nucl. Chem. 2020, 325, 155–165. [Google Scholar] [CrossRef]
- Park, J.-H. Experimental evaluation of uranium ion signal intensity enhancement of TIMS using graphite powder deposition on uranium samples. J. Radioanal. Nucl. Chem. 2018, 316, 1075–1079. [Google Scholar] [CrossRef]
- Stetzer, O.; Betti, M.; van Geel, J.; Erdmann, N.; Kratz, J.-V.; Schenkel, R.; Trautmann, N. Determination of the content in uranium oxide particles by fission track analysis. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 525, 582–592. [Google Scholar] [CrossRef]
- Park, J.-H.; Lee, S.; Ha, Y.-G.; Lee, S.A.; Jeong, K.; Lee, M.; Song, K. Bulk analysis of a simulated environmental sample in natural abundance performed in KAERI for nuclear safeguards. J. Radioanal. Nucl. Chem. 2014, 303, 1297–1300. [Google Scholar] [CrossRef]
- MacDonald, C.M.; Charles, C.R.J.; Zhao, X.L.; Kieser, W.E.; Cornett, R.J.; Litherland, A.E. Determination of 135Cs by accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2015, 361, 554–558. [Google Scholar] [CrossRef]
- Hellborg, R.; Faarinen, M.; Kiisk, M.; Magnusson, C.E.; Persson, P.; Skog, G.; Stenström, K. Accelerator mass spectrometry—An overview. Vacuum 2003, 70, 365–372. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, C.; Hou, X.; Qiao, J.; Zhao, Y.; Liu, G. Determination of Ultratrace Level 135Cs and 135Cs/137Cs Ratio in Small Volume Seawater by Chemical Separation and Thermal Ionization Mass Spectrometry. Anal. Chem. 2020, 92, 6709–6718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hou, X.; Qiao, J. Determination of Ultralow Level 135Cs and 135Cs/137Cs Ratio in Environmental Samples by Chemical Separation and Triple Quadrupole ICP-MS. Anal. Chem. 2020, 92, 7884–7892. [Google Scholar] [CrossRef] [PubMed]
- Kameník, J.; Dulaiova, H.; Šebesta, F.; Šťastná, K. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J. Radioanal. Nucl. Chem. 2012, 296, 841–846. [Google Scholar] [CrossRef]
- Takata, H.; Aono, T.; Zheng, J.; Tagami, K.; Shirasaka, J.; Uchida, S. A sensitive and simple analytical method for the determination of stable Cs in estuarine and coastal waters. Anal. Methods 2013, 5, 2558–2564. [Google Scholar] [CrossRef]
- Schmied, S.A.K.; Meyer, A.; Bendler, I.; Sebesta, F. Offshore concentration of caesium radioisotopes from large volume seawater samples using KNiFC-PAN. Appl. Radiat. Isot. 2019, 147, 197–203. [Google Scholar] [CrossRef]
- Castrillejo, M.; Casacuberta, N.; Breier, C.F.; Pike, S.M.; Masque, P.; Buesseler, K.O. Reassessment of 90Sr, 137Cs, and 134Cs in the Coast off Japan Derived from the Fukushima Dai-ichi Nuclear Accident. Environ. Sci. Technol. 2016, 50, 173–180. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, W.; Kim, Y.-H.; Maeng, S.; Lee, S.H. Activity Concentrations of 137Cs and 90Sr in Seawaters of East Sea, Korea. J. Radiat. Prot. Res. 2016, 41, 268–273. [Google Scholar] [CrossRef]
- Mirzoeva, N.; Shadrin, N.; Arkhipova, S.; Miroshnichenko, O.; Kravchenko, N.; Anufriieva, E. Does Salinity Affect the Distribution of the Artificial Radionuclides 90Sr and 137Cs in Water of the Saline Lakes? A Case of the Crimean Peninsula. Water 2020, 12, 349. [Google Scholar] [CrossRef]
