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Abstract: Under environmental governance constraints, in order to explore the quantitative contri-
bution of green innovation efficiency to carbon peak and carbon neutralization at the urban level,
this paper uses the unexpected Super-SBM model to measure the green innovation efficiency of each
prefecture-level city based on the panel data of 40 prefecture-level cities in the Yangtze River Delta
from 2010 to 2019. Furthermore, the panel fixed effect model is constructed, and the two-stage least
squares estimation method is used for empirical research. It is found that green innovation efficiency
can significantly reduce carbon emissions in the Yangtze River Delta, promote carbon emissions in
the Yangtze River Delta to reach an early peak, and achieve the long-term goal of carbon neutrality
as soon as possible. This conclusion is still stable after solving the endogenous problem and the
influence of outliers. The results of regional heterogeneity analysis show that green innovation
efficiency has remarkable effects on carbon emission reduction in Anhui and Zhejiang Provinces, and
the emission reduction effect in Zhejiang Province is greater than that in Anhui Province. In addition,
there exists obvious heterogeneity between different quantiles for the impact of green innovation
efficiency on carbon emissions, showing an “inverted U” shape, and its intensity in the context of
medium carbon emissions is greater than that of low carbon and high carbon emissions.
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1. Introduction

A large amount of evidence shows that global warming caused by anthropogenic
greenhouse gas emissions (GHGs) has become one of the main challenges to human
welfare [1–3]. Under the background of the new era, global warming caused by carbon
emissions has been paid more and more attention by the international community [4].
Addressing climate change has become a common challenge facing the world [5]. Under the
background of economic and social development, urbanization and the increase in energy
consumption, China’s carbon emissions have increased rapidly in the past two decades.
As the world’s largest developing country, China is at a critical stage of industrialization
and urbanization and faces more severe challenges in coordinating economic growth and
reducing carbon emissions. In 2007, China’s total CO2 emission exceeded that of the United
States, ranking the first in the world. While in 2013, China accounted for 28% of global
carbon emissions, and per capita emissions exceeded those of the European Union for the
first time [5]. By 2020, China’s total carbon emission reached 9.899 billion tons, still ranking
the first in the world, and its share of the world’s carbon emission increased to 31%, whose
carbon emission share in the world’s major countries is still growing.

In this regard, the Chinese government has put forward a series of emission reduction
measures. At the Copenhagen climate conference, China pledged to peak its carbon dioxide
emissions by 2030 and strive to achieve carbon neutrality before 2060. In order to achieve the
strategic goal of carbon neutrality, China must change the mode of economic development
and take the green low carbon development path of energy saving and emission reduction.
That is, by changing the pattern of economic development and improving production
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efficiency, taking economic growth and energy conservation and emission reduction into
account, we can realize green, low-carbon and high-quality development. In this case, as an
important factor to achieve a win-win goal of environmental protection and technological
progress, green innovation has become an inevitable choice for regions to win competitive
advantages and achieve economic development under increasingly stringent environmental
regulations [6]. Green innovation efficiency has a catalytic effect on regional economic
growth and further affects the level of economic growth of the whole country [7]. Therefore,
in the current practice of China’s national strategy of higher quality integrated development
of the Yangtze River Delta, it is more important to adhere to the concept of “innovation”
and “green” development, take the road of “ecological priority, and green development”,
and improve the efficiency of green innovation [8].

The concept of ‘green innovation’ was first proposed by Fussler et al. [9] in 1996. Green
innovation is considered to be an effective way to reduce pollution, reduce energy con-
sumption, save energy and achieve sustainable economic growth [10,11]. Its essence refers
to the activities with commercial value carried out by enterprises to reduce environmental
pollution. Green innovation efficiency refers to the performance in the development of
green innovation. It is generally believed that green innovation efficiency includes environ-
mental benefits in innovation input and output, and obtains the optimal innovation output
at the lowest cost of resources and environment. The improvement of green innovation
efficiency means the progress of technology, which can reduce carbon dioxide emissions at
the source while maintaining economic growth [12]—that is, green innovation efficiency
can effectively reduce carbon dioxide emissions and promote the realization of the strategic
goal of carbon peak and carbon neutralization in theory.

At present, the research on carbon peak and carbon neutralization in the Yangtze River
Delta is mostly based on the LMDI index decomposition method to explore the driving
factors of carbon emissions and the scenario prediction method to analyze the peak time
under different carbon emission scenarios. It is rare to discuss its quantitative contribution
to the strategic goal of carbon peaking and carbon neutralization in the Yangtze River Delta
from the perspective of green innovation efficiency. So, how does the efficiency of green
innovation affect the strategic goal of carbon peak and carbon neutrality in the Yangtze
River Delta? In this context, to answer this question, this paper uses the Unexpected Super
SBM model to measure the green innovation efficiency of various prefecture-level cities in
the Yangtze River Delta. On this basis, a fixed effect model is constructed to quantitatively
analyze the quantitative contribution of green innovation efficiency to carbon peak and
carbon neutralization. On this basis, this paper constructs a fixed effect model to quantita-
tively analyze the quantitative contribution of green innovation efficiency to carbon peak
and carbon neutralization, and solves endogenous problems with instrumental variables.
Additionally, this paper explores regional heterogeneity by grouping regression at the
provincial level, and uses the panel quantile regression to explore the heterogeneity of the
effect of green innovation efficiency on carbon emission reduction under different carbon
emission intensities. Finally, this paper puts forward corresponding policy suggestions to
promote the Yangtze River Delta region to achieve the long-term goal of carbon peak and
carbon neutrality as soon as possible from the perspective of green innovation efficiency.

The other parts of this paper are organized as follows: Section 2 is the literature review
of related topics. Section 3 is the research hypothesis. Section 4 introduces the research
methods and the measurement of important indicators. Section 5 is the description of the
current situation of carbon emissions in the Yangtze River Delta. Section 6 is empirical
analysis, including benchmark regression analysis, endogenous test, robustness test and
heterogeneity analysis. Section 7 is the policy recommendations and the shortcomings of
this paper.
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2. Literature Review
2.1. Foreign Literatures Review

In a literature review of foreign studies, it is found that research on carbon emission
reduction has a long history and has formed a large number of theoretical and practical
results. These studies mainly focus on the influencing factors of carbon emissions, energy
consumption and carbon emissions trajectory.

