Prevalence and Factors Associated with Metabolic Syndrome in Patients at a Psychosocial Care Center: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mottillo, S.; Bs, C.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.P.; Williams, K.; González-Villalpando, C.; Hunt, K.J.; Haffner, S.M. Does the Metabolic Syndrome Improve Identification of Individuals at Risk of Type 2 Diabetes and/or Cardiovascular Disease? Diabetes Care 2004, 27, 2676–2681. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic Syndrome and Risk of Incident Cardiovascular Events and Death: A Systematic Review and Meta-Analysis of Longitudinal Studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef] [PubMed]
- Moreira, G.C.; Cipullo, J.P.; Ciorlia, L.A.S.; Cesarino, C.B.; Vilela-Martin, J.F. Prevalence of Metabolic Syndrome: Association with Risk Factors and Cardiovascular Complications in an Urban Population. PLoS ONE 2014, 9, e105056. [Google Scholar] [CrossRef]
- Chini, L.S.N.; Greffin, S.; Lugon, J.R. Prevalence of metabolic syndrome among workers from the Company of Generation and Distribution of Energy in Rio de Janeiro, Brazil. Cad. Saúde Coletiva. 2014, 22, 359–364. [Google Scholar] [CrossRef]
- Vidigal, F.D.C.; Bressan, J.; Babio, N.; Salas-Salvadó, J. Prevalence of metabolic syndrome in Brazilian adults: A systematic review. BMC Public Health 2013, 13, 1198. [Google Scholar] [CrossRef]
- Agyemang-Yeboah, F.; Eghan, B.A.J.; Annani-Akollor, M.E.; Togbe, E.; Donkor, S.; Afranie, B.O. Evaluation of Metabolic Syndrome and Its Associated Risk Factors in Type 2 Diabetes: A Descriptive Cross-Sectional Study at the Komfo Anokye Teaching Hospital, Kumasi, Ghana. Bio. Med. Res. Int. 2019, 2019, 4562904. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Vigitel Brasil 2018—Vigilância de Fatores de Risco e Proteção Para Doenças Crônicas por Inquérito Telefônico—Estimativas Sobre Frequência e Distribuição Sociodemográfica de Fatores de Risco e Proteção para Doenças crônicas Nas Capitais dos 26 Estados b. Brazil. 2019. Available online: https://abeso.org.br/wp-content/uploads/2020/01/vigitel-brasil-2018.pdf (accessed on 20 July 2022).
- Tirupati, S.; Chua, L.-E. Obesity and Metabolic Syndrome in a Psychiatric Rehabilitation Service. Aust. N. Z. J. Psychiatry 2007, 41, 606–610. [Google Scholar] [CrossRef]
- Teixeira, P.J.R.; Rocha, F.L. The prevalence of metabolic syndrome among psychiatric inpatients in Brazil. Braz. J. Psychiatry 2007, 29, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, I.; Pascot, A.; Couillard, C.; Lamarche, B.; Tchernof, A.; Alméras, N.; Bergeron, J.; Gaudet, D.; Tremblay, G.; Prud’Homme, D.; et al. Hypertriglyceridemic Waist. A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation 2000, 102, 179–184. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Technical Report Series, 894; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef]
- Coutinho, L.M.S.; Scazufca, M.; Menezes, P.R. Métodos para estimar razão de prevalência em estudos de corte transversal. Rev. Saude Publica 2008, 42, 992–998. [Google Scholar] [CrossRef]
- Francisco, P.M.S.B.; Donalisio, M.R.; Barros, M.B.D.A.; Cesar, C.L.G.; Carandina, L.; Goldbaum, M. Medidas de associação em estudo transversal com delineamento complexo: Razão de chances e razão de prevalência. Rev. Bras. Epidemiol. 2008, 11, 347–355. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.J.; Jang, M.H. Risk Factors of Metabolic Syndrome in Community-Dwelling People with Schizophrenia. Int. J. Environ. Res. Public Health 2020, 17, 6700. [Google Scholar] [CrossRef] [PubMed]
