The Effects of Standing Working Posture on Operation Force and Upper Limb Muscle Activation When Using Different Pointing Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Aiming and Dragging Task
2.4. Procedure
2.5. Data Acquisition
2.5.1. Kinetics and Electromyography
2.5.2. Task Performance
2.5.3. Subjective Ratings
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Operation Forces and Electromyography Responses
3.2. Task Success Rate and Subjective Ratings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. ANOVA Tables for Each of the Dependent Variables
Sources | df | F | p-Value | |
Aiming task | ||||
Operation force | ||||
Working posture | 1 | 5.78 | 0.03 | 0.03 |
Pointing device | 2 | 8.95 | 0.00 | 0.32 |
Interaction | 2 | 0.01 | 0.91 | 0.00 |
BB EMG amplitude | ||||
Working posture | 1 | 2.03 | 0.18 | 0.04 |
Pointing device | 2 | 5.21 | 0.01 | 0.13 |
Interaction | 2 | 0.93 | 0.41 | 0.01 |
TB EMG amplitude | ||||
Working posture | 1 | 9.30 | 0.01 | 0.16 |
Pointing device | 2 | 1.04 | 0.37 | 0.02 |
Interaction | 2 | 0.27 | 0.77 | 0.01 |
TR EMG amplitude | ||||
Working posture | 1 | 3.32 | 0.09 | 0.07 |
Pointing device | 2 | 0.97 | 0.39 | 0.02 |
Interaction | 2 | 0.11 | 0.90 | 0.00 |
DE EMG amplitude | ||||
Working posture | 1 | 0.44 | 0.52 | 0.01 |
Pointing device | 2 | 1.08 | 0.35 | 0.04 |
Interaction | 2 | 0.18 | 0.84 | 0.00 |
Task success rate | ||||
Working posture | 1 | 0.37 | 0.55 | 0.01 |
Pointing device | 2 | 2.00 | 0.15 | 0.06 |
Interaction | 2 | 0.47 | 0.51 | 0.01 |
Dragging task | ||||
Operation force | ||||
Working posture | 1 | 4.32 | 0.06 | 0.03 |
Pointing device | 2 | 6.69 | 0.00 | 0.29 |
Interaction | 2 | 0.23 | 0.79 | 0.00 |
BB EMG amplitude | ||||
Working posture | 1 | 2.98 | 0.11 | 0.03 |
Pointing device | 2 | 2.24 | 0.13 | 0.07 |
Interaction | 2 | 1.36 | 0.27 | 0.03 |
TB EMG amplitude | ||||
Working posture | 1 | 3.88 | 0.07 | 0.07 |
Pointing device | 2 | 0.14 | 0.87 | 0.00 |
Interaction | 2 | 0.03 | 0.97 | 0.00 |
TR EMG amplitude | ||||
Working posture | 1 | 6.82 | 0.02 | 0.18 |
Pointing device | 2 | 1.69 | 0.20 | 0.02 |
Interaction | 2 | 1.50 | 0.24 | 0.02 |
DE EMG amplitude | ||||
Working posture | 1 | 1.18 | 0.18 | 0.00 |
Pointing device | 2 | 4.47 | 0.02 | 0.11 |
Interaction | 2 | 0.18 | 0.84 | 0.02 |
Task success rate | ||||
Working posture | 1 | 0.39 | 0.54 | 0.00 |
Pointing device | 2 | 14.56 | 0.00 | 0.32 |
Interaction | 2 | 6.79 | 0.00 | 0.08 |
Note: Values in bold indicate practically significant effects. |
References
- Wahlström, J. Ergonomics, Musculoskeletal Disorders and Computer Work. Occup. Med. 2005, 55, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Straker, L.; Mathiassen, S.E. Increased Physical Work Loads in Modern Work—A Necessity for Better Health and Performance? Ergonomics 2009, 52, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Krause, N.; Rugulies, R.; Ragland, D.R.; Syme, S.L. Physical Workload, Ergonomic Problems, and Incidence of Low Back Injury: A 7.5-Year Prospective Study of San Francisco Transit Operators. Am. J. Ind. Med. 2004, 46, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, J.; Hagberg, M.; Toomingas, A.; Wigaeus Tornqvist, E. Perceived Muscular Tension, Job Strain, Physical Exposure, and Associations with Neck Pain among VDU Users; a Prospective Cohort Study. Occup. Environ. Med. 2004, 61, 523–528. [Google Scholar] [CrossRef]