The influencing factors of carbon emissions mainly include population size, economic
development, per capita income and low-carbon technology [13,14]. Specifically, Rocío
Román-Collado et al. and Boqiang Lin and Izhar Ahmad both explored the impact of pop-
ulation on carbon emissions. The former analyzed the decoupling elasticity and two-stage
decomposition of energy consumption in Colombia from 2000 to 2015. Analytical results
show that population and activity effects contribute to increasing energy consumption in
the country, while intensity effects and, to a lesser extent, structural effects contribute to
reducing energy consumption [15]. The latter decomposed the extended Kaya identity
by the log mean decomposition index (LMDI) decomposition model and clarified that
the population growth is the main factor for increasing energy-related carbon dioxide
emissions [16]. On the contrary, Rawshan et al. took Malaysia as an example and used
the ARDL boundary test method. They found that per capita energy consumption and
per capita GDP have a long-term positive impact on per capita carbon emissions during
the study period, but the population growth rate has no significant indigenous impact on
per capita carbon dioxide emissions [17]. It can be seen that the effect of population effect
on carbon emissions is heterogeneous in different countries. In the research on the effect
of economic growth on carbon emission reduction, Abid and Mehdi found that there is a
monotonic increasing relationship between carbon dioxide emissions and total GDP (the
sum of formal economy and informal economy) in the presence of informal economy [18].
Jungho and Baek used time series data from individual countries to test the Environmental
Kuznets Curve (EKC) hypothesis. The ARDL method was used to evaluate the impact of
per capita income of Arctic countries on carbon dioxide emissions [19]. In the study of
the impact of income on carbon emissions, Cenjie Liu et al. considered the short-term and
long-term impact of income inequality on carbon emissions; they used the panel ARDL
model and quantile model to analyze the impact of income inequality on carbon emissions
in American states. Research showed that income inequality increases US carbon emissions
in the short term but increases US carbon emissions in the long term [20].

Some scholars have conducted research at the enterprise or industrial level. Taking
the enterprises in South American countries as the research object, Carmen Córdova et al.
explores the impact of company size, assets and financial status at the enterprise level
on whether to disclose carbon emissions and its evolution with the help of Logit and
the linear panel data model [21]. Jeong and Kim looked at changes in CO2 emissions of
Korean industrial manufacturing in 1991 and 2009 from the perspective of multiplication
and addition. They found that the intensity effect and structural effect have significant
positive effects on carbon dioxide emission reduction in South Korea [22]. On this basis,
some scholars forecasted carbon emissions in different scenarios. The prediction of energy
consumption and carbon emission trajectory is mainly based on non-numerical simulation
by artificial intelligence software, such as fuzzy logic, genetic algorithm, neural network,
support vector machine, ant colony algorithm, and particle swarm optimization algorithm.
Specifically, Uzlu et al. predicted energy consumption in Turkey using artificial neural
networks [23]. Vaillancourt et al. built a multi-regional TIMES-Canada model to calculate
energy consumption trends in Canada by 2050. The results showed that energy consump-
tion in Canada will increase by 43 percent in 2050 compared with 2007 levels [24]. Ram
M. Shrestha and Salony Rajbhandari took Kathmandu Valley in Nepal as an example to
explore the impact of three carbon emission reduction targets on energy and environment
in the baseline scenario. The research results showed that in order to achieve the goal of
30% cumulative CO2 emission reduction (ER30), a major shift in energy use patterns from
oil and gas to electricity is required [25].
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2.2. Chinese Literature Review

Combing the relevant literature in China, scholars have studied the trajectory charac-
teristics, driving factors, emission reduction strategies and peak path of carbon emissions
from different spatial scales.

Early scholars focused on the trajectory characteristics and important influencing
factors of carbon emissions. Initially, scholars explored the decoupling between carbon
emissions and economic growth using the Tapio decoupling elasticity coefficient [26–28].
Wang Min’s research results showed that the changes of energy consumption and carbon
emissions in Qinghai Province are basically decoupled from the growth of economic
aggregate [29]. Zhang Youguo and Bai Yujie analyzed the carbon decoupling index of
China’s provinces from the ‘Ninth Five-Year’ period to the ‘Thirteenth Five-Year’ period.
The results showed that the economic development of most provinces continued to present
strong or weak decoupling by the first half of the Thirteenth Five-Year. [27]. In addition,
scholars mainly used the LMDI model to identify important influencing factors of carbon
emissions. Yue Shujing decomposed the influencing factors of carbon emissions in the
Yangtze River Delta urban agglomeration into population size, per capita output, industrial
structure, and industrial carbon intensity by LMDI index decomposition [29]. Peng Song
and Huimin Zhang built the localized LEAP model and determined that the industrial
terminal energy intensity, energy consumption structure, industrial structure and power
production structure are the key factors affecting the carbon peak goal of Chongqing city
with the help of LMDI decomposition and the Tapio decoupling elasticity coefficient [26].
Wang and Feng also explored the green and low-carbon development of Qinghai Province
based on the LMDI model and decoupling index and clarified that population and economic
growth are the main driving forces of carbon emissions in Qinghai Province [30].

On this basis, scholars predicted the time of carbon peak and carbon neutraliza-
tion through scenario simulation and proposed differentiated peak paths. Such studies
mainly focus on provincial and urban levels. Guo Fang and Wang Can used the Monte-
Carlo method and K-means clustering algorithm to construct the index system to divide
286 cities in China into five categories: low-carbon potential cities, low-carbon demon-
stration cities, population loss cities, resource-dependent cities, and traditional industrial
transition cities [30]. In view of different types of cities, this paper puts forward practical
suggestions on the goal design and action focus of urban carbon peak. Based on the carbon
emission characteristics of 31 provinces, Zhang and Li divided the 31 provinces into five cat-
egories based on the heterogeneity of economic development, industrial structure, energy
consumption, and emission characteristics by the hierarchical clustering method. Addition-
ally, they put forward differentiated approaches based on the progress of provincial peak
action [31]. Kai Fang et al. developed an extended STIRPAT model to study whether the
future energy-related emissions of 30 provinces in China will reach the peak and how to
reach the peak. The prediction results were integrated into the scenario analysis to simulate,
and the time range and peak range of China’ s carbon emissions were clarified [32].

