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Abstract: Accounting for the growing numbers of injuries, fatalities, and property damage, rear-
end crashes are an urgent and serious topic nowadays. The vehicle number involved in one crash
significantly affected the injury severity outcomes of rear-end crashes. To examine the transferability
and heterogeneity across crash types (two-vehicle versus multi-vehicle) and spatiotemporal stability
of determinants affecting the injury severity of freeway rear-end crashes, this study modeled the data
of crashes on the Beijing-Shanghai Freeway and Changchun-Shenzhen Freeway across 2014–2019.
Accommodating the heterogeneity in the means and variances, the random parameters logit model
was proposed to estimate three potential crash injury severity outcomes (no injury, minor injury, and
severe injury) and identify the determinants in terms of the driver, vehicle, roadway, environment,
temporal, spatial, traffic, and crash characteristics. The likelihood ratio tests revealed that the effects of
factors differed significantly depending on crash type, time, and freeway. Significant variations were
observed in the marginal effects of determinants between two-vehicle and multi-vehicle freeway rear-
end crashes. Then, spatiotemporal instability was reported in several determinants, including trucks
early morning. In addition, the heterogeneity in means and variances of the random parameters
revealing the interactions of random parameters and other insignificant variables suggested the
higher risk of determinants including speeding indicators, early morning, evening time, and rainy
weather conditions. The current finding accounting for spatiotemporal instability could help freeway
designers, decision-makers, management strategies to understand the contributing mechanisms of
the factors to develop effective management strategies and measurements.

Keywords: injury severity; spatiotemporal stability; freeway rear-end crashes; random parameters
logit model

1. Introduction

Currently, traffic crash leads to a great number of incapacitating injuries and fatalities,
along with property damages, posing tremendous economic and emotional burden on
society. Roadway traffic caused 1.35 million deaths in 2016, and the death rate in low-
income countries remained 3 times higher than that in high-income countries [1]. As
one of the most prevalent traffic crash types, rear-end crashes result in a large number
of severe injuries and fatalities. The main causes of rear-end crashes are attributed to
careless driving and close car-following behaviors [2], where the rear side of the front
vehicle is hit by the front side of the following vehicle [3]. In the U.S., almost 3.41 million
rear-end crashes occurred in 2020, involving 3000 fatalities and 1.386 million injuries [4]. In
China, traffic crashes caused 63,772 fatalities in 2017, of which 9.6% suffered from rear-end
crashes, along with 16,409 injuries [5]. Therefore, special research efforts should be devoted
to exploring the internal mechanisms of and identifying contributing factors to freeway
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rear-end crashes, and to put forward effective measurements for minimizing the risk and
severity of rear-end crashes.

Recent research efforts confirmed that a variety of indicator variables in terms of driver,
vehicle, roadway, environmental, temporal, etc., characteristics have been used to analyze
the injury-severity outcomes of rear-end crashes (a specific literature review on findings
regarding rear-end crashes will be discussed later in Section 2.1) [6,7]. For instance, Zhang
and Hassan [8] concluded that driving at nighttime during weekends is highly related to
injury and fatal rear-end crashes. Furthermore, rainfall conditions tended to increase the
injury-severity levels of rear-end crashes [9]. In addition, the number of vehicles involved
in a crash has been significantly identified to be a major precursor in increasing the risk
propensity and the resultant injury severity levels of rear-end crashes [10,11], while the
rear-end crashes classified by this element have not been examined at a disaggregate level.
Despite these efforts, it cannot be denied that explicit understanding of unobserved hetero-
geneity and spatiotemporal variations in rear-end crashes, particularly those classified as
two-vehicle and multi-vehicle crashes, is insufficient.

Unobserved heterogeneity has been examined by a growing body of studies, which
might result from the unavailability of factors reported in the police-reported data [12].
Regarded as an essential factor, unobserved heterogeneity leads to variations in the crash
injury level of individual drivers due to different physical and mental abilities, percep-
tions of risk, and reactions to potential hazards [6,13–15]. To account for the unobserved
heterogeneity across groups and observations, the random parameters approach and its
extension have been proposed in recent research efforts [12,16,17]. Whereas the random pa-
rameter logit models with heterogeneity in means and variances indicated their superiority
and accuracy by accounting for unobserved heterogeneity, leading to biased estimation
results [7,18], which will be proposed in this study.

Given the research efforts mentioned above, the overall intent of this study is to
explore the spatiotemporal instability in the contributing factors to the injury severity levels
of freeway rear-end crashes, along with the different internal mechanisms of two-vehicle
and multi-vehicle rear-end crashes. Then, it is critical to gain a better understanding of by
what degrees the effects of contributing factors of rear-end crashes will change over time
and space, which could be useful for roadway designers, decision makers, and freeway
management to facilitate proper countermeasures. Hence, the authors are particularly
interested in the following problems: (i) How did the contributing factors to the injury-
severity outcomes vary in the two-vehicle and multi-vehicle rear-end crashes? How did the
effects of these variables change across the crash type? (ii) Are the effects of determinants
stable, temporally or spatially, in two-vehicle and multi-vehicle rear-end crashes? Whether
the models can be transferable to other freeways in China? (iii) What contributions do
spatiotemporal instability and related findings make? How can countermeasures address
the spatiotemporal instability, targeted at different time periods and freeways?

Thus, random parameters logit models with heterogeneity in means and variances
were proposed to examine the contributing factors using crash data from Beijing-Shanghai
Freeway and Changchun-Shenzhen Freeway across 2014 to 2019. The remainder of this
study is structured as follows. Section 2 summarizes the previous research efforts analyzing
the rear-end crashes and reviews the approaches accounting for unobserved heterogeneity.
Section 3 presents the descriptions of crash dataset. The proposed methodological method
is shown in Section 4. Section 5 demonstrates the transferability test results. Section 6 illus-
trates the discussions and interpretations of the estimated results, followed by conclusions
shown in Section 7.

2. Literature Review
2.1. Literature Review on Previous Research Efforts Analyzing Rear-End Crashes

A large body of research effort has been proposed to examine the contributing factors
to injury severity outcomes in rear-end crashes. Table 1 l summarizes the findings in
previous research efforts regarding rear-end crashes, while the contributing factors are
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classified into six categories: driver, vehicle, roadway, environmental, temporal, and
traffic characteristics. Several inconsistent findings were reported in previous research
efforts. Take the number of vehicles. For instance, two-vehicle crashes were reported
by Chen et al. [19] to be the most common rear-end type leading to fatalities. In contrast,
Yu et al. [7] illustrated that the two-vehicle indicator was related to a lower possibility of
severe injuries. Most previous research efforts focused on rear-end crashes that occurred in
work zones or on rural roadways, with only a few studies focusing on freeway rear-end
crashes. Furthermore, the recent study tends to examine the injury severities of rear-end
crashes that occurred in China’s freeways to explore and elucidate the potential differences
in crash mechanisms driven by different driving environments.