- Lindegård, A.; Wahlström, J.; Hagberg, M.; Vilhelmsson, R.; Toomingas, A.; Wigaeus Tornqvist, E. Perceived Exertion, Comfort and Working Technique in Professional Computer Users and Associations with the Incidence of Neck and Upper Extremity Symptoms. BMC Musculoskelet. Disord. 2012, 13, 38. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, J.; Jin, S. Effect of Standing Desk Use on Cognitive Performance and Physical Workload While Engaged with High Cognitive Demand Tasks. Appl. Ergon. 2021, 92, 103306. [Google Scholar] [CrossRef]
- Chambers, A.J.; Robertson, M.M.; Baker, N.A. The Effect of Sit-Stand Desks on Office Worker Behavioral and Health Outcomes: A Scoping Review. Appl. Ergon. 2019, 78, 37–53. [Google Scholar] [CrossRef]
- Le, P.; Marras, W.S. Evaluating the Low Back Biomechanics of Three Different Office Workstations: Seated, Standing, and Perching. Appl. Ergon. 2016, 56, 170–178. [Google Scholar] [CrossRef]
- Lin, M.Y.; Barbir, A.; Dennerlein, J.T. Evaluating Biomechanics of User-Selected Sitting and Standing Computer Workstation. Appl. Ergon. 2017, 65, 382–388. [Google Scholar] [CrossRef]
- Barbir, A.; Dennerlein, J.; Lin, M.Y.; Garza, J.B.; Karol, S.; Robertson, M. Sit/Stand Workstation Configuration Affects Upper Extremity Posture, Muscle Load and Variability during Computer Mouse Use. In Proceedings of the IEEE Annual Northeast Bioengineering Conference, NEBEC, Boston, MA, USA, 2 December 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; Volume 2014. [Google Scholar]
- Pronk, N.P.; Katz, A.S.; Lowry, M.; Payfer, J.R. Reducing Occupational Sitting Time and Improving Worker Health: The Take-a-Stand Project, 2011. PrevChronicDis 2012, 9, 110323. [Google Scholar] [CrossRef]
- Davis, K.G.; Kotowski, S.E. Postural Variability: An Effective Way to Reduce Musculoskeletal Discomfort in Office Work. Hum. Factors 2014, 56, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Jerome, M.; Janz, K.F.; Baquero, B.; Carr, L.J. Introducing Sit-Stand Desks Increases Classroom Standing Time among University Students. Prev. Med. Rep. 2017, 8, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Graves, L.E.F.; Murphy, R.C.; Shepherd, S.O.; Cabot, J.; Hopkins, N.D. Evaluation of Sit-Stand Workstations in an Office Setting: A Randomised Controlled Trial. BMC Public Health 2015, 15, 1145. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.N.; Neeland, I.J. Taking a ‘Stand’ against Cardiovascular Disease in the Era of COVID-19. Vasc. Med. 2021, 26, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Silvennoinen, M.; Pesola, A.J.; Kainulainen, H.; Cronin, N.J.; Finni, T. Acute Metabolic Response, Energy Expenditure, and EMG Activity in Sitting and Standing. Med. Sci. Sports Exerc. 2017, 49, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Karakolis, T.; Callaghan, J.P. The Impact of Sit-Stand Office Workstations on Worker Discomfort Andproductivity: A Review. Appl. Ergon. 2014, 45, 799–806. [Google Scholar] [CrossRef]