In addition, some scholars considered the liquidity characteristics of carbon emissions
to explore the linkage effect of regional collaborative emission reduction. Tan and Jiang
used the Topsis method and gray correlation theory to comprehensively measure the
coordination level of inter-provincial carbon emission reduction intensity in China from
2011 to 2019. They used the Gini coefficient, δ-convergence model, and the β-convergence
model to analyze the unbalanced development trend of carbon emission reduction in China.
They found that optimizing regional economic structure is conducive to promoting regional
coordination of carbon emission reduction [33].

To sum up, many scholars have conducted in-depth research on issues related to
China’s realization of carbon peaking and carbon neutralization from a variety of perspec-
tives, which provides a good reference for the early realization of the strategic objectives of
carbon peak and carbon neutralization. However, the current research on carbon emissions
in the Yangtze River Delta pays more attention to the current situation and peak path of
carbon emissions, and the exploration of influencing factors is mostly based on the expo-
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nential decomposition method, rarely from the perspective of green innovation efficiency.
Therefore, this paper selects the Yangtze River Delta urban agglomeration with developed
economy, education, science, and technology to explore the quantitative impact of green
innovation efficiency on carbon peak and carbon neutrality of the Yangtze River Delta
urban agglomeration from the urban level. It is expected to provide relevant reference
for the goal design of carbon peaking and the realization path of carbon neutralization
in the Yangtze River Delta urban agglomeration. The possible marginal contributions of
this paper are: This paper quantitatively analyzes the contribution of carbon peak and
carbon neutralization of Yangtze River Delta urban agglomeration from the perspective of
green innovation efficiency, enriches the research at the level of urban agglomeration, and
provides relevant reference for the goal design of carbon peak and the realization path of
carbon neutralization of Yangtze River Delta urban agglomeration.

3. Research Hypothesis

Firstly, compared with traditional innovation, green innovation has ‘double exter-
nalities’, which can achieve the ‘win-win’ of economic development and environmental
benefits. Green innovation is considered an effective way to reduce pollution, reduce
energy consumption, save energy and achieve sustained economic growth. Secondly, while
maintaining high-quality economic development, it can take into account environmental
benefits, achieve technological progress, promote the transformation and upgrading of
industrial structure, and reduce carbon dioxide emissions by improving the efficiency of
green innovation. Improving green innovation efficiency means technological progress,
reducing carbon dioxide emissions from the source and achieving optimal innovation out-
put at the lowest environmental cost. Improving environmental performance, enhancing
competitiveness and upgrading industrial structure through green innovation has become
a common practice around the world. Urban innovation activities promote the flow of
R&D capital and funds to sectors with higher profits, and contribute to the concentration
of green innovation resources, thereby promoting the improvement of industrial green
technology, the improvement of output quality and the agglomeration of green innovation
resources. The proportion of the tertiary industry with high value-added and low energy
consumption will be increased. The market share of primary and secondary industries
with large pollution, large energy consumption and less value creation may gradually
decrease, thus optimizing the industrial structure. Therefore, the improvement of green
innovation efficiency can effectively promote the reduction in carbon dioxide emissions in
theory. Based on the above analysis, Hypothesis 1 of this paper is proposed:

Hypothesis H1: Green innovation efficiency can reduce carbon dioxide emissions and promote the
Yangtze River Delta region to achieve the long-term goal of carbon peak and carbon neutralization
as soon as possible.

There are great differences in economic development, technical level, environmental
status and resource endowment among cities in the Yangtze River Delta; thus, there may
be regional heterogeneity in the emission reduction effect of green innovation efficiency.
In addition, carbon emissions and the peak progress of each prefecture-level city in the
Yangtze River Delta are not the same, and innovation atmosphere and motivation are
also significantly different. The green innovation efficiency of Yangtze River Delta urban
agglomeration is unevenly distributed in space. Is the effect of green innovation efficiency
on carbon emissions heterogeneous under different carbon emission distributions? Based
on the above analysis, Hypotheses 2 and Hypotheses 3 of this paper are proposed:

Hypothesis H2: The effect of green innovation efficiency on reducing carbon dioxide emissions has
regional heterogeneity.

Hypothesis H3: The effect of green innovation efficiency on reducing carbon dioxide emissions is
heterogeneous at different carbon emission quantiles.
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4. Research Methods and Index Measurement

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4.1. Research Methods
4.1.1. Undesirable-Super-SBM Model

To overcome the inherent limitations of traditional DEA model, Tone proposed SBM
model by taking relaxation variables into account. To further distinguish the efficiency of
effective decision-making units, Super-SBM model was proposed. The specific model is as
follows: assuming that there are n DMUs, each DMU has m inputs and s outputs, and the
Super-SBM model under the condition of variable returns to scale is:

ρ∗ = minρ =
1 + 1

m ∑m
i=1 s−i /xik

1− 1
s ∑s

r=1 s+i /yrk
(1)

s.t.
n

∑
j=1,j 6=k

xijλj − s−i ≤ xik (2)

n

∑
j=1,j 6=k

yrjλj + s+i ≤ yrk (3)

n

∑
j=1,j 6=k

λi = 1 (4)

λ, s−i , s+i ≥ 0 (5)

i = 1, 2, . . . , m; γ = 1, 2, . . . , q, j = 1, 2, . . . , n(j 6= k)

where ρ∗ is the efficiency value of the kth DMU, m and s are the number of input and output
indicators, respectively; s−i and s+i are the slack variables of input and output variables,
respectively; ρ∗ ≥ 1 indicates DEA efficiency; ρ∗ < 1 indicates that the decision-making
unit does not reach DEA efficiency.