Table 1. A summary of findings in previous research efforts regarding rear-end crashes.

Variable Names Findings

Driver characteristics

Gender

Inconsistent findings have been demonstrated about the effects of gender on the injury severity in
different types of crashes [12,15,20]. However, a limited body of studies exclusively analyzed the
effects of rear-end crashes on injury severity. For instance, Zhang and Hassan [8] indicated that
male drivers increased the possibility of fatal rear-end crashes compared to female drivers.

Age

In the research efforts of Chen et al. [10] and Chen et al. [19], age showed statistically
insignificance in rear-end crashes, whereas Zhang and Hassan [8] demonstrated that young
drivers are related to fatal outcomes in rear-end crashes. Yu et al. [7] illustrated that young (<25)
and middle-aged (25–60) drivers tend to cause less severe injuries in rear-end crashes in
work zones.

Alcohol or medicine The involvement of alcohol or medicine significantly increased the frequency of more severe
injuries in rear-end crashes [7,11].

Vehicle characteristics

Vehicle type

Heavy vehicles were found to be associated with more severe injury outcomes. For example, the
involvement of trucks increased the possibility of more severe injury outcomes [10,11]. Heavy
trucks were also found to be significant in predicting drivers’ fatalities [19]. Passenger cars
increased the possibility of injury, whereas sports utility vehicles only increased the possibility of
property damage [7].

Number of vehicles

Previous studies also indicated inconsistences on the effects of the number of vehicles.
Two-vehicle crashes are identified as the most common rear-end type causing fatalities [19], while
Yu et al. [7] reported that two-vehicle collisions lead to a lower possibility of severe-injury
outcomes in the rear-end crashes.

Roadway characteristics

Roadway geometry More severe injury severity outcomes occurred on the curved segments [8]. The probability of
rear-end crashes is related to the length of the longitudinal slope [21].

Speed limit
Speeding was statistically significant in fatal crashes in work zones, whereas the higher speed
limit was related to severe outcomes in rear-end crashes [8]. Yu et al. [7] also reported that the
speed limit is positively related to injury and possible injury possibility.

Number of lanes Two-lane roadways were positively related to the fatalities in rear-end crashes [19].

Environmental characteristics

Weather condition
As expected, rainfall conditions increase the severity levels of rear-end crashes [9], and windy
weather is related to more severe injury outcomes for occupants in rear-end crashes [10,19].
However, foggy weather tends to mitigate the injury severity in work zone rear-end crashes [8].

Pavement condition A counterintuitive finding was reported by Qi et al. [11], in which the authors demonstrated that
rear-end collisions occurring on slippery roadways caused less severe outcomes.
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Table 1. Cont.

Variable Names Findings

Temporal characteristics

Time of day The propensity of daytime rear-end crashes is distinctly higher than that during the night [2,22].
The dusk and dawn time tends to decrease slightly the likelihood of injury [10].

Weekdays Driving at night on weekends was strongly associated with injury and fatal outcomes
in rear-end collisions [8].

Traffic characteristics

Traffic volume

The average daily traffic volumes significantly affect the occurrences of urban rear-end
crashes [23]. Weng et al. [24] also reported that greater traffic volume will increase the risk
propensity of work zone rear-end crashes. Wang et al. [6] illustrated that the average annual daily
traffic volumes are positively related to severe and fatal rear-end crashes.

2.2. Literature Review on Approaches for Unobserved Heterogeneity

Table 2 summarizes the methodological approaches proposed to examine the injury
severity of rear-end crashes. These approaches can be classified into two major classi-
fications: statistical methods and data-driven methods; and possible trade-offs always
exist between predictive and inference capabilities [25]. Overall, the statistical methods
indicated the superiority of explaining potential associations between the contributors and
resultant injury severities, while the data-driven methods are more capable of predicting
the injury outcomes in the crashes. Previous research efforts have reviewed comprehensive
studies accounting for unobserved heterogeneity and temporal stability. (As shown in the
review works of Mannering [26], the temporal instability refers to whether the effects of
explanatory variables remain stable over time in psychology, neuroscience, economics, and
cognitive science. Furthermore, the issues have been confirmed by multiple accident-data
analyses, which are not associated with Lapunov stability.) [12,26]. As an extension of the
random-parameters methods, the approaches accounting for heterogeneity in the means
and variances can provide much more flexibility in tracking the unobserved heterogeneity,
showing statistical superiority in terms of accuracy and reduced heterogeneity [13,16,18].
Furthermore, temporal instability has been confirmed by an abundance of research efforts as
significant crash contributors can be inconsistent in different years. Ignoring such instability
might lead to inadequate estimated results, erroneous conclusions, and ineffective or even
dangerous safety policies [26]. Behnood and Mannering [20] demonstrated the existence of
temporal instability in the effects of factors influencing injury severity in large-truck vehicle
crashes across time of day and year. Islam and Mannering [27] demonstrated significant
differences in driver-injuries between aggressive and non-aggressive driving, while the
effects of the determinants changed significantly over time. Nevertheless, other than tem-
poral stability, spatial variation remains another problem that cannot be underestimated in
safety research. Recent research efforts have proved that biased estimation results might
also be attributed to regional differences producing potential heterogeneity in the spatial
transferability issues in crash analysis [18,26,28,29], incorporating freeway segments [30],
urban arterials [31], urbanized areas [32], counties [33], provinces [34], etc. It is worthwhile
to pay additional attention to the effects of contributing factors on injury-severities through
integrating temporal and spatial dimensions simultaneously.
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Table 2. A summary of methodological approaches used for analysis on rear-end crashes.