- Rana, K.; Ghimire, P.; Chimoriya, R.; Chimoriya, R. Trends in the Prevalence of Overweight and Obesity and Associated Socioeconomic and Household Environmental Factors among Women in Nepal: Findings from the Nepal Demographic and Health Surveys. Obesities 2021, 1, 113–135. [Google Scholar] [CrossRef]
- Piko, P.; Dioszegi, J.; Kosa, Z.; Sandor, J.; Moizs, M.; Adany, R. Changes in the Prevalence of Metabolic Syndrome, Its Components, and Relevant Preventive Medication between 2011 and 2018 in the Northeast Hungarian Roma Population. J. Pers. Med. 2021, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021, 13, 3691. [Google Scholar] [CrossRef]
- das Merces, M.C.; Santana, A.I.C.; Lua, I.; da Silva, D.A.R.; Silva, D.D.S.E.; Gomes, A.M.T.; Miranda, M.C.D.M.; Barbosa, C.D.S.; Magalhães, L.B.N.C.; Coelho, J.M.F.; et al. Metabolic Syndrome Among Primary Health Care Nursing Professionals: A Cross-Sectional Population-Based Study. Int. J. Environ. Res. Public Health 2019, 16, 2686. [Google Scholar] [CrossRef]
- Costa, A.L.B.; Merces, M.C.D.; Santana, A.I.C.; Silva, D.D.S.E.; Pimentel, R.F.W.; Figueiredo, P.C.M.D.; Brandão, T.S.; Coelho, J.M.F.; Almeida, A.A.E.; Damasceno, K.S.M.; et al. The Prevalence of Abdominal Adiposity among Primary Health Care Physicians in Bahia, Brazil: An Epidemiological Study. Int. J. Environ. Res. Public Health 2021, 18, 957. [Google Scholar] [CrossRef]
- Plana-Ripoll, O.; Pedersen, C.B.; Agerbo, E.; Holtz, Y.; Erlangsen, A.; Canudas-Romo, V.; Andersen, P.K.; Charlson, F.J.; Christensen, M.K.; E Erskine, H.; et al. A comprehensive analysis of mortality-related health metrics associated with mental disorders: A nationwide, register-based cohort study. Lancet 2019, 394, 1827–1835. [Google Scholar] [CrossRef]
- Lesage, A.; Rochette, L.; Émond, V.; Pelletier, É.; St-Laurent, D.; Diallo, F.B.; Kisely, S. A Surveillance System to Monitor Excess Mortality of People with Mental Illness in Canada. Can. J. Psychiatry 2015, 60, 571–579. [Google Scholar] [CrossRef]
- GBD 2017 DALYs; Hale Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef]
- Charlson, F.J.; E Moran, A.; Freedman, G.; Norman, R.E.; Stapelberg, N.J.; Baxter, A.J.; Vos, T.; Whiteford, H.A. The contribution of major depression to the global burden of ischemic heart disease: A comparative risk assessment. BMC Med. 2013, 11, 250. [Google Scholar] [CrossRef]
- Walburg, F.; Van Meijel, B.; Van Tulder, M.W.; Adriaanse, M.C. Cost-effectiveness of a lifestyle intervention for people with a serious mental illness (SMILE): Design of a pragmatic cluster-randomised controlled trial. BMC Psychiatry 2019, 19, 151. [Google Scholar] [CrossRef]
- Looijmans, A.; Jörg, F.; Bruggeman, R.; Schoevers, R.A.; Corpeleijn, E. Multimodal lifestyle intervention using a web-based tool to improve cardiometabolic health in patients with serious mental illness: Results of a cluster randomized controlled trial (LION). BMC Psychiatry 2019, 19, 339. [Google Scholar] [CrossRef]
- Vancampfort, D.; Solmi, M.; Firth, J.; Vandenbulcke, M.; Stubbs, B. The Impact of Pharmacologic and Nonpharmacologic Interventions to Improve Physical Health Outcomes in People with Dementia: A Meta-Review of Meta-Analyses of Randomized Controlled Trials. J. Am. Med. Dir. Assoc. 2020, 21, 1410–1414.e2. [Google Scholar] [CrossRef]