- Deng, F.; Lin, F.; Yu, W.; He, J.; Wang, F.; Chen, Z. The distributions of 134Cs, 137Cs and 90Sr in the northwest Pacific seawater in the winter of 2012. Mar. Pollut. Bull. 2020, 152, 110900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ninomiya, K.; Takahashi, N.; Saito, T.; Kita, K.; Yamaguchi, Y.; Shinohara, A. Rapid isolation method for radioactive strontium using Empore Strontium Rad Disk. J. Nucl. Radiochem. Sci. 2016, 16, 15–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Ninomiya, K.; Yamaguchi, Y.; Kita, K.; Tsuruta, H.; Igarashi, Y.; Shinohara, A. Atmospheric Activity Concentration of 90Sr and 137Cs after the Fukushima Daiichi Nuclear Accident. Environ. Sci. Technol. 2018, 52, 9917–9925. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, W.; Wang, Y.; Ding, X. Effective separation of cesium with a new silica-calix[4]biscrown material by extraction chromatography. Sep. Purif. Technol. 2016, 171, 17–25. [Google Scholar] [CrossRef]
- Hossain, F. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. J. Environ. Radioact. 2020, 225, 106423. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.L.; Sarma, D.; Gao, Y.J.; Qi, X.H.; Li, W.A.; Huang, X.Y.; Kanatzidis, M.G. Efficient Removal of UO22+, Cs+, and Sr2+ Ions by Radiation-Resistant Gallium Thioantimonates. J. Am. Chem. Soc. 2018, 140, 11133–11140. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Alessi, D.S.; Baek, K. Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. J. Hazard. Mater. 2019, 369, 569–576. [Google Scholar] [CrossRef]
- Hill, G.L.; Bailey, E.; Stennett, M.C.; Hyatt, N.C.; Maddrell, E.M.; McMillan, P.F.; Hriljac, J.A. High-pressure and -temperature ion exchange of aluminosilicate and gallosilicate natrolite. J. Am. Chem. Soc. 2011, 133, 13883–13885. [Google Scholar] [CrossRef]
- Belviso, C.; Abdolrahimi, M.; Peddis, D.; Gagliano, E.; Sgroi, M.; Lettino, A.; Roccaro, P.; Vagliasindi, F.G.A.; Falciglia, P.P.; Di Bella, G.; et al. Synthesis of zeolite from volcanic ash: Characterization and application for cesium removal. Microporous Mesoporous Mater. 2021, 319, 111045. [Google Scholar] [CrossRef]
- Li, W.-A.; Peng, Y.-C.; Ma, W.; Huang, X.-Y.; Feng, M.-L. Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite-type sulfides via ion exchange method. Chem. Eng. J. 2022, 442, 136377. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Mi, G.; Guo, Y.; Deng, T. Novel montmorillonite-sulfur composite for enhancement of selective adsorption toward cesium. Green Energy Environ. 2021, 6, 893–902. [Google Scholar] [CrossRef]
- Zhang, H.; Hodges, C.S.; Mishra, P.K.; Yoon, J.Y.; Hunter, T.N.; Lee, J.W.; Harbottle, D. Bio-Inspired Preparation of Clay-Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs(). ACS Appl. Mater. Interfaces 2020, 12, 33173–33185. [Google Scholar] [CrossRef] [PubMed]
- Mimura, H.; Saito, M.; Akiba, K.; Onodera, Y. Selective Uptake of Cesium by Ammonium Molybdophosphate (AMP)-Calcium Alginate Composites. J. Nucl. Sci. Technol. 2001, 38, 872–878. [Google Scholar] [CrossRef]
- Pan, B.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J. 2009, 151, 19–29. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Concurrent removal of Cu(II), Co(II) and Ni(II) from wastewater by nanostructured layered sodium vanadosilicate: Competitive adsorption kinetics and mechanisms. J. Environ. Chem. Eng. 2021, 9, 105945. [Google Scholar] [CrossRef]