Methodological Approaches Previous Research

Statistical methods
Nested logit model Abdel-Aty and Abdelwahab [33]
Stepwise regression Meng and Weng [35]
Ordered probit model Ghasemzadeh and Ahmed [36]
Random-parameters ordered probit model Zhang and Hassan [8]
Mixed probit model Weng et al. [24]
Markov switching multinomial logit model Malyshkina and Mannering [37]
Random-parameters logit with heterogeneity in means
and variances Yu et al. [7]

Data-driven methods
Binary classification tree and logistic regression models Yan et al. [22]
Decision table/Naïve Bayes (DTNB) hybrid classifier Chen et al. [19]
Support vector machine and mixed logit model Ahmadi et al. [38]
Decision Tree Approach Champahom et al. [39]

3. Data Description

Data available in this study were collected from two four-lane national freeways over
2014–2019:The Beijing-Shanghai Freeway (G2) in Jiangsu Province is 259.5 km long and has
a design speed of 120 km/h; (ii) the Changchun-Shenzhen Freeway (G25) in Guangzhou
Province is 232.7 km long and has a design speed of 100 km/h. Table 3 and Figure 1
reported three injury severity classifications in the dataset: severe injury, minor injury, and
no injury (property damage only). It should be noted that this study intends to explore
the temporal variations in freeway rear-end crashes, and the dataset was split into three
sub-datasets: 2014–2015, 2016–2017, and 2018–2019. Tables 1 and 2 presented the variables
for rear-end crashes on the G2 and G25 Freeways, respectively.
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Table 3. Two-vehicle and multi-vehicle rear-end crashes statistics in Beijing-Shanghai Freeway (G2)
and Changchun-Shenzhen Freeway (G25) over 2014–2019.

Subgroup
Severe Injury Minor Injury No Injury Total

G2 G25 G2 G25 G2 G25 G2 G25

2014–2015
Two-Vehicle 79 67 129 117 495 331 703 515

Multi-Vehicle 88 77 131 147 476 365 695 589

2016–2017
Two-Vehicle 87 75 135 139 517 347 739 561

Multi-Vehicle 98 85 158 175 512 372 768 632

2018–2019
Two-Vehicle 91 79 180 185 501 357 772 621

Multi-Vehicle 103 97 205 224 514 391 822 712

4. Methodology

This paper utilized the random parameters multinomial logit model with heterogeneity
in the means and variance to estimate the potential heterogeneity and spatiotemporal
stability in the contributing factors affecting the injury severity of two-vehicle and multi-
vehicle freeway rear-end crashes. Considering three injury severity levels, including severe
injury, minor injury, and no injury, the utility function determining the probability density
is specified as [14,40]:

Sij = βiXij + εij (1)

where Sij represents a function determining the probability of injury severity outcome i in a
rear-end crash j, Xij is a vector of explanatory variables, βi is the estimated parameter, while
εij is an assumption of the error term following the generalized extreme value distribution.
The adopted level of significance in the current study is 95%.

Supposing that εij follows the extreme-value distribution, a standard multinomial
logit model can be defined as:

Pij =
∫ eβiXij

∑ eβiXij
f (β|ϕ)dβ (2)

where f (β|ϕ) denotes the probability density function of the random vectorβ, andϕ repre-
sents the mean and variance, determining the parameters of the probability density function.

Based on Seraneeprakarn et al. [41], the random parameters accounting for hetero-
geneity in the mean and variance are specified as:

βij = βi + δijMij + σije
ωijDij νij (3)

where Mij and Dij represent vectors capturing heterogeneity in means and standard devia-
tion σij with corresponding parameter vectorωij for injury severity i in crash j, respectively,
δij is a corresponding vector of the estimable parameters, while νij is a disturbance term.
The Mij and Dij characterize the attributes of heterogeneity regarding the driver, vehicle,
roadway, environmental, temporal, spatial, traffic, and crash characteristics. If the random-
parameters logit model is significant in the vector of Mij and Dij, the model characterizes
the unobserved heterogeneity in the means and variances. If no variables are statistically
significant in the vector Mij, the model represents only heterogeneity in means.

During model estimation, various density functions (e.g., uniform, lognormal, and
triangular) have been evaluated for the distributions of the random parameters. Then the
normal distribution can provide a better statistical fit than others (consistent with past
research efforts such as Milton et al. [17], Behnood and Al-Bdairi [41], which was utilized
in this current study). The Halton sampling approach was proposed in this paper to
optimize prediction performance and efficiency [42]. After utilizing a simulated maximum
likelihood approach with different Halton draws, the 1000 Halton draws were proposed
in the parameter estimation after the trade-off between computation simulation efficiency
and estimation performance [41].
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The log-likelihood function (LL) is more convenient than original likelihood functions
to work with when taking the derivative of a function and solving for the parameter being
maximized, which was utilized in this study [17] to examine the model estimation. It is
defined as:

LL = ∑N
n=1(∑

I
i=1 σij[βiXij − LN ∑

∀I
eβIXI j ]) (4)

where I denotes the total number of injury severity outcomes, and other notations and
symbols are as defined previously.

5. Transferability Tests

A large body of research shows that the effects of contributing factors can change
over time [26,27] and vary in different spaces [18,28,29], demonstrating temporal and
spatial instability. From a spatial perspective, transferability is desirable because it means
that parameters of models estimated in other places can be used, thus saving the cost of
additional data collection and estimation. Temporal transferability ensures that forecasts
made with the model have some validity in that the estimated parameters are stable over
time [26].

This study proposed five series of likelihood ratio tests (LRT), including two series
of tests for temporal stability and two for spatial stability, followed by another series of
transferability tests across two-vehicle and multi-vehicle freeway rear-end crashes.

The first temporal stability tests were utilized to explore whether the parameter
estimation for two individual years remained the same across these years [14]:

χ2
t1
= −2[LL

(
βy1y2

)
− LL

(
βy1

)
] (5)

where, LL
(
βy1y2

)
represents the log-likelihood at convergence of the model incorporat-

ing parameters from y2 while using data from subgroup y1 (2014–2015, 2016–2017 and
2018–2019), while LL

(
βy1

)
denotes the log-likelihood at convergence of the model using

subgroup y1’s data.
The y1 subgroup and y2 subgroup can be reversed to provide two test results for

comparison. The resulting χ2 value under the X2 distribution (with degrees of freedom
equal to the number of estimated parameters in model βy1y2

[14]) can be used to explore
whether the null hypothesis that the parameters are equal between two year-period data
can be accepted or rejected at the confidence level [13]. The likelihood ratio test results
of the null hypothesis in G2 models for two-vehicle and multi-vehicle freeway rear-end
crashes, respectively, have been presented in Tables 4 and 5. While Tables 6 and 7 showed
the results for G25 models. Specifically, in G2 two-vehicle rear-end crash models, using the
converged parameters of the 2016–2017 model as the starting values and applying them to
2014–2015 data gave an χ2 value of 82.20 with 15 degrees of freedom, showing that the null
hypothesis under 99.99% confidence level that the two time periods remain the same can
be rejected. Overall, these results demonstrated that the null hypothesis that under >99%
confidence the different year tested produced equal parameters can be rejected, which
is consistent with recent literature works analyzing the injury severity by different time
periods [13,14,20].
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Table 4. Results of LRT across year periods (two-vehicle G2 rear-end crash models).

y1
y2

2014–2015 2016–2017 2018–2019

2014–2015 – 82.20 (15)
[>99.99%]