- Park, J.H.; Srinivasan, D. The Effects of Prolonged Sitting, Standing, and an Alternating Sit-Stand Pattern on Trunk Mechanical Stiffness, Trunk Muscle Activation and Low Back Discomfort. Ergonomics 2021, 64, 983–994. [Google Scholar] [CrossRef]
- Fagarasanu, M.; Kumar, S. Carpal Tunnel Syndrome Due to Keyboarding and Mouse Tasks: A Review. Int. J. Ind. Ergon. 2003, 31, 119–136. [Google Scholar] [CrossRef]
- Gerr, F.; Monteilh, C.P.; Marcus, M. Keyboard Use and Musculoskeletal Outcomes among Computer Users. J. Occup. Rehabil. 2006, 16, 265–277. [Google Scholar] [CrossRef]
- Huysmans, M.A.; Eijckelhof, B.H.W.; Bruno Garza, J.L.; Coenen, P.; Blatter, B.M.; Johnson, P.W.; van Dieën, J.H.; van der Beek, A.J.; Dennerlein, J.T. Predicting Forearm Physical Exposures During Computer Work Using Self-Reports, Software-Recorded Computer Usage Patterns, and Anthropometric and Workstation Measurements. Ann. Work Expo. Health 2018, 62, 124–137. [Google Scholar] [CrossRef]
- IJmker, S.; Huysmans, M.A.; van der Beek, A.J.; Knol, D.L.; van Mechelen, W.; Bongers, P.M.; Blatter, B.M. Software-Recorded and Self-Reported Duration of Computer Use in Relation to the Onset of Severe Arm-Wrist-Hand Pain and Neck-Shoulder Pain. Occup. Environ. Med. 2011, 68, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.; Vilstrup, I.; Lassen, C.F.; Kryger, A.I.; Thomsen, J.F.; Andersen, J.H. Validity of Questionnaire Self-Reports on Computer, Mouse and Keyboard Usage during a Four-Week Period. Occup. Environ. Med. 2007, 64, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.H.; Thomsen, J.F.; Overgaard, E.; Lassen, C.F.; Brandt, L.P.A.; Vilstrup, I.; Kryger, A.I.; Mikkelsen, S. Computer Use and Carpal Tunnel Syndrome. JAMA 2003, 289, 2963. [Google Scholar] [CrossRef] [PubMed]
- Agudo, J.E.; Sánchez, H.; Rico, M. Playing Games on the Screen: Adapting Mouse Interaction at Early Ages. In Proceedings of the 2010 10th IEEE International Conference on Advanced Learning Technologies, Washington, DC, USA; 2010; pp. 493–497. [Google Scholar]
- Jensen, C.; Borg, V.; Finsen, L.; Hansen, K.; Juul-Kristensen, B.; Christensen, H. Job Demands, Muscle Activity and Musculoskeletal Symptoms in Relation to Work with the Computer Mouse. Scand. J. Work. Environ. Health 1998, 24, 418–424. [Google Scholar] [CrossRef]
- Hemati, K.; Mirjalili, S.; Ghasemi, M.S.; Abdolahian, Y.; Siroos, R.; Sanati, P.; Aghilinejad, M.; Dehghan, N. Functional Parameters, Wrist Posture Deviations and Comfort: A Comparison between a Computer Mouse and a Touch Pen as Input Devices. Work 2020, 65, 701–706. [Google Scholar] [CrossRef]
- Fogleman, M.; Brogmus, G. Computer Mouse Use and Cumulative Trauma Disorders of the Upper Extremities. Ergonomics 1995, 38, 2465–2475. [Google Scholar] [CrossRef]