- Tang, X.; Wang, S.; Zhang, Z.; Li, Z.; Wang, L.; Yuan, L.; Wang, B.; Sun, J.; Zheng, L.; Wang, H.; et al. Graphene oxide/chitosan/potassium copper hexacyanoferrate(II) composite aerogel for efficient removal of cesium. Chem. Eng. J. 2022, 444, 136397. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Liu, Q.; Liu, J.; Guo, Y.; Yu, X.; Xie, Y.; Deng, T. Highly selective and easily regenerated porous fibrous composite of PSF-Na2.1Ni0.05Sn2.95S7 for the sustainable removal of cesium from wastewater. J. Hazard. Mater. 2022, 436, 129188. [Google Scholar] [CrossRef]
- Zhang, N.; Ishag, A.; Li, Y.; Wang, H.; Guo, H.; Mei, P.; Meng, Q.; Sun, Y. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. J. Clean. Prod. 2020, 277, 123360. [Google Scholar] [CrossRef]
- Manos, M.J.; Kanatzidis, M.G. Metal sulfide ion exchangers: Superior sorbents for the capture of toxic and nuclear waste-related metal ions. Chem. Sci. 2016, 7, 4804–4824. [Google Scholar] [CrossRef]
- Xing, M.; Zhuang, S.; Wang, J. Efficient removal of Cs(I) from aqueous solution using graphene oxide. Prog. Nucl. Energy 2020, 119, 103167. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, L.; Zhang, L.; Zhang, S.; Chen, F.; Zhou, R.; Hua, D. Two-Dimensional Imprinting Strategy to Create Specific Nanotrap for Selective Uranium Adsorption with Ultrahigh Capacity. ACS Appl. Mater. Interfaces 2022, 14, 9408–9417. [Google Scholar] [CrossRef] [PubMed]
- Hojatpanah, M.R.; Khanmohammadi, A.; Khoshsafar, H.; Hajian, A.; Bagheri, H. Construction and application of a novel electrochemical sensor for trace determination of uranium based on ion-imprinted polymers modified glassy carbon electrode. Chemosphere 2022, 292, 133435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, M.; Yin, J.; Shui, R.; Yang, S.; Hua, D. Dual Ion-Imprinted Mesoporous Silica for Selective Adsorption of U(VI) and Cs(I) through Multiple Interactions. ACS Appl. Mater. Interfaces 2021, 13, 6322–6330. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-K.; Choi, J.-W.; Choi, S.-J. Magnetic ion-imprinted polymer based on mesoporous silica for selective removal of Co(II) from radioactive wastewater. Sep. Sci. Technol. 2020, 56, 1842–1852. [Google Scholar] [CrossRef]
- Fattahi, M.; Ezzatzadeh, E.; Jalilian, R.; Taheri, A. Micro solid phase extraction of cadmium and lead on a new ion-imprinted hierarchical mesoporous polymer via dual-template method in river water and fish muscles: Optimization by experimental design. J. Hazard. Mater. 2021, 403, 123716. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, W.; Li, L. Uncertainty Evaluation of 137Cs Radioactivity Measurement in Water. J. Henan Sci. Technol. 2020, 5, 142–145. [Google Scholar]
- Gong, Z.; Cao, S.; Ye, H.; Sun, X.; Mingming, G. Uncertainty evaluation in the radiochemical analysis of cesium-137 in water. Uranium Min. Metall. 2012, 31, 136–139. [Google Scholar] [CrossRef]
- Park, J.H.; Chang, B.U.; Kim, Y.J.; Seo, J.S.; Choi, S.W.; Yun, J.Y. Determination of low 137Cs concentration in seawater using ammonium 12-molybdophosphate adsorption and chemical separation method. J. Environ. Radioact. 2008, 99, 1815–1818. [Google Scholar] [CrossRef]
- Wei, J.; Deng, C.; Wang, R.; Wang, W.; Zhang, X.; Yao, H.; Zhang, M.; Kai, D. Uncertainty evaluation of γ-spectrum analysis of cesium-137 in seawater. Haiyang Xuebao 2018, 40, 20–28. [Google Scholar]