112.39 (10)
[>99.99%]

2016–2017 145.05 (12)
[>99.99%] – 91.74 (10)

[>99.99%]

2018–2019 135.49 (12)
[>99.99%]

206.01 (15)
[>99.99%] –

Table 5. Results of LRT across year periods (multi-vehicle G2 rear-end crash models).

y1
y2

2014–2015 2016–2017 2018–2019

2014–2015 – 85.64 (14)
[>99.99%]

66.37 (7)
[>99.99%]

2016–2017 160.78 (9)
[>99.99%] – 168.66 (7)

[>99.99%]

2018–2019 297.63 (9)
[>99.99%]

426.85 (14)
[>99.99%] –

Table 6. Results of LRT across year periods (two-vehicle G25 rear-end crash models).

y1
y2

2014–2015 2016–2017 2018–2019

2014–2015 – 102.90 (10)
[>99.99%]

110.33 (12)
[>99.99%]

2016–2017 108.56 (13)
[>99.99%] – 124.83 (12)

[>99.99%]

2018–2019 144.84 (13)
[>99.99%]

135.62 (10)
[>99.99%] –

Table 7. Results of LRT between different year periods (multi-vehicle G25 rear-end crash models).

y1
y2

2014–2015 2016–2017 2018–2019

2014–2015 – 121.28 (9)
[>99.99%]

104.96 (16)
[>99.99%]

2016–2017 74.94 (10)
[>99.99%] – 79.71 (16)

[>99.99%]

2018–2019 147.83 (10)
[>99.99%]

119.47 (9)
[>99.99%] –

Moreover, the temporal stability was examined by utilizing another series of likelihood
ratio tests between the joint and each individual model [13,27]:

χ2
t2
= −2[LL

(
β2014−2019,g,s

)
−∑2019

2014 LL(βt,g,s)] (6)

where LL
(
β2014−2019,g,s

)
represents the convergent log-likelihood in the model for crash

group g (two-vehicle, multi-vehicle freeway rear-end crashes) on the freeway s (G2, G25)
for the three period combinations, while LL

(
βt,g,s

)
denotes the convergent log-likelihood

in the models for crash group g in the freeway s adopting only one period t (2014–2015,
2016–2017, and 2018–2019) data. For two-vehicle and multi-vehicle freeway rear-end
crashes, the G2 model estimates give an χ2 values of 268.95 and 215.68 under 38 and
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36 degrees of freedom (The degrees of freedom equal to the summation of statistically
significant parameters in each year minus the number of statistically significant parameters
in the overall model, which are the same in Equations (6)–(8).). The G25 model estimates
gave χ2 values of 184.68 and 226.74 with 32 and 31 degrees of freedom, respectively, for
two-vehicle and multi-vehicle freeway rear-end crashes. These results also indicated that
the null hypothesis temporal stability of separate G2 and G25 models can be rejected under
99.99% confidence.

The following two series of likelihood ratio tests were developed to estimate the spatial
stability across the G2 and G25 models. The first one can be implemented with:

χ2
s1
= −2[LL

(
βjoint,g,t

)
− LL

(
βG2,g,t

)
− LL

(
βG25,g,t

)
] (7)

where, LL
(
βjoint,g,t

)
represents the convergent log-likelihood of the model for crash group

g (two-vehicle, multi-vehicle freeway rear-end crashes) on the two freeways in year t
(2014–2015, 2016–2017, and 2018–2019), LL

(
βG2,g,t

)
, and LL

(
βG25,g,t

)
denotes the con-

vergent log-likelihood in the models for the crash group g in the two freeways in year t,
respectively. Then, this study obtained six test results, which could be adopted to examine
the transferability of estimated G2 and G25 crash models. For two-vehicle (multi-vehicle)
freeway rear-end crashes, the χ2 gave test results of 187.95 (148.51), 119.62 (165.84), and
106.87 (194.85) with 32 (25), 24 (31), and 23 (33) degrees of freedom in 2014–2015, 2016–2017,
and 2018–2019 respectively, specifying that the null hypothesis that G2 and G25 models are
the same can be rejected with >99.99% confidence.

Otherwise, the second series of spatial transferability can be specified as:

χ2
s2
= −2[LL

(
βG2g,t ,G25g,t

)
− LL

(
βG2g,t

)
] (8)

where LL
(
βG2g,t ,G25g,t

)
represents the convergent log-likelihood of the model containing

parameters for crash group g (two-vehicle, multi-vehicle freeway rear-end crash) from
G25 dataset in year t (2014–2015, 2016–2017, and 2018–2019), and LL

(
βG2g,t

)
denotes the

convergent log-likelihood of the model adopting the G2’s data in year t. Then, the test
was also conducted by reversing the G2 subgroup and the G25 subgroup to obtain two
test results for each model comparison. Using G2’s data to fit the parameters of G25’s
model, the χ2 test gave results of 168.97 (115.68), 129.68 (154.25), and 129.84 (135.14) with
15 (8), 9 (13), and 9 (10) degrees of freedom for two-vehicle (multi-vehicle) freeway rear-end
crashes in 2014–2015, 2016–2017, and 2018–2019, respectively. Otherwise, the χ2 test results
using G25’s data in G2 model gave values of 2014–2015, 2016–2017, and 2018–2019 were
187.35 (129.65), 162.38 (135.68), and 116.84 (108.94) with 18 (10), 14 (12), and 9 (8) degrees
of freedom for two-vehicle (multi-vehicle) freeway rear-end crashes, respectively. These
results both indicate that the null hypothesis for both the G2 and G25 models are the
same and can be rejected with >99.99% confidence. This result is also consistent with
previous studies analyzing the injury severity model across different spaces, including
rural highways [43] and states [29].

Lastly, transferability tests across two-vehicle and multi-vehicle freeway rear-end
crashes can be estimated as [27,41]:

χ2
g = −2[LL

(
βjoint,t,s

)
− LL

(
βtwo−vehicle,t,s

)
− LL

(
βmulti−vehicle,t,s

)
] (9)

where LL
(
βjoint,t,s

)
represents the convergent log-likelihood of the model with both

the two-vehicle and multi-vehicle freeway rear-end crashes of the freeway s in year t
(2014–2015, 2016–2017, and 2018–2019), and LL

(
βtwo−vehicle,t,s

)
(LL
(
βmulti−vehicle,t,s

)
) repre-

sents the convergent log-likelihood of two-vehicle (multi-vehicle) freeway rear-end crashes
model on the freeway s in year t. According to this, 12 test results were obtained to test the
transferability of estimated models across two-vehicle and multi-vehicle freeway rear-end
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crashes models. The χ2 test results for two-vehicle (multi-vehicle) freeway rear-end crashes
in G2 model of 2014–2015, 2016–2017, and 2018–2019 were 198.51 (158.68), 169.84 (128.48),
and 126.87 (157.98) with 18 (14), 15 (12), and 12 (14) degrees of freedom, respectively.
Regarding the G25 model, the χ2 results for two-vehicle (multi-vehicle) freeway rear-end
crashes were 185.68 (154.51), 152.85 (163.41), and 165.47 (147.85) with 17 (14), 14 (15), and
15 (14) degrees of freedom, respectively. The results demonstrated that the null hypothesis
that the truck-involved and non-truck-involved crashes model remain the same should be
rejected under >99.99% confidence.