- Keir, P.J.; Bach, J.M.; Rempel, D. Effects of Computer Mouse Design and Task on Carpal Tunnel Pressure. Ergonomics 1999, 42, 1350–1360. [Google Scholar] [CrossRef]
- Loh, P.Y.; Yeoh, W.L.; Muraki, S. An Overview of Hand Postures and Aging on Morphological Changes of the Median Nerve. J. Physiol. Anthropol. 2019, 38, 9. [Google Scholar] [CrossRef]
- Schmid, A.B.; Kubler, P.A.; Johnston, V.; Coppieters, M.W. A Vertical Mouse and Ergonomic Mouse Pads Alter Wrist Position but Do Not Reduce Carpal Tunnel Pressure in Patients with Carpal Tunnel Syndrome. Appl. Ergon. 2015, 47, 151–156. [Google Scholar] [CrossRef]
- Clarisse, G.; Cail, F.; Pascal, W. Comparing Learning during the Familiarization Phase with a Slanted Mouse and a Vertical Mouse When Performing a Repeated Pointing–Clicking Task. Int. J. Occup. Saf. Ergon. 2022, 28, 333–342. [Google Scholar] [CrossRef]
- Quemelo, P.R.V.; Vieira, E.R. Biomechanics and Performance When Using a Standard and a Vertical Computer Mouse. Ergonomics 2013, 56, 1336–1344. [Google Scholar] [CrossRef]
- Karlqvist, L.; Bernmark, E.; Ekenvall, L.; Isaksson, A.; Rostödepartment, T. Computer Mouse and Track-Ball Operation: Similarities and Differences in Posture, Muscular Load and Perceived Exertion. Int. J. Ind. Ergon. 1999, 23, 157–169. [Google Scholar] [CrossRef]
- Burgess-Limerick, R.; Shemmell, J.; Scadden, R.; Plooy, A. Wrist Posture during Computer Pointing Device Use. Clin. Biomech. 1999, 14, 280–286. [Google Scholar] [CrossRef]
- Bruno Garza, J.L.; Young, J.G. A Literature Review of the Effects of Computer Input Device Design on Biomechanical Loading and Musculoskeletal Outcomes during Computer Work. Work 2015, 52, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.Y.C.; Young, J.G.; Dennerlein, J.T. Evaluating the Effect of Four Different Pointing Device Designs on Upper Extremity Posture and Muscle Activity during Mousing Tasks. Appl. Ergon. 2015, 47, 259–264. [Google Scholar] [CrossRef]
- Johnson, P.W.; Hagberg, M.; Wigaeus Hjelm, E.; Rempel, D. Measuring and Characterizing Force Exposure during Computer Mouse Use. Scand. J. Work Environ. Health 2000, 26, 398–405. [Google Scholar] [CrossRef]
- Kotani, K.; Horii, K. A Fundamental Study on Pointing Force Applied to the Mouse in Relation to Approaching Angles and the Index of Difficulty. Int. J. Ind. Ergon. 2001, 28, 189–195. [Google Scholar] [CrossRef]
- Wahlström, J.; Svensson, J.; Hagberg, M.; Johnson, P.W. Differences between Work Methods and Gender in Computer Mouse Use. Scand. J. Work Environ. Health 2000, 26, 390–397. [Google Scholar] [CrossRef]
- Akamatsu, M.; MacKenzie, I.S. Changes in Applied Force to a Touchpad during Pointing Tasks. Int. J. Ind. Ergon. 2002, 29, 171–182. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Chourasia, A.O.; Wiegmann, D.A.; Chen, K.B.; Irwin, C.B.; Sesto, M.E. Effect of Sitting or Standing on Touch Screen Performance and Touch Characteristics. Hum. Factors 2013, 55, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Terrell, R.; Purswell, J.L. The Influence of Forearm and Wrist Orientation on Static Grip Strength as a Design Criterion for Hand Tools. Proc. Hum. Factors Soc. Annu. Meet. 1976, 20, 28–32. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Muscle Fatigue: What, Why and How It Influences Muscle Function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Lin, J.H.; Buchholz, B.; Xu, X. Shoulder Muscle Fatigue Development in Young and Older Female Adults during a Repetitive Manual Task. Ergonomics 2014, 57, 1201–1212. [Google Scholar] [CrossRef]
- Sakurada, T.; Hirai, M.; Watanabe, E. Optimization of a Motor Learning Attention-Directing Strategy Based on an Individual’s Motor Imagery Ability. Exp. Brain Res. 2016, 234, 301–311. [Google Scholar] [CrossRef]
Pointing Devices | Conventional Mouse | Vertical Mouse | Trackball | |||
---|---|---|---|---|---|---|
Postures | Sitting | Standing | Sitting | Standing | Sitting | Standing |
Aiming task | ||||||
(a) BB EMG amplitude (%MVC) | 0.61 ± 0.41 | 0.56 ± 0.40 | 0.82 ± 0.66 | 0.67 ± 0.49 | 0.60 ± 0.47 | 0.56 ± 0.45 |
(b) TB EMG amplitude (%MVC) | 2.10 ± 1.26 | 1.59 ± 1.04 | 1.82 ± 1.10 | 1.48 ± 0.83 | 1.98 ± 0.95 a | 1.43 ± 0.57 |
(c) DE EMG amplitude (%MVC) | 2.13 ±1.39 | 2.36 ± 1.85 | 1.86 ± 1.61 | 1.89 ± 1.39 | 1.74 ± 1.37 | 1.91 ± 1.31 |
(d) TR EMG amplitude (%MVC) | 5.68 ± 4.17 | 4.10 ±3.26 | 4.95 ± 4.75 | 3.29 ± 2.83 | 5.65 ± 3.04 | 4.54 ±4.30 |
Dragging task | ||||||
(a) BB EMG amplitude (%MVC) | 0.62 ± 0.44 | 0.60 ± 0.44 | 0.78 ± 0.70 | 0.65 ± 0.43 | 0.64 ± 0.51 | 0.61 ± 0.48 |
(b) TB EMG amplitude (%MVC) | 2.22 ± 1.20 | 1.88 ± 1.46 | 2.37 ± 1.37 | 1.94 ± 1.49 | 2.30 ± 1.06 | 1.86 ± 0.52 |
(c) DE EMG amplitude (%MVC) | 2.07 ± 1.79 | 2.39 ± 2.38 | 2.24 ± 1.42 | 1.93 ± 1.88 | 2.72 ± 1.91 | 2.67 ± 2.03 |
(d) TR EMG amplitude (%MVC) | 6.53 ± 4.27 a | 3.75 ± 3.34 | 5.56 ± 5.41 a | 2.92 ± 2.13 | 4.89 ± 3.12 | 3.86 ± 3.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lin, Y.; Loh, P.Y. The Effects of Standing Working Posture on Operation Force and Upper Limb Muscle Activation When Using Different Pointing Devices. Int. J. Environ. Res. Public Health 2022, 19, 10217. https://doi.org/10.3390/ijerph191610217
Choi J, Lin Y, Loh PY. The Effects of Standing Working Posture on Operation Force and Upper Limb Muscle Activation When Using Different Pointing Devices. International Journal of Environmental Research and Public Health. 2022; 19(16):10217. https://doi.org/10.3390/ijerph191610217
Chicago/Turabian StyleChoi, Jeewon, Yu Lin, and Ping Yeap Loh. 2022. "The Effects of Standing Working Posture on Operation Force and Upper Limb Muscle Activation When Using Different Pointing Devices" International Journal of Environmental Research and Public Health 19, no. 16: 10217. https://doi.org/10.3390/ijerph191610217
APA StyleChoi, J., Lin, Y., & Loh, P. Y. (2022). The Effects of Standing Working Posture on Operation Force and Upper Limb Muscle Activation When Using Different Pointing Devices. International Journal of Environmental Research and Public Health, 19(16), 10217. https://doi.org/10.3390/ijerph191610217