4.1.2. Two-Stage Least Squares Estimation Method

Two-stage least squares (2SLS) is a kind of instrumental variable method, which
solves the endogeneity problems caused by missing variables, measurement errors and
reverse causality by introducing instrumental variables. First, the endogenous variables
and instrumental variables are regressed, and then the estimated values of the endogenous
variables obtained from the regression are brought into the original regression equation to
form a two-stage least square regression.

4.1.3. Panel Quantile Regression

The quantile regression can capture the extent to which the explained variables are
affected at different quantile levels, making the estimation results more robust. To further ex-
plore whether the effect of green innovation efficiency on carbon emission is heterogeneous
under different carbon emission distribution, this paper describes the whole conditional
distribution of carbon emission by quantile regression, and estimates the impact of green
innovation efficiency on carbon emission reduction under conditional distribution.

4.2. Index Measurement
4.2.1. Carbon Emissions Calculation

Carbon emissions calculation. Carbon dioxide emissions at prefecture-level cities come
from the CEADs database. Chen et al. used the characteristics of high correlation between
nighttime light data and human activities; two sets of nighttime light data (DMSP/OLS and
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NPP/VIIRS data) were provided by NGDC (National Geophysical Data Center) to inverse
the CO2 emissions of 2735 counties in China. In the calibration of nighttime light data, the
particle swarm optimization-reverse propagation (PSO-BP) algorithm is adopted to unify
the DMSP/OLS and NPP/VIIRS satellite images to obtain high-quality stable nighttime
light data within an extended period. The carbon dioxide emissions at the municipal level
are derived from the CEADs database, which is aggregated by the carbon dioxide emissions
at the county level.

4.2.2. Green Innovation Efficiency

This paper uses the Undesirable-Super-SBM model to measure. In terms of the se-
lection of input indicators, followed by the practice of Wu Chao et al. [34], Xiao Liming
et al. [35] and Lv Chengchao et al. [36], this paper measures the input of green innovation
activities from three aspects: human resources, financial resources, and energy input. The
full-time equivalent of R&D personnel is taken as human input, the internal expenditure of
R&D funds is taken as financial input, and the total energy consumption (converted into a
standard ton of coal) is taken as energy input. Due to the lag effect of capital investment,
the current R&D investment cannot really reflect the actual R&D expenditure of current
innovation activities. Therefore, this paper draws on the practice of Lv Yanwei [37] to
calculate the stock of R&D expenditure of prefecture-level cities by the method of sustain-
able inventory as financial input. This paper considers the environmental benefits and
economic effects of green innovation output for the expected output. For the output of
innovation activities, most scholars choose the number of invention patent applications
or authorizations as the expected output. Considering the impact of innovation activities
on the ecological environment, this paper uses the amount of authorized green patents to
measure the output of innovation activities. For economic benefits, this paper uses the sales
revenue of new products to measure the economic benefits of innovation activities. For the
unexpected output, considering the impact of innovation activities on resources and the
environment, this paper takes the three industrial wastes as the unexpected output into the
model, which indirectly reflects the green efficiency. The specific index system is shown in
the Table 1:

Table 1. Green innovation efficiency index system.

Primary Index Secondary Index Tertiary Indicators Unit

Input indicators
Human capital The full-time equivalent of R&D 10,000 People

Capital investment R&D capital stock Hundred billion Chinese yuan
Energy input Total industrial energy consumption 10,000 tons of standard coa

Output indicators

Expected outputs The amount of authorized green patents Piece
Sales revenue of new products Hundred billion Chinese yuan

Undesired outputs
Industrial waste gas 10,000 tons

Industrial wastewater discharge Ton
Industrial smoke (powder) dust emission Ton

4.3. Data Sources

There are three main sources of data used in this empirical study. The carbon dioxide
emissions at the municipal level are derived from the CEADs database, which is aggregated
by the carbon dioxide emissions at the county level. The data and control variables
involved in the measurement of green innovation efficiency mainly come from the China
City Statistical Yearbook, Statistical Yearbook of prefecture-level cities, Statistical Bureau
and Science and Technology Bureau of prefecture-level cities
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5. Carbon Emission of Urban Agglomeration in Yangtze River Delta
5.1. Overall Status of Carbon Emissions in Yangtze River Delta Urban Agglomeration

As shown in Figure 1, overall, from 2010 to 2019, the total carbon emissions of the
Yangtze River Delta urban agglomeration increased year by year, which is basically con-
sistent with the trend of national carbon emissions change, indicating that the carbon
emission reduction policies of the Yangtze River Delta urban agglomeration still have a
lot of room for implementation, and need to further promote carbon emission reduction
work combined with their own endowment advantages. However, while the proportion
of carbon emissions from urban agglomerations in the Yangtze River Delta in China’s
carbon emissions has decreased year by year, it decreased from 14.96% in 2010 to 13.13% in
2019. Moreover, the growth rate of carbon emissions in the Yangtze River Delta showed a
fluctuating downward trend. It shows that the Yangtze River Delta urban agglomeration
has achieved certain results in carbon emission reduction during “Twelfth Five-Year Plan”
and “Thirteenth Five-Year Plan”.
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Figure 1. Total carbon emissions and growth rate in the Yangtze River Delta and China.

5.2. Analysis of Carbon Emissions in Three Provinces and One City of Yangtze River Delta

As shown in Figure 2, in terms of provinces, Jiangsu Province has the highest propor-
tion of total carbon emissions and per capita carbon emissions, far exceeding that of two
provinces and one city. It can be seen that the situation faced by Jiangsu Province in energy
conservation and emission reduction is not optimistic, and the task of achieving the goal of
carbon peak carbon neutralization is still arduous. Shanghai’s carbon emissions accounted
for the lowest proportion, about a quarter of Jiangsu’s carbon emissions, and Shanghai’s s
total carbon emissions showed a downward trend year by year, indicating that Shanghai’s
s carbon reduction work has remarkable results. The proportion of carbon emissions in
Anhui Province and Zhejiang Province showed an opposite trend over the years. Total
carbon emissions in Anhui Province continued to rise from 2010 to 2014. From 2014 to 2019,
the proportion of carbon emissions in Anhui Province slightly decreased year by year. In
contrast, the proportion of carbon emissions in Zhejiang Province first decreased and then
slightly increased during the study period.