Above all, the transferability test results indicated the temporal instability, spatial
instability, and transferability test across different crash types.

6. Results and Discussion

Table 3 indicates the estimated result comparisons among four models: the base
multinomial logit model (MNL), the random parameters logit model (RPL), the random
parameters logit model with heterogeneity in the mean (RPLM), and the random parameters
logit model with heterogeneity in the mean and variances (RPLMV). The good-of-fitness
is compared based on the ρ2 values and the χ2 test [44,45]. The ρ2 values and χ2 test
results can reflect that the random parameter logit model with heterogeneity in the means
and variances (RPLMV) outperformed the other three models (with higher ρ2 values and
over 95% confidence interval to reject the null hypothesis that the RPLMV remains the
same as the other three models), while the subsequent discussion will be utilized based on
the RPLMV.

Based on the RPLMV, the estimation results for two-vehicle and multi-vehicle rear-
end crashes in the years 2014–2019 were displayed respectively in Tables 4 and 5. The
two-vehicle freeway rear-end model obtained ρ2 values of 0.703, 0.655, and 0.640 for years
2014–2015, 2016–2017, and 2018–2019, respectively. The multi-vehicle freeway rear-end
model reported ρ2 values of 0.709, 0.657, and 0.711 in the corresponding years. The
results demonstrated that most of the variables stayed spatiotemporal instable and non-
transferable between two-vehicle and multi-vehicle freeway rear-end crashes. To distinctly
examine the spatiotemporal instability, the marginal effects of variables pertaining to the
injury outcomes were summarized in Tables 6 and 7.

6.1. Driver Characteristics

Showing spatiotemporal instability, safety (1 if speeding, 0 otherwise) was only statis-
tically significant in the 2016–2017 G2 two-vehicle rear-end model (estimated parameter of
−0.529 in Table 4). Consistent with previous research [8], the speeding tended to increase
the injury levels (decreased likelihood of no injury and increased probabilities of minor
and severe injury).

Moreover, safety (1 if improper action, 0 otherwise) was not significant in any of
the models.

6.2. Vehicle Characteristics

For vehicle types, passenger cars, trucks, and heavy trucks were identified as signifi-
cant variables determining injury severity levels.

As shown in Tables 5 and 7, the passenger car was only significant in 2016–2017/2018–2019
G25 multi-vehicle freeway rear-end crashes, showing consistent effects on no injury and
minor injury levels (positive marginal values on no injury and negative marginal values).
However, the passenger car indicator increased the severe injury likelihood by 1.26%
in 2016–2017 while decreasing the corresponding likelihood by 0.15% in 2018–2019 (see
Table 7).

Inconsistent values also existed in the effects of trucks on minor injuries, whereas this
variable tended to increase the severe injury likelihood in 2014–2015/2018–2019 G2 multi-
vehicle (marginal effects of 0.0054/0.0665 in Table 6) and 2014–2015 G25 two-vehicle/multi-
vehicle freeway rear-end crashes (marginal effects of 0.0253/0.0057 in Table 7). This finding
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might be attributed to the greater crash aggressiveness of the trucks [46,47], which will give
rise to greater hazards for other vehicles.

Heavy trucks tended to increase the severe injury likelihood in G25 2014–2015 two-
vehicle and 2016–2017/2018–2019 multi-vehicle freeway rear-end crashes (see Table 7).
Nevertheless, this vehicle type increased the minor injury likelihood by 4.91%, while it
increased the no injury and severe injury likelihood by 4.68% and 0.23%, respectively, in
G2 2018–2019 two-vehicle freeway rear-end crashes (see Table 5).

6.3. Roadway Characteristics

With regard to roadway characteristics, R f ront, L f ront, Rpresent, Lpresent, Lsmax, and Lsmin
were identified as determinants significantly affecting injury crash severity.

The R f ront was shown in Table 7 to reduce the likelihood of severe injury in 2018–2019
G25 multi-vehicle freeway rear-end crashes. Likewise, Rpresent tended to decrease the
possibility of severe injury by 2.88% and 2.57%, respectively, in G2 2016–2017 two-vehicle
and multi-vehicle freeway rear-end crashes (see Table 5). The possible explanation might
be that the greater radius was related to greater stopping sight distance (SSD) [48], which
enables drivers to perceive potential hazardous materials and operate more properly [49].

Suggesting potential spatiotemporal instability and heterogeneity by vehicle number,
L f ront is also found in Table 5 to be significant in 2017–2017 G25 multi-vehicle freeway
rear-end crashes. Other than G2 2016–2017 multi-vehicle freeway rear-end crashes, Lpresent
yielded an increased possibility of severe injuries in 2014–2015/2016–2017 G2 two-vehicle
(marginal effects of 0.0766/0.0149 in Table 6) and 2018–2019 G25 two-vehicle/multi-vehicle
freeway rear-end crashes (marginal effects of 0.0006/0.0368 in Table 7). A possible expla-
nation is that drivers with less operation and driving workload are prone to drowsiness
and hypervigilance under monotonous driving patterns when approaching the same cur-
vature [50,51].

The Lsmax was negatively related to minor/severe injury likelihood of 2016–2017
G2 two-vehicle freeway rear-end crashes (marginal effects of 0.0406/0.0149 in Table 6),
specifying potential spatiotemporal instability and heterogeneity by crash type. The Lsmin
was linked to a decrease in no injury-likelihood and increased minor-injury likelihood.

6.4. Environmental Characteristics

Note that fine, cloudy, and rainy weather conditions were identified as the significant
determinants affecting injury levels.