- Cresswell, A.J.; Sanderson, D.C.; White, D.C. 137Cs measurement uncertainties and detection limits for airborne gamma spectrometry (AGS) data analysed using a spectral windows method. Appl. Radiat. Isot. 2006, 64, 247–253. [Google Scholar] [CrossRef]
- Caciolli, A.; Baldoncini, M.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Callegari, I.; Colonna, T.; Fiorentini, G.; Guastaldi, E.; Mantovani, F.; et al. A new FSA approach for in situ gamma ray spectroscopy. Sci. Total Environ. 2012, 414, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, D.; Zhao, L.; Li, H.; Zhao, F.; Zheng, Y.; Fang, H.; Lou, Q.; Cai, W. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014. Mar. Pollut. Bull. 2018, 131, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, M.; Hamajima, Y.; Inomata, Y.; Kumamoto, Y.; Oka, E.; Tsubono, T.; Tsumune, D. Radiocaesium derived from the TEPCO Fukushima accident in the North Pacific Ocean: Surface transport processes until 2017. J. Environ. Radioact. 2018, 189, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Povinec, P.P.; Livingston, H.D.; Shima, S.; Aoyama, M.; Gastaud, J.; Goroncy, I.; Hirose, K.; Huynh-Ngoc, L.; Ikeuchi, Y.; Ito, T.; et al. IAEA’97 expedition to the NW Pacific Ocean—results of oceanographic and radionuclide investigations of the water column. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2607–2637. [Google Scholar] [CrossRef]
- Qiao, J.; Andersson, K.; Nielsen, S. A 40-year marine record of 137Cs and 99Tc transported into the Danish Straits: Significance for oceanic tracer studies. Chemosphere 2020, 244, 125595. [Google Scholar] [CrossRef]
- Zheng, J.; Tagami, K.; Bu, W.; Uchida, S.; Watanabe, Y.; Kubota, Y.; Fuma, S.; Ihara, S. 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ. Sci. Technol. 2014, 48, 5433–5438. [Google Scholar] [CrossRef]
- Hirayama, Y.; Okawa, A.; Nakamachi, K.; Aoyama, T.; Okada, Y.; Oi, T.; Hirose, K.; Kikawada, Y. Estimation of water seepage rate in the active crater lake system of Kusatsu-Shirane volcano, Japan, using FDNPP-derived radioactive cesium as a hydrological tracer. J. Environ. Radioact. 2020, 218, 106257. [Google Scholar] [CrossRef]
- Arata, L.; Meusburger, K.; Bürge, A.; Zehringer, M.; Ketterer, M.E.; Mabit, L.; Alewell, C. Decision support for the selection of reference sites using 137Cs as a soil erosion tracer. Soil 2017, 3, 113–122. [Google Scholar] [CrossRef]
- Olson, K.R.; Gennadiyev, A.N.; Zhidkin, A.P.; Markelov, M.V.; Golosov, V.N.; Lang, J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena 2013, 104, 103–110. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.B.; Wen, A.B.; Shi, Z. Erosion Rate of Purple Soil on a Cultivated Slope in the Three Gorges Reservoir Region Using 137Cs Technique. Bull. Soil Water Conserv. 2009, 29, 1–6. [Google Scholar]
- Zhao, L.-P.; Fan, M.C.; Xu, P.H.; Ding, Z.L.; Liu, W.; Jianjun, Y. Distribution of 137Cs and Soil Organic Matter Contents in Wind Erosion Zone: A Case Study in the East Junggar Basin, Xinjiang. Arid. Zone Res. 2018, 35, 1097–1104. [Google Scholar]
Analyte | Interference | Abundance (%) |
---|---|---|
137Cs+ | 137Ba+ | 137Ba 11.3 |
136Ba1H+ | 136Ba 7.81 | |
136Xe1H+ | 136Xe 8.87 | |
121Sb16O+ | 121Sb 57.2 | |
97Mo40AR+ | 97Mo 9.6 |
Sample | Pretreatment | Separation | Measurement Method | Recovery (%) | Detection Limit | Ref. |