Int. J. Environ. Res. Public Health 2022, 19, 10245 9 of 18

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 9 of 18 
 

 

year by year. In contrast, the proportion of carbon emissions in Zhejiang Province first 
decreased and then slightly increased during the study period. 

 
Figure 2. Proportion of carbon emissions from three provinces and one city in the Yangtze River 
Delta. 

As shown in Figure 3, in terms of per capita carbon emissions, Shanghai’s per capita 
carbon emissions showed a fluctuating downward trend. From 2010 to 2014, per capita 
carbon emissions in Anhui Province continued to rise and reached a peak of 6.61 tons per 
person in 2014, indicating that the per capita output effect of carbon emissions is the main 
driving force of carbon emissions in Anhui Province. The per capita carbon emission of 
Zhejiang Province shows an “M”-type fluctuation trend. The per capita carbon emission 
of Zhejiang Province shows an “M”-type fluctuation trend. From 2014 to 2019, the change 
trend of per capita carbon emissions in Anhui Province and Zhejiang Province is basically 
the same, showing a fluctuating upward trend. 

 
Figure 3. Per capita carbon emission of three cities in the Yangtze River Delta. 

As shown in Figure 4, for the carbon emissions per unit GDP, the carbon emissions 
per unit GDP of three provinces and one city in the Yangtze River Delta continued to 
decline, indicating that in recent years the Yangtze River Delta region has achieved certain 
results by adjusting industrial structure and developing low-carbon technologies. Among 
them, carbon emissions per unit GDP in Anhui Province is the highest, followed by 
Zhejiang and Jiangsu, and Shanghai is the lowest. It shows that the task of adjusting 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Pr
op

or
tio

n 
of

 c
ar

bo
n 

em
is

si
on

s（
%
）

 Anhui Province  Jiangsu Province

 Shanghai Municipality  Zhejiang Province

 4.00

 4.50

 5.00

 5.50

 6.00

 6.50

 7.00

 7.50

 8.00

 8.50

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019pe
r c

ap
ita

 c
ar

bo
n 

em
is

si
on

s（
to

ns
 / 

pe
rs

on
）

 Anhui Province  Jiangsu Province
 Shanghai Municipality  Zhejiang Province

Figure 2. Proportion of carbon emissions from three provinces and one city in the Yangtze River Delta.

As shown in Figure 3, in terms of per capita carbon emissions, Shanghai’s per capita
carbon emissions showed a fluctuating downward trend. From 2010 to 2014, per capita
carbon emissions in Anhui Province continued to rise and reached a peak of 6.61 tons per
person in 2014, indicating that the per capita output effect of carbon emissions is the main
driving force of carbon emissions in Anhui Province. The per capita carbon emission of
Zhejiang Province shows an “M”-type fluctuation trend. The per capita carbon emission of
Zhejiang Province shows an “M”-type fluctuation trend. From 2014 to 2019, the change
trend of per capita carbon emissions in Anhui Province and Zhejiang Province is basically
the same, showing a fluctuating upward trend.
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Figure 3. Per capita carbon emission of three cities in the Yangtze River Delta.

As shown in Figure 4, for the carbon emissions per unit GDP, the carbon emissions per
unit GDP of three provinces and one city in the Yangtze River Delta continued to decline,
indicating that in recent years the Yangtze River Delta region has achieved certain results
by adjusting industrial structure and developing low-carbon technologies. Among them,
carbon emissions per unit GDP in Anhui Province is the highest, followed by Zhejiang and
Jiangsu, and Shanghai is the lowest. It shows that the task of adjusting industrial structure,
promoting industrial transformation, and upgrading and eliminating backward production
capacity is the most arduous in Anhui Province.
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6. Empirical Analysis
6.1. Analysis of Benchmark Regression Results

Considering that the data in this paper are balanced panel data, this paper designs a
fixed effect model to empirically test the impact of green innovation efficiency improvement
on carbon dioxide emissions in various prefecture-level cities in the Yangtze River Delta.
The specific measurement model is designed as follows:

CO2it = α + βgieit + ∑ xkcvk + ϕt + γi + εit (6)

where CO2it represents the carbon dioxide emission of prefecture-level city i in year t,
and its unit is million tons. ∑ xkcvk represents the set of control variables in this paper.
Referring to the existing research, the following variables are included in the control
variables: PGDP refers to the per capita output value, which is expressed by dividing
the gross domestic product of the region in the current year by the total population; fdi,
expressed in terms of actual foreign investment in the current year; pop_ Density stands for
population density, which is the ratio of permanent population to total area; produ_aver
refers to the urbanization rate, which is expressed by the ratio of resident population
to administrative area; third_r represents the proportion of tertiary industry t, which is
expressed by the proportion of the output value of tertiary industry in the GDP of the region;
Sulfur dioxide, industrial dust emissions are expressed as so2, indu_dust, unit tons; PM2.5 is
the concentration of fine particles in micrograms per cubic meter; ti stands for the proportion
of science and technology expenditure in the general public budget of the government;
Greenland represents the greenery covering area, unit hectare; ϕt and γi represent the
annual fixed effect and regional fixed effect, which are used to the interference of time trend
and eliminate the influence of individual characteristics at the level of prefecture-level cities
that do not change with time. εit is a random disturbance term.