Fine weather was statistically significant in 2016–2017 G2 multi-vehicle freeway rear-
end crashes, posing potential spatiotemporal instability and non-transferability by crash
type. The cloudy weather tended to decrease the no injury likelihood and increase the minor
injury likelihood in 2016–2017 G2 multi-vehicle (marginal effects of −0.0187 and 0.0210 in
Table 6) and 2014–2015/2016–2017 G25 two-vehicle freeway rear-end crashes (marginal
effects of −0.0356/−0.0355 and 0.0375/0.0338 in Table 7), whereas the marginal effects
showed inconsistent influences on severe injury likelihood. In addition, rainy weather
conditions were positively linked to minor injury likelihood and negatively related to
no/severe injury likelihood in 2014–2015 multi-vehicle and 2018–2019 two-vehicle/multi-
vehicle G25 freeway rear-end crashes (positive marginal effects of 0.0458/0.0232/0.0471
defined for minor injury in Table 7). These inconsistent findings might be attributed to
the risk-compensation psychology of drivers being more cautious and conservative when
encountering reduced visibility or wet surfaces [28,52]. Similarly, the interesting findings
can be seen in the study of Yan et al. [29]. Examining the crash-injury severities in adverse
weather, the detrimental driving conditions such as slippery pavement surface, illustrated
complicated and opposite impacts on the crash outcomes over different periods. Several
empirical studies have also confirmed that the inclement driving environments (slippery
roadway surface, poor light conditions, and low visibility) stemming from adverse weather
conditions (cloudiness, rain, snow, fog, and sleet) might trigger more severe outcomes.
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Nonetheless, other research efforts have shown that adverse weather reduces the likelihood
of severe outcomes [53,54].

6.5. Temporal Characteristics

Significant temporal determinants were identified as daytime, weekday, and season
time. The marginal effects in Tables 6 and 7 suggested considerable variations by time, free-
way, and crash type. More severe injury crashes tended to occur on Monday in 2018–2019
G2/G25 two-vehicle freeway rear-end crashes, whereas Monday increased the minor injury
levels by 3.70% in 2016–2017 G25 multi-vehicle freeway rear-end crashes. Tuesday was
observed to increase the severe injury likelihood of 2016–2017 G2 two-vehicle/multi-vehicle
freeway rear-end crashes. Saturday was positively associated with severe injury outcomes
in 2018–2019 G2 two-vehicle/multi-vehicle (marginal effects of 0.0234/0.0024 in Table 6)
and 2014–2015 G25 multi-vehicle freeway rear-end crashes (marginal effect of 0.0056 in
Table 7). This finding is as expected, as the free-flow conditions on weekends might lead to
excessive speed [29]. Furthermore, frequent alcohol consumption on weekends could be an
explanation [55].

As for time of day, early morning (24:00–05:59) and evening (18:00–23:59) were found
to increase the likelihood of minor or severe injuries (see Tables 6 and 7). This finding is
as expected due to the lower visibility during early morning and evening, and drivers
tend to suffer from speeding and fatigue/drowsy driving more frequently during these
time periods [56]. The afternoon was associated with a lower likelihood of severe injury
outcomes in 2016–2017 G2 two-vehicle freeway rear-end crashes, because the drivers’ vision
is better during the afternoon [57].

In terms of season, spring was found to reduce the likelihood of severe injury in
2016-2017 G2 two-vehicle/multi-vehicle freeway rear-end crashes. However, summer
tended to increase the probabilities of minor/severe injury outcomes in 2016–2017 G25
two-vehicle freeway rear-end crashes (marginal effects of 0.0192/0.0009 in Table 7). This
finding is in line with previous research efforts [58], in which the authors suggested that
adverse weather conditions (e.g., typhoons and rainstorms) that typically occur in summer
can significantly deteriorate the driving environment. In 2014–2015 G25 multi-vehicle
freeway rear-end crashes, autumn tended to increase the minor injury likelihood by 6.55%.
In addition, winter was related to a higher risk of minor injury outcomes in 2014–2015 G2
multi-vehicle (marginal effect of 0.0129 in Table 6) and severe injury outcomes in 2014–2015
G25 two-vehicle freeway rear-end crashes (marginal effect of 0.0191 in Table 7).

6.6. Spatial Characteristics

The estimation results suggested that the significant indicators varied among the G2
and G25 models, suggesting possible spatial instability and non-transferability by crash
type (The bridges in the G2 Freeway are mainly class bridges across channels with steeper
grades). In addition, the potential reason for spatial instability in the interchange indicator
might be the shorter average distances (5.25 km) between interchanges in G25 compared to
that (13.59 km) in G2.

Bridge segments were observed to decrease the minor injury likelihood and increase
the severe injury likelihood, specifying the higher crash risk of the segments in G2 two-
vehicle freeway rear-end crashes in the years 2014–2015/2018–2019 (see Table 6). This find-
ing can be explained by the shorter sight distance corresponding to steeper grades in bridge
segments, which renders less time for the drivers to operate timely and properly [57,59].

Moreover, in G25 multi-vehicle freeway rear-end crashes in years 2014–2015/2018–2019,
interchange segments tended to increase the minor injury likelihood and decrease the se-
vere injury likelihood (marginal effects of 0.0548/0.0030 and −0.0087/−0.0062 in Table 7).
This finding might also be explained by the risk-compensation psychology of drivers when
negotiating the interchange segments, which decreases the severe risk propensity [28].
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6.7. Traffic Characteristics

Traffic volumes were observed to be statistically significant in the majority of these
models, while the marginal effects suggested possible instability in the influences on minor
injury likelihood. Showing spatiotemporal stability and similarities in different crash types,
the greater AADT was involved with the higher possibility of no injury and lower possibility
of severe injury in G2 2014–2015/2018–2019 two-vehicle and 2014–2015/2016–2017 multi-
vehicle (see Table 6) and G25 2016–2017/2018–2019 two-vehicle and 2014–2015/2018–2019
multi-vehicle rear-end crashes (see Table 7). As pointed out by previous research efforts,
high traffic volumes might contribute to lower travel speeds [56,57,60].

6.8. Crash Characteristics

In the case of Emergency Medical Service (EMS), only the arrival time of (20–60 min)
was significant in 2018–2019 G2 two-vehicle freeway rear-end crashes, whereas the three
EMS indicators produced significance in G25 models. Overall, the marginal effects indicated
that the response time had positive effects on the injury levels (see Tables 6 and 7), consistent
with recent evidence [58,59].

6.9. Random Parameters and Heterogeneity in Means and Variances

In G2 models, three variables were identified as random parameters under normal
distributions, including Tuesday specific to no injury, spring specific to severe injury, and
AADT specific to severe injury. In G25 models, rain was specific to no injury, evening
was specific to minor injury, Lsmin specific to no injury, and bridge specific to minor injury
were statistically significant random parameters. Tuesday for instance, this variable was
identified as a random parameter in 2014–2015 G2 two-vehicle freeway rear-end crashes.
The mean (standard deviation) of 1.298 (−1.128) indicated that on Tuesday the likelihood of
no injury likelihood increased for 12.5% of the observations and decreased for the other
87.5% of the observations.