- De Rosa, C.; Sampogna, G.; Luciano, M.; Del Vecchio, V.; Pocai, B.; Borriello, G.; Giallonardo, V.; Savorani, M.; Pinna, F.; Pompili, M.; et al. Improving physical health of patients with severe mental disorders: A critical review of lifestyle psychosocial interventions. Expert Rev. Neurother. 2017, 17, 667–681. [Google Scholar] [CrossRef]
- Holt, R.I.; Hind, D.; Gossage-Worrall, R.; Bradburn, M.J.; Saxon, D.; McCrone, P.; A Morris, T.; Etherington, A.; Shiers, D.; Barnard, K.; et al. Structured lifestyle education to support weight loss for people with schizophrenia, schizoaffective disorder and first episode psychosis: The STEPWISE RCT. Health Technol. Assess. 2018, 22, hta22650. [Google Scholar] [CrossRef] [PubMed]
- Hor, E.S.; Subramaniam, S.; Koay, J.M.; Bharathy, A.; Vasudevan, U.; Panickulam, J.J.; Ng, I.; Arif, N.H.; Russell, V. Improving metabolic monitoring in patients maintained on antipsychotics in Penang, Malaysia. Australas. Psychiatry 2015, 24, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Kwobah, E.; Koen, N.; Mwangi, A.; Atwoli, L.; Stein, D.J. Prevalence and correlates of metabolic syndrome and its components in adults with psychotic disorders in Eldoret, Kenya. PLoS ONE 2021, 16, e0245086. [Google Scholar] [CrossRef] [PubMed]
- Poirier, J.; Kubow, S.; Noël, M.; Dupont, C.; Egeland, G. The hypertriglyceridemic-waist phenotype is associated with the Framingham risk score and subclinical atherosclerosis in Canadian Cree. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liang, Z.; Sun, H.; Lu, C.; Chen, W.; Wang, H.H.X.; Guo, V.Y. Association between Hypertriglyceridemic-Waist Phenotype and Risk of Type 2 Diabetes Mellitus in Middle-Aged and Older Chinese Population: A Longitudinal Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 9618. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.S.; da Fonseca, M.d.J.M.; Schmidt, M.I.; del Carmen Bisi Molina, M.; del Carmen Bisi Molina, M. Fenótipo cintura hipertrigliceridêmica: Fatores associados e comparação com outros indicadores de risco cardiovascular e metabólico no ELSA-Brasil. Cad. Saude Publica 2018, 34, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, F.D.; Abalhassan, M.; Alhaddad, B.; Alzain, N.; Fallata, E.; Alhabbad, A.; Alassiry, M.Z. Prevalence of metabolic syndrome and its components among patients with various psychiatric diagnoses and treatments: A cross-sectional study. Gen. Hosp. Psychiatry 2017, 45, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Filipčić, I.; Filipčić, I.; Grošić, V.; Bakija, I.; Šago, D.; Benjak, T.; Uglešić, B.; Bajić, Ž.; Sartorius, N. Patterns of chronic physical multimorbidity in psychiatric and general population. J. Psychosom. Res. 2018, 114, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Filipčić, I.; Bajić, Ž.; Filipčić, I. The onset and accumulation of physical multimorbidity in severe and common mental disorders. Curr. Opin. Psychiatry 2020, 33, 484–490. [Google Scholar] [CrossRef] [PubMed]
Variables | Description | |
---|---|---|
Men (129) | Women (155) | |
Sociodemographic | ||
Age (years) (n = 284) | ||
Mean ± SD | 42.6 ± 11.6 | 45.8 ± 12.0 |
Median (IQ) | 41 (34–51) | 44 (36–55) |
Self-reported race n (%) (n = 284) | ||
White | 11 (8.5) | 14 (9.0) |
Black | 45 (34.9) | 50 (32.3) |
Brown | 70 (54.3) | 84 (54.2) |
Others | 3 (2.3) | 7 (4.5) |