The regression results of the model are shown in Table 2. The first column represents
the results of OLS regressions that control years and regions but do not include control
variables. The results show that the green innovation efficiency coefficient is negative, and
the 1% aboriginality test shows that green innovation efficiency can significantly reduce
carbon dioxide emissions in the Yangtze River Delta. The second column indicates the
regression results of adding control variables but not considering the year fixed effect
and regional fixed effect. The coefficient of green innovation efficiency is still negative.
Additionally, the absolute value of the coefficient becomes larger, indicating that the
influence of green innovation efficiency on carbon dioxide emissions is amplified by adding
control variables. The third column represents the regression results of adding all control
variables and controlling the year fixed effect. The fourth column represents the regression
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results of adding all control variables and controlling the regional fixed effect. The results
suggest that the coefficient and significance of green innovation efficiency in the regression
results of the regional limited effect model are higher than those of the year fixed-effect
model. It shows that the effect of green innovation efficiency on reducing carbon dioxide
emissions is more affected by regional changes than by time trends. The reason for this
result may be that there is a significant spatial imbalance in the green innovation efficiency
of each prefecture-level city in the Yangtze River Delta urban agglomeration due to the
influence of location factors and administrative policies [38]. Additionally, the intensity of
emission reduction at the urban level is different. During the 13th Five Year Plan period,
only 12 prefecture-level cities defined the specific peak time, but there was a lack of clear
peak goals and routes [39]. The fifth column is a two-way fixed effect model with all
control variables. It shows that the impact of green innovation efficiency on carbon dioxide
emissions is still negative after controlling the interference of time and region. Moreover, it
passed the test at the level of 10% visibility, indicating that green innovation efficiency can
significantly reduce carbon dioxide emissions.

Table 2. Benchmark regression results.

(1) (2) (3) (4) (5)
Variable I II III IV V

gie −0.1811 ***
(−3.54)

−0.3169 ***
(−4.64)

−0.3158 ***
(−5.96)

−0.0170
(0.56)

−0.1341 *
(−1.91)

pgdp 0.0007
(0.24)

0.0033 *
(1.71)

0.0026
(1.21)

0.0011
(0.73)

fdi 0.0899 **
(2.31)

0.1001 **
(2.02)

−0.2170 ***
(−4.96)

−0.1121 **
(−2.25)

pop_density 0.2775 ***
(3.86)

0.2110 ***
(3.30)

−0.0475
(−0.68)

−0.2479
(−1.13)

produ_aver 2.0783 ***
(4.70)

1.7502 **
(2.48)

2.2988 ***
(4.18)

1.2084 **
(2.23)

third_r 2.5162 **
(−2.08)

0.6468
(1.39)

1.9042 **
(2.35)

−1.2504 *
(−1.74)

so2 −1.36 × 10−7

(−1.30)
7.08 × 10−8

(0.90)
−1.73 × 10−7

(−1.55)
2.12 × 10−7 *

(1.94)

indu_dust −1.41 × 10−8

(−0.64)
4.65 × 10−8 *

(1.78)
−4.11 × 10−8 *

(−1.95)
1.86 × 10−8

(1.08)

indu_water −217.5439 *
(−1.88)

217.04 *
(1.85)

−526.0929 ***
(−3.84)

−269.1283 **
(−2.47)

PM2.5 −0.0007
(−0.47)

0.0043
(1.61)

−0.0143 **
(−2.06)

0.0020
(0.60)

ti 9.0269 ***
(5.26)

4.6116 **
(2.43)

5.2227 *
(1.97)

2.7080
(1.45)

firm_gs 0.0001 ***
(8.23)

0.0002 ***
(12.52)

0.0001 *
(1.91)

0.0001 **
(2.29)

greenland 0.0458
(0.64)

0.1145 **
(2.42)

0.3065 ***
(3.28)

0.0788
(1.22)

year Yes No No Yes Yes
area Yes No Yes No Yes
obs 400 400 400 400 400
R2 0.0028 0.7928 0.7285 0.5229 0.3271

Note: *, **, *** are statistical significance at 10%, 5% and 1%, respectively. The numbers in parentheses represent
the value of T.

6.2. Endogeneity Test

In this paper, the control variables that may affect regional carbon dioxide emissions
and the fixed effects of regional and annual interference are added to the empirical model,
which can overcome the endogenous problems caused by missing variables to a certain
extent. This paper has confirmed that green innovation efficiency can significantly reduce
carbon dioxide emissions in the estimation results of each model. However, new technolo-
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gies and equipment invented by a region to reduce carbon dioxide emissions could boost
green innovation efficiency in the region. To overcome the endogeneity problem that may
be caused by mutual causality and improve the accuracy of estimation, this paper uses the
green innovation efficiency of a province other than itself as the instrumental variable of
green innovation efficiency, referring to the method of constructing instrumental variables
by Su Danni [40]. The rationality of this approach lies in the following aspects.

On one hand, the green innovation efficiency among different regions within a certain
province is closely related, and the provincial government should plan the overall situation
in the development process and not cut the innovation links among different regions. It
ensures the correlation between instrumental variables and core explanatory variables. On
the other hand, carbon dioxide emissions are carried out in the region, and the impact of
green innovation efficiency in other regions on carbon dioxide emissions in the region is
weak, which ensures the exogeneity between the instrumental variable and the explained
variable. Therefore, the tool variable is reasonable.

The results of two-stage least squares estimation (2SLS) using this instrumental vari-
able are shown in the first and second columns of Table 3. In the regression results of the
first stage, the instrumental variables passed the test at the significance level of 1%. The sec-
ond phase of the regression results show that increased green innovation efficiency reduced
carbon dioxide emissions and passed the test at the significance level of 5%. The statistics
of Cragg Donald Wald F and Kleibergen PAAP Wald F are 21.023 and 23.429, respectively,
which are greater than the critical value of 16.38. It can be considered that there is no weak
instrumental variable problem at the level of 10% dominance. This further proves that the
basic research conclusion of this paper is still stable after solving the endogenous problem.
That is, green innovation efficiency can significantly reduce carbon emissions in the Yangtze
River Delta region and promote early carbon peak carbon neutralization in the Yangtze
River Delta region. It is worth mentioning that the coefficient of green innovation efficiency
is higher than those of OLS regression and the fixed effect model in the regression results
of 2SLS with instrumental variables. This shows that endogenous problems caused by
bidirectional causality lead us to underestimate the effect of green innovation efficiency on
reducing carbon dioxide emissions.