Regarding heterogeneity in the mean of the random parameter, speeding was found to
increase the mean of the Tuesday indicator in G2 models. In the presence of a speeding in-
dicator, the Tuesday tended to decrease the likelihood of no injury by 1.4% in 2014–2015 G2
two-vehicle freeway rear-end crashes. The Spring in 2016–2017 increased the severe in-
jury likelihood by 0.4% of G2 two-vehicle freeway rear-end crashes. For G25 models, the
presence of speeding under rainy conditions decreased the no injury likelihood by 6.7% in
2018–2019 multi-vehicle freeway rear-end crashes. On Sunday, evening time increased the
minor injury likelihood by 0.4% in 2014–2015 G25 two-vehicle freeway rear-end crashes.
In the presence of rainy weather conditions, the Lsmin decreased the no injury likelihood
by 5.2% in 2016–2017 G25 two-vehicle freeway rear-end crashes, whereas the bridge seg-
ments increased the minor injury likelihood by 0.3% in 2014–2015 multi-vehicle freeway
rear-end crashes.

With respect to heterogeneity in variances of the random parameter, during the early
morning on Tuesday, the no injury likelihood decreased by 0.8% for 2014–2015 G2 two-
vehicle freeway rear-end crashes. Likewise, under rainy weather conditions, spring in-
creased the severe injury likelihood by 0.1% in 2016–2017 G2 two-vehicle freeway rear-end
crashes. In G25 models, when it comes to passenger cars the rainy weather increased the
no injury likelihood by 8.6% in 2018–2019 multi-vehicle freeway rear-end crashes. In the
case of speeding behaviors, the evening tended to increase the minor injury likelihood by
0.2% in 2014–2015 G25 two-vehicle freeway rear-end crashes.

Overall, the interactions of these variables suggested a higher risk of speeding indicator
in the early morning, evening time, and rainy weather conditions.

7. Conclusions

To examine transferability and heterogeneity for crash type (two-vehicle versus multi-
vehicle freeway rear-end crashes) and spatiotemporal stability of determinants affecting the
injury severity, this study modeled the data of crashes in Beijing-Shanghai Freeway (G2) and
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Changchun-Shenzhen Freeway (G25) over 2014–2019. Accommodating the heterogeneity
in the means and variances, the random parameters logit model was proposed to estimate
three potential crash injury severity outcomes (no injury, minor injury, and severe injury)
and identify the determinants in terms of the driver, vehicle, roadway, environment,
temporal, spatial, traffic, and crash characteristics. The likelihood ratio tests illustrated that
the effects of factors varied significantly across crash type, time, and freeway. Significant
variations were observed in the marginal effects of determinants between two-vehicle and
multi-vehicle freeway rear-end crashes, and spatiotemporal instability was reported in
several determinants, including truck and early morning. In addition, the heterogeneity
in means and variances of random parameters, revealing the interactions of random
parameters and other insignificant variables, suggested the higher risk of speeding indicator
in the early morning, evening, and rainy weather conditions.

Certainly, the temporal and spatial instability have not been exactly explained in the
recent research efforts. However, the importance of exploring the spatiotemporal instability
of factors affecting the injury severity has been addressed in the current study, whereas
biased and inaccurate estimated results and recommendations might suffer from ignoring
the spatiotemporal instability. The current finding could help freeway designers, decision-
makers, and management strategies to understand the contributing mechanisms of the
factors to develop effective management strategies and measurements.

The current study still has some limitations. First, sociodemographic characteristics
of drivers, actions of drivers, and other social attributes were not recorded in the datasets.
Second, data from more freeways and for longer periods should be collected to explore
more accurately estimated results and where the structural breaks are. Meanwhile, the
general applicability of the model in this study would be verified. Third, more advanced
statistical models should be developed to account for heterogeneity and yield more reliable
results. Finally, the expansion projects will be reconstructed on the two freeways, which are
supposed to be finished by 2023. It might be more evidential to explore the pre and after
differences in the crash severities, which will be conducted in further research.
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Appendix A

Table 1. Descriptive statistics of variables in two-vehicle and multi-vehicle freeway rear-end crashes in Beijing-Shanghai Freeway (G2) (Std. Dev. in parentheses).

Variable Description 2014–2015 G2 2016–2017 G2 2018–2019 G2

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

No Injury/Minor Injury/Severe Injury 0.705/0.183/0.112 0.685/0.188/0.127 0.700/0.182/0.118 0.667/0.206/0.127 0.649/0.233/0.118 0.625/0.250/0.125
Driver characteristics
Safety (1 if speeding, 0 otherwise) 0.682 (0.471) 0.675 (0.415) 0.413 (0.492) 0.712 (0.453) 0.425 (0.494) 0.443 (0.497)
Safety (1 if improper action, 0 otherwise) 0.265 (0.268) 0.221 (0.343) 0.497 (0.434) 0.285 (0.451) 0.372 (0.345) 0.357 (0.397)
Vehicle characteristics
Vehicle type (1 if passenger car, 0 otherwise) 0.698 (0.499) 0.871 (0.335) 0.573 (0.495) 0.715 (0.512) 0.517 (0.500) 0.793 (0.826)
Vehicle type (1 if minibus, 0 otherwise) 0.045 (0.208) 0.079 (0.314) 0.012 (0.111) 0.033 (0.177) 0.027 (0.162) 0.073 (0.291)
Vehicle type (1 if bus, 0 otherwise) 0.006 (0.075) 0.009 (0.096) 0.012 (0.111) 0.033 (0.177) 0.013 (0.111) 0.017 (0.128)
Vehicle type (1 if van, 0 otherwise) 0.003 (0.059) 0.003 (0.058) 0 0.013 (0.115) 0.011 (0.103) 0.005 (0.069)
Vehicle type (1 if truck, 0 otherwise) 0.309 (0.256) 0.007 (0.086) 0.341 (0.474) 0.177 (0.382) 0.392 (0.488) 0.535 (0.499)
Vehicle type (1 if heavy truck, 0 otherwise) 0.187 (0.390) 0.133 (0.339) 0.088 (0.283) 0.267 (0.443) 0.041 (0.160) 0.035 (0.183)
Roadway characteristics
R f ront: Radius of the plane curve of front section (103 m) 384.2 (481.9) 406.3 (486.8) 444.4 (493.1) 441.2 (492.5) 407.5 (487.2) 381.3 (481.2)
Rpresent: Radius of the horizontal curve (103 m) 347.5 (471.5) 369.0 (477.9) 321.9 (462.2) 353.1 (473.1) 357.7 (474.6) 426.4 (490.5)
Rback : Radius of the plane curve of back section (103 m) 479.6 (496.2) 441.364 (492.708) 438.9 (492.3) 444.3 (492.9) 444.9 (493.0) 460.15 (482.76)
L f ront: Length of the plane curve of front section (103 m) 1.158 (0.733) 1.195 (0.711) 1.225 (0.720) 1.220 (0.721) 1.202 (0.698) 1.592 (0.687)
Lpresent: Length of the horizontal curve (103 m) 1.605 (0.681) 1.627 (0.671) 1.611 (0.616) 1.631 (0.612) 1.632 (0.668) 1.267 (0.761)
Lback : Length of the plane curve of back section (103 m) 1.278 (0.815) 1.258 (0.785) 1.185 (0.700) 1.206 (0.737) 1.183 (0.726) 1.372 (0.738)
imin: Minimum longitudinal grade of current section (%) 0.132 (0.355) 0.131 (0.476) 0.002 (0.449) 0.012 (0.448) 0.002 (0.456) 0.016 (0.425)
Lsmin: Length of the longitudinal slope corresponding to
the minimum grade (m) 749.314 (288.8) 746.233 (270.1) 736.906 (277.3) 610.020 (218.2) 759.360 (283.7) 680.480 (325.1)