---|---|---|---|---|---|---|
Soil | Acid leaching | AMP + AG 50W-X8 | CRC-ICP-MS/MS | - | 0.06 ppt | [50] |
Soil | Fusion with NaOH and Na2O2 | AMP-PAN | TIMS | - | - | [26] |
Fusion with Li2B4O7 and LiBO2 | - | - | ||||
Soil, plant | Ashed | - | γ-ray spectrometry | - | - | [7] |
Soil | Ashed + acid leaching | AMP + AG MP-1 M + AG 50W-X8 | ICP-MS/MS | >95 | 0.006 pg·mL−1 | [55] |
Soil, sludge, sediment | Ashed + fused with Li metaborate and LiI | AMP | ICP-MS | - | 0.09 ng·L−1 | [28] |
Soil | Ashed + acid leaching | AMP-PAN + AG 50W-X8 | TIMS | - | 0.13 mBq·L−1 | [67] |
Soil, sediment | Ashed + acid leaching | AMP-PAN + AG 50W-X8 | γ-ray spectrometry | 60% | - | [68] |
Ashed + fusion with LiBO2 | 93% | - | ||||
Sediment | - | - | γ-ray spectrometry | - | 0.8 mBq·g−1 | [56] |
Sea Sediment | Aqua regia acid leach and filtration/centrifuge | AMP + AG 50W-X8 | ICP-SFMS | 78 ± 3 | 0.05 ng·kg−1 | [27] |
Acid leaching in ultrasonic bath + evap | 80 ± 6 | |||||
Lithium metaborate fusion | 100 ± 6 | |||||
Single attack NaOH sinter in silica crucible | 90 ± 9 | |||||
Double attack NaOH sinter in silica crucible | 100 ± 9 | |||||
Acid leach + NaOH sinter | 100 ± 10 | |||||
Seawater | Acidified | AMP-PAN | γ-ray spectrometry | 85–94 | 0.15 Bq·m−3 | [69] |
KniFC-PAN | 93 | |||||
Coastal water | Acidified | AMP + AG 50W-X8 | ICP-MS | 100.1 ± 3.3 | 1.0 ng·L−1 | [70] |
Seawater | - | AMP + Doulite C-3 | β-counting | 90 | - | [14] |
Seawater | Acidified | KniFC−PAN | γ-ray spectrometry | 99 | - | [71] |
Seawater | Acidified | AMP | γ-ray spectrometry | - | - | [1] |
Seawater | Acidified | KniFC−PAN | γ-ray spectrometry | 87–99 | - | [72] |
Seawater | - | AMP | γ-ray spectrometry | - | - | [73] |
Lake water | - | Adsorbed by a thin film of mixed ferrocyanide of potassium iron | γ-ray spectrometry | 50–90 | - | [74] |
Seawater | Acidified | AMP | γ-ray spectrometry | - | 0.20 Bq·m−3 | [75] |
Seawater | Acidified | AMP-PAN + AG 50W-X8 | TIMS | - | 0.13 mBq·L−1 | [67] |
Aerosol | - | - | γ-ray spectrometry | 98–99 | - | [76] |
Aerosol | - | - | γ-ray spectrometry | - | - | [77] |
Oyster | Irradiation | - | γ-ray spectrometry | - | - | [34] |
Skull | Ashed | - | γ-ray spectrometry | - | - | [33] |
Food | Ashed | - | γ-ray spectrometry | - | - | [44] |
Leaf, litter | Ashed + acid leaching with H2O2 | AMP + AG MP-1 M + AG 50W-X8 | ICP-MS/MS | >95 | 0.006 pg·mL−1 | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhou, L.; Ren, H.; Zou, H. Determination, Separation and Application of 137Cs: A Review. Int. J. Environ. Res. Public Health 2022, 19, 10183. https://doi.org/10.3390/ijerph191610183
Cao Y, Zhou L, Ren H, Zou H. Determination, Separation and Application of 137Cs: A Review. International Journal of Environmental Research and Public Health. 2022; 19(16):10183. https://doi.org/10.3390/ijerph191610183
Chicago/Turabian StyleCao, Yiyao, Lei Zhou, Hong Ren, and Hua Zou. 2022. "Determination, Separation and Application of 137Cs: A Review" International Journal of Environmental Research and Public Health 19, no. 16: 10183. https://doi.org/10.3390/ijerph191610183
APA StyleCao, Y., Zhou, L., Ren, H., & Zou, H. (2022). Determination, Separation and Application of 137Cs: A Review. International Journal of Environmental Research and Public Health, 19(16), 10183. https://doi.org/10.3390/ijerph191610183