6.3. Robustness Test

To eliminate the possible influence of extreme value samples on the conclusions of
this study, the whole sample is reduced by 5%. That is, we remove the highest 5% sample
and the lowest 5% sample of carbon dioxide emission, and then estimate Equation (1).
The results are shown in the third column of Table 3. The coefficient of green innovation
efficiency is still negative and passes the 5% level of dominance test, which confirms the
robustness of the conclusions of this paper.

6.4. Heterogeneity Analysis
6.4.1. Regional Heterogeneity

There are great differences in economic development, technological level, environmen-
tal conditions, and resource endowments among prefecture-level cities in the Yangtze River
Delta. Affected by regional location and administrative policies, there is a significant spatial
imbalance in the efficiency of green innovation in various regions. Teng Tangwei et al.
found that the green innovation efficiency of urban agglomeration in the Yangtze River
Delta was on the rise as a whole, but there was heterogeneity among cities [38]. Therefore,
on the basis of the above empirical analysis, this paper uses the two-stage least squares
method to group the samples according to the provinces in order to further explore the
heterogeneity of the quantitative contribution of green innovation efficiency to carbon peak
and carbon neutralization at the provincial level.
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Table 3. Results of two-stage least squares estimation.

Variable I II III

Instrumental
variable

0.4824 ***
(3.54) - -

gie - −0.3729 **
(2.38)

−0.1646 **
(−2.05)

pgdp −0.0022
(−1.21)

0.0035
(1.05)

0.0018
(0.98)

fdi 0.1250 ***
(3.90)

0.0143
(0.11)

−0.0985 **
(−2.48)

pop_density −0.1219 *
(−1.87)

0.3424 ***
(3.72)

−0.0105
(−0.04)

produ_aver 0.1927
(0.84)

1.9349 ***
(3.99)

0.7337 *
(1.70)

third_r −0.7287 *
(−1.81)

2.9064 ***
(4.66)

−1.3794 *
(−1.95)

so2 −2.74 × 10−7 **
(−2.19)

−1.36 × 10−7

(−0.39)
2.33 × 10−7 **

(2.89)

indu_dust −7.17 × 10−9

(−0.46)
−1.47 × 10−8

(−0.59)
2.28 × 10−8

(1.27)

indu_water −296.1486 ***
(−3.66)

−217.5439 *
(−1.93)

−264.6146 *
(−1.94)

pm2.5 −0.0013
(0.10)

−0.0007
(0.43)

−0.0004
(−1.55)

ti 1.167022
(0.99)

9.0269 ***
(3.82)

2.67374
(1.50)

firm_gs 0.0001 **
(2.13)

0.0001 ***
(4.23)

0.0001 *
(1.83)

greenland −0.1616 ***
(−4.47)

0.0458
(1.61)

0.0503
(1.12)

year Yes Yes Yes
area Yes Yes Yes
obs 400 400 340
R2 - 0.7462 0.3255

Note: *, **, *** are statistical significance at 10%, 5% and 1%, respectively. The numbers in parentheses represent
the value of T.

The regression results are shown in Table 4. The regression results show that the
coefficient of green innovation efficiency is −0.0034 and does not pass the significance
test for Jiangsu Province. Green innovation efficiency in Jiangsu Province can reduce
carbon dioxide emissions, but the effect is not obvious. The reason may be that the overall
innovation level of Jiangsu Province is high, and the environment is in good condition,
which is on the right side of the turning point of the Environmental Kuznets Curve.
Therefore, the constraint effect of green innovation efficiency on carbon emissions in Jiangsu
Province is weak. For Zhejiang and Anhui Provinces, the coefficients of green innovation
efficiency are −0.1536 * and −0.1144 * respectively, which have passed the test at the level
of 10% aboriginality and are greater than the regression coefficients of Jiangsu Province. It
shows that the effect of green innovation efficiency on reducing carbon dioxide emission is
stronger in Anhui and Zhejiang Provinces compared with Jiangsu Province. The possible
reason for this is that the industrial intensity effect has inhibited the growth of carbon
emissions for most prefecture-level cities in Anhui Province and Zhejiang Province [29].
The improvement of green innovation efficiency can force enterprises to eliminate backward
production capacity, and make their industrial structure show a continuous optimization
trend, so as to improve environmental quality and contribute to carbon emission reduction.
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Table 4. Regional heterogeneity analysis.

(1) (2) (3) (4)
Variable Shanghai Jiangsu Zhejiang Anhui

gie −0.1811 ***
(4.02)

−0.0034
(1.23)

−0.1536 *
(−1.89)

−0.1144 *
(−1.77)

control variables control control control control
year Yes Yes Yes Yes
area Yes Yes Yes Yes
obs 10 120 110 160

Centered R2 0.0028 0.9587 0.9516 0.9538
Note: *, *** are statistical significance at 10%, and 1%, respectively. The numbers in parentheses represent the
value of T.

6.4.2. Heterogeneity under Different Carbon Emissions

Based on the above empirical analysis, to further explore whether the effect of green
innovation efficiency on carbon emissions is heterogeneous under different carbon emission
distributions, this paper uses the panel quantile model proposed by Powell to describe
the overall conditional distribution of carbon emissions through quantile regression and
estimates the effect of green innovation efficiency on carbon emission reduction under the
conditional distribution. Considering the endogeneity problem, the panel quantile model
still adopts the mean value of the green innovation efficiency of a city’s province in addition
to itself as a tool variable of green innovation efficiency. Additionally, this paper uses the
Markov chain Monte Carlo algorithm to estimate parameters. The estimation results of the
panel quantile model are shown in Table 5.

Table 5. Results of panel quantile regression.