Education n (%) (n = 282) ᵃ | ||
No schooling | 6 (4.7) | 19 (12.3) |
1–7 years | 60 (46.5) | 46 (29.7) |
8–12 years | 57 (44.3) | 74 (47.8) |
≥12 years | 5 (3.9) | 15 (9.7) |
Marital status n (%) (n = 284) | ||
Married/common-law marriage | 28 (21.7) | 37 (23.9) |
Single | 95 (73.6) | 90 (58.1) |
Widowed/divorced | 6 (4.7) | 28 (18.0) |
Life Habits | ||
Smoking n (%) (n = 284) | ||
No | 99 (76.7) | 133 (85.8) |
Yes | 30 (23.3) | 22 (14.2) |
Alcohol consumption n (%) (n = 284) | ||
No | 117 (90.1) | 144 (92.9) |
Yes | 12 (9.3) | 11 (7.1) |
Regular practice of physical activity n (%) (n = 284) | ||
Regularly | 44 (34.1) | 45 (29.9) |
Sedentary | 85 (65.9) | 110 (71.1) |
Clinical | ||
Weight (kg) (n = 284) | ||
Mean ± SD | 78.1 ± 16.6 | 78.1 ± 17.1 |
Median (IQ) | 76.5 (65.9–88.8) | 76.1 (65.6–89.4) |
BMI (kg/m2) (n = 284) | ||
Mean ± SD | 26.5 ± 4.7 | 31.4 ± 6.3 |
Median (IQ) | 26.0 (23.3–29.9) | 30.8 (26.9–36.5) |
BMI ≥ 25 n (%) | 76 (58.9) | 130 (83.9) |
BMI ≥ 30 n (%) | 30 (23.3) | 86 (52.9) |
Waist (cm) (n = 284) | ||
Mean ± SD | 94.3 ± 13.4 | 100.6 ± 14.1 |
Treatment for Diabetes Mellitus n (%) (n = 284) | ||
No | 116 (89.9) | 132 (85.2) |
Yes | 13 (10.1) | 23 (14.8) |
Treatment for Arterial Hypertension n (%) (n = 284) | ||
No | 110 (85.3) | 116 (74.8) |
Yes | 19 (14.7) | 39 (25.2) |
Treatment for Dyslipidemia n (%) (n = 284) | ||
No | 118 (91.5) | 135 (87.1) |
Yes | 11 (8.5) | 20 (12.9) |
Presence of acanthosis nigricans n (%) (n = 276) ᵃ | ||
No | 115 (89.2) | 105 (67.7) |
Yes | 11 (10.8) | 45 (32.3) |
Hypertriglyceridemic waist n (%) (n = 213) ᵃ | ||
No | 76 (58.9) | 67 (43.2) |
Yes | 19 (41.1) | 51 (56.8) |
Number of psychiatric drugs in use n (%) (n = 283) ᵃ | ||
Mean ± SD | 3.7 ± 0.1 | 3.6 ± 0.1 |
Medical follow-up outside the psychiatric service n (%) (n = 260) ᵃ | ||
No | 81 (63.3) | 65 (41.9) |
Yes | 34 (36.7) | 80 (58.1) |
Metabolic Syndrome | |||
---|---|---|---|
Variables | P (%) b | PR c (CI 95%) d | p-Value e |
Use of psychotropic drugs by class (n = 215) | |||
Antipsychotics | |||
No | 9 (33.3) | 1.00 | |
Yes | 91 (48.4) | 1.45 (0.83–2.52) | 0.14 |
Antidepressants | |||
No | 45 (39.1) | 1.00 | |
Yes | 55 (55.0) | 1.41 (1.05–1.88) | 0.02 * |
Mood stabilizers | |||
No | 55 (43.3) | 1.00 | |
Yes | 45 (51.1) | 1.18 (0.88–1.57) | 0.26 |
Benzodiazepines | |||
No | 55 (43.3) | 1.00 | |
Yes | 45 (51.1) | 1.06 (0.79–1.41) | 0.69 |
Psychiatric diagnoses (n = 213) ᵃ | |||
Schizophrenia | |||
No | 66 (50.4) | 1.00 | |
Yes | 34 (40.5) | 0.80 (0.59–1.09) | 0.16 |
Depression | |||
No | 74 (42.8) | 1.00 | |
Yes | 26 (61.9) | 1.45 (1.07–1.94) | 0.03 * |
Anxiety disorders | |||
No | 94 (46.5) | 1.00 | |
Yes | 6 (46.2) | 0.99 (0.54–1.82) | 0.98 |
Bipolar disorder | |||
No | 82 (45.6) | 1.00 | |
Yes | 18 (51.4) | 1.12 (0.79–1.62) | 0.52 |
Intellectual Disability | |||
No | 84 (46.4) | 1.00 | |
Yes | 16 (47.1) | 1.01 (0.69–1.49) | 0.94 |
Multiple Psychiatric Diagnosis (n = 215) ᵃ | |||
No | 71 (33.0) | 1.00 | |
Yes | 29 (13.5) | 0.92 (0.67–1.27) | 0.61 |
Metabolic Syndrome | |||
---|---|---|---|
Variables | P (%) b | PR c (CI 95%) d | p-Value e |
Sociodemographic | |||
Sex (n = 215) | |||
Men | 30 (31.3) | 1.00 | |
Women | 70 (58.8) | 1.88 (1.35–2.63) | <0.01 * |
Age (years) (n = 215) | |||
<43 years | 42 (48.0) | 1.00 | |
≥43 years | 58 (58.0) | 1.24 (0.93–1.67) | 0.14 |
Self-referred race (n = 215) | |||
White | 10 (55.6) | 1.00 | |