Variable 10th 20th 30th 40th 50th 60th 70th 80th 90th

gie −0.185 *
(−1.89)

−0.278 ***
(−3.03)

−0.294 **
(−2.55)

−0.313 **
(−2.21)

−0.347 ***
(−4.29)

−0.361 ***
(−3.47)

−0.359 ***
(−3.78)

−0.333 ***
(−3.84)

−0.272 **
(−2.38)

control
variables control control control control control control control control control

year Yes Yes Yes Yes Yes Yes Yes Yes Yes
area Yes Yes Yes Yes Yes Yes Yes Yes Yes
obs 400 400 400 400 400 400 400 400 400

Pseudo
R2 0.5714 0.5670 0.5564 0.5514 0.5633 0.5839 0.6051 0.6142 0.6298

Note: *, **, *** are statistical significance at 10%, 5% and 1%, respectively. The numbers in parentheses represent
the value of T.

It can be seen from Table 5 that the impact of green innovation efficiency on carbon
emissions has obvious heterogeneity among different quantiles. It still supports the basic
conclusion that green innovation efficiency can promote carbon emission reduction. In
Figure 5, the effect of green innovation efficiency on carbon emissions at different quantiles
is the “inverted u-shaped” shape. Under different carbon emission distributions, the
impact intensity is different, and the impact intensity in the medium carbon emission
cities is greater than that in the lower carbon emission cities and higher carbon emission
cities. Specifically, at the 50th, 60th, and 70th quantiles, which correspond to the medium
carbon emission cities, the estimated coefficients on gie are −0.347, −0.361 and −0.359
and significant at the 1% level, respectively. It shows that green innovation efficiency has
the strongest effect on emission reduction in cities with medium carbon emissions. The
reason for this may be that low-carbon urban carbon emissions are relatively low and close
to carbon neutralization. However, the reasons for restricting high-carbon-emission cities
are complex, which may include resource endowment, development mode and policy
reasons. Therefore, the constraint effect of green innovation efficiency on carbon emissions
of low-carbon cities and high-carbon cities is relatively weak. The reason may be that the
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carbon emission level of low-carbon cities is relatively low. Through the adjustment of
industrial structure, the original high-energy consuming industries gradually withdraw
through relocation and rectification, and the proportion of emerging manufacturing and
digital industries in GDP increases [39]. Due to the small space for improving the efficiency
of green innovation, the effect of improving the efficiency of green innovation on carbon
emission reduction is weak. The reasons that restrict high carbon emission cities are more
complex, which may include resource endowment, development mode and policy reasons.
Therefore, the efficiency of green innovation has a weak restrictive effect on the carbon
emissions of low-carbon-emission cities.
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Figure 5. The coefficients of gie in quantile regression.

7. Research Conclusions and Policy Recommendations
7.1. Research Conclusions

Based on the panel data of prefecture-level cities in the Yangtze River Delta from 2010
to 2019, this paper empirically explores the quantitative contribution of green innovation
efficiency to carbon peaking and carbon neutralization in the Yangtze River Delta by
using OLS regression, fixed effect model and two-stage least square estimation method.
The conclusions are as follows: the green innovation efficiency can significantly reduce
carbon emissions in the Yangtze River Delta, promote carbon emissions in the Yangtze
River Delta to reach the peak as soon as possible, and realize the long-term goal of carbon
neutralization as soon as possible. Additionally, this conclusion is still stable after solving
the endogenous problem and the influence of outliers. In addition, the effects of green
innovation efficiency on carbon emission reduction in Anhui and Zhejiang Provinces are
remarkable, and the effect on Zhejiang Province is greater than that of Anhui Province
at the provincial level. Moreover, the impact of green innovation efficiency on carbon
emissions has obvious heterogeneity between different quantiles, showing an “inverted U”
shape, and its intensity in the context of medium carbon emissions is greater than that of
low and high carbon emissions.

7.2. Policy Recommendations

According to the research conclusion of this paper, improving the efficiency of green
innovation is an important measure to reduce carbon dioxide emissions in the Yangtze
River Delta region and realize the carbon neutralization of carbon peak at an early date.

(1) In this regard, governments at all levels should improve policies and measures,
focus on the adjustment and transformation of traditional industries and the development
of new energy, energy conservation and environmental protection and other emerging
industries, strengthen the research and development of green innovative technologies,
establish and improve the internal incentive mechanism for green technological innovation,
and stimulate the endogenous driving force of green innovation.
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(2) There is regional heterogeneity in the emission reduction effect of green innovation
efficiency, so the regional gap of three provinces and one city in the Yangtze River Delta
should be taken into account when formulating the strategic goal of carbon peaking and
carbon neutralization. We should strengthen provincial planning, actively guide cities
with high green innovation efficiency and cities with low green innovation efficiency to
carry out various forms of innovation cooperation and exchange, and form a good inter
regional collaborative innovation mechanism. Take effective measures to reduce emissions
according to local conditions.

(3) For regions with high carbon emissions, in addition to taking measures to improve
the efficiency of green innovation, we should actively develop advanced green and low-
carbon environmental protection technologies, adjust the industrial structure and energy
structure, promote the transformation and upgrading of industrial structure, formulate
practical emission reduction plans, improve management systems, strengthen institutional
incentives, and promote the real implementation of the carbon peak goal in combination
with our own resource endowment and development reality. For low-carbon emission areas,
improving the efficiency of green innovation has little effect on carbon dioxide emission
reduction. Therefore, we should speed up the transformation of economic development
mode and cultivate new, environment-friendly and sustainable economic growth points.

7.3. Limitations and Prospect

There are some deficiencies in this paper: (1) This paper measures the efficiency of
green innovation with the help of the unexpected super SBM model. On this basis, this
paper combines a fixed effect model, a two-stage least square estimation method and
a panel quantile model to carry out research. Although the estimation results are well
explained, this article does not take into account the possible spatial effects of variables.
(2) The Yangtze River Delta region is increasingly showing a multi-center, networked spatial
development phenomenon. However, this paper uses urban panel data and takes cities as
independent samples, and has not considered the possible impact of the networked pattern
of urban agglomeration in the Yangtze River Delta on variables.

Therefore, in the next study, the possible spatial spillover effects of carbon emissions
and green innovation efficiency will be fully considered, and the research will be carried
out in combination with the current situation of the multi-center network of the Yangtze
River Delta urban agglomeration. We expect to draw more meaningful conclusions in the
next study, which will supplement and improve the research of this paper.
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