Non-white | 90 (45.7) | 0.82 (0.53–1.27) | 0.42 |
Education (n = 215) | |||
≥8 years | 55 (47.8) | 1.00 | |
<8 years | 45 (45.0) | 0.94 (0.70–1.26) | 0.68 |
Marital status n (%) (n = 215) | |||
Married/common-law marriage Without partner | 72 (44.2) 28 (53.8) | 1.00 0.82 (0.60–1.11) | 0.22 |
Life Habits | |||
Smoking n (%) (n = 215) | |||
No | 78 (44.6) | 1.00 | |
Yes | 22 (55.0) | 1.23 (0.89–1.71) | 0.23 |
Alcohol consumption n (%) (n = 215) | |||
No | 94 (47.7) | 1.00 | |
Yes | 6 (33.3) | 0.69 (0.35–1.36) | 0.24 |
Regular practice of physical activity n (%) (n = 215) | |||
Regularly | 25 (39.7) | 1.00 | |
Sedentary | 75 (49.3) | 1.24 (0.88–1.75) | 0.19 |
Clinical | |||
Presence of acanthosis nigricans n (%) (n = 210) ᵃ | |||
No | 64 (38.8) | 1.00 | |
Yes | 34 (73.9) | 1.90 (1.47–2.46) | <0.01 * |
Medical follow-up outside the psychiatric service n (%) (n = 198) ᵃ | |||
Yes | 45 (46.7) | 1.0 | |
No | 48 (45.7) | 1.06 (0.79–1.44) | 0.65 |
Hypertriglyceridemic waist n (%) (n = 213) ᵃ | |||
No | 36 (25.2) | 1.00 | |
Yes | 62 (88.6) | 3.52 (2.62–4.72) | <0.01 * |
Polypharmacy $ (n = 215) ᵃ | |||
No | 74 (44.3) | 1.00 | |
Yes | 26 (54.2) | 1.22 (0.89–1.66) | 0.23 |
Factors Associated with Metabolic Syndrome | PRadjusted | CI (95%) |
---|---|---|
Acanthosis Nigricans | 1.50 | 1.18–1.90 |
Antipsychotics | 1.76 | 1.13–2.75 |
Depression | 1.86 | 1.38–2.51 |
Hypertriglyceridemic waist | 3.33 | 2.48–4.46 |
Area under the ROC curve | 0.87 | |
¥ Goodness-of-fit Test | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis da Silva, D.A.; de Almeida, L.S.; Correa, L.L.; Pimentel, R.F.W.; Gomes, A.M.T.; Travassos, A.G.; Viana, A.M.; Cerqueira, M.M.B.d.F.; de Souza, M.C.; de Sousa, A.R.; et al. Prevalence and Factors Associated with Metabolic Syndrome in Patients at a Psychosocial Care Center: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10203. https://doi.org/10.3390/ijerph191610203
Reis da Silva DA, de Almeida LS, Correa LL, Pimentel RFW, Gomes AMT, Travassos AG, Viana AM, Cerqueira MMBdF, de Souza MC, de Sousa AR, et al. Prevalence and Factors Associated with Metabolic Syndrome in Patients at a Psychosocial Care Center: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2022; 19(16):10203. https://doi.org/10.3390/ijerph191610203
Chicago/Turabian StyleReis da Silva, Dandara Almeida, Ludmila Santana de Almeida, Livia Lugarinho Correa, Rodrigo Fernandes Weyll Pimentel, Antonio Marcos Tosoli Gomes, Ana Gabriela Travassos, Adriana Mattos Viana, Monique Magnavita Borba da Fonseca Cerqueira, Marcio Costa de Souza, Anderson Reis de Sousa, and et al. 2022. "Prevalence and Factors Associated with Metabolic Syndrome in Patients at a Psychosocial Care Center: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 19, no. 16: 10203. https://doi.org/10.3390/ijerph191610203
APA StyleReis da Silva, D. A., de Almeida, L. S., Correa, L. L., Pimentel, R. F. W., Gomes, A. M. T., Travassos, A. G., Viana, A. M., Cerqueira, M. M. B. d. F., de Souza, M. C., de Sousa, A. R., Barbosa, P. J. B., Coelho, J. M. F., Magalhães, L. B. N. C., D’Oliveira Júnior, A., Cavalcante Neto, J. L., Santos, C. S., França, L. C. M., Brandão, J. d. L., dos Santos, L. F. d. M., ... das Merces, M. C. (2022). Prevalence and Factors Associated with Metabolic Syndrome in Patients at a Psychosocial Care Center: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 19(16), 10203. https://doi.org/10.3390/ijerph191610203