imax : Maximum longitudinal grade of current section (%) 0.129 (1.064) 0.113 (0.495) 0.014 (1.116) 0.008 (1.112) 0.041 (1.107) 0.006 (1.074)
Lsmax : Length of the longitudinal slope corresponding to
the maximum grade (m) 657.368 (276.365) 641.553 (259.8) 630.817 (199.4) 610.025 (218.2) 627.570 (252.1) 567.532 (274.3)

Environmental characteristics
Weather (1 if fine, 0 otherwise) 0.219 (0.324) 0.213 (0.424) 0.271 (0.444) 0.155 (0.331) 0.251 (0.434) 0.287 (0.452)
Weather (1 if cloudy, 0 otherwise) 0.307 (0.461) 0.385 (0.484) 0.544 (0.498) 0.373 (0.484) 0.509 (0.488) 0.397 (0.491)
Weather (1 if rainy, 0 otherwise) 0.216 (0.412) 0.346 (0.469) 0.107 (0.309) 0.357 (0.479) 0.177 (0.267) 0.278 (0.368)
Weather (1 if foggy, 0 otherwise) 0.013 (0.115) 0.045 (0.135) 0.017 (0.128) 0.049 (0.215) 0.013 (0.111) 0.029 (0.167)
Weather (1 if snowy, 0 otherwise) 0.086 (0.280) 0.011 (0.163) 0.058 (0.234) 0.066 (0.249) 0.061 (0.239) 0.012 (0.109)
Road surface condition (1 if icy, 0 otherwise) 0.013 (0.115) 0.021 (0.142) 0.045 (0.207) 0.032 (0.176) 0.023 (0.151) 0.015 (0.104)
Road surface condition (1 if wet, 0 otherwise) 0.331 (0.456) 0.326 (0.361) 0.217 (0.412) 0.214 (0.382) 0.164 (0.318) 0.227 (0.312)
Temporal characteristics
Time of week (1 if Monday, 0 otherwise) 0.116 (0.320) 0.116 (0.320) 0.125 (0.330) 0.112 (0.331) 0.127 (0.333) 0.109 (0.312)
Time of week (1 if Tuesday, 0 otherwise) 0.097 (0.295) 0.153 (0.360) 0.101 (0.302) 0.110 (0.313) 0.131 (0.337) 0.140 (0.347)
Time of week (1 if Wednesday, 0 otherwise) 0.131 (0.337) 0.157 (0.364) 0.139 (0.346) 0.142 (0.349) 0.109 (0.312) 0.129 (0.335)
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Table 1. Cont.

Variable Description 2014–2015 G2 2016–2017 G2 2018–2019 G2

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Time of week (1 if Thursday, 0 otherwise) 0.178 (0.383) 0.159 (0.366) 0.176 (0.381) 0.183 (0.386) 0.154 (0.361) 0.135 (0.342)
Time of week (1 if Friday, 0 otherwise) 0.170 (0.376) 0.121 (0.327) 0.166 (0.372) 0.153 (0.360) 0.172 (0.378) 0.167 (0.373)
Time of week (1 if Saturday, 0 otherwise) 0.176 (0.381) 0.170 (0.376) 0.137 (0.344) 0.168 (0.374) 0.177 (0.382) 0.187 (0.390)
Time of week (1 if Sunday, 0 otherwise) 0.132 (0.339) 0.123 (0.329) 0.157 (0.363) 0.118 (0.322) 0.124 (0.329) 0.133 (0.339)
Time of day (1 if early morning (24:00–05:59), 0 otherwise) 0.339 (0.473) 0.703 (0.457) 0.256 (0.437) 0.272 (0.446) 0.278 (0.448) 0.287 (0.452)
Time of day (1 if morning (06:00–11:59), 0 otherwise) 0.221 (0.415) 0.121 (0.296) 0.251 (0.434) 0.1764 (0.381) 0.260 (0.439) 0.226 (0.418)
Time of day (1 if afternoon (12:00–17:59), 0 otherwise) 0.290 (0.454) 0.097 (0.296) 0.267 (0.442) 0.176 (0.381) 0.303 (0.460) 0.287 (0.452)
Time of day (1 if evening (18:00–23:59), 0 otherwise) 0.150 (0.358) 0.079 (0.269) 0.190 (0.392) 0.178 (0.382) 0.159 (0.366) 0.200 (0.400)
Season of year (1 if spring, 0 otherwise) 0.410 (0.492) 0.041 (0.199) 0.438 (0.496) 0.356 (0.479) 0.314 (0.464) 0.117 (0.322)
Season of year (1 if summer, 0 otherwise) 0.263 (0.440) 0.161 (0.367) 0.194 (0.395) 0.216 (0.411) 0.228 (0.419) 0.054 (0.226)
Season of year (1 if autumn, 0 otherwise) 0.150 (0.358) 0.473 (0.499) 0.184 (0.388) 0.248 (0.432) 0.247 (0.432) 0.011 (0.103)
Season of year (1 if winter, 0 otherwise) 0.117 (0.382) 0.325 (0.469) 0.184 (0.388) 0.181 (0.385) 0.211 (0.408) 0.007 (0.084)
Spatial characteristics
Location type (1 if crash occurred in the interchange,
0 otherwise) 0.103 (0.459) 0.155 (0.362) 0.094 (0.292) 0.112 (0.315) 0.125 (0.331) 0.294 (0.456)

Location type (1 if crash occurred on the bridge,
0 otherwise) 0.301 (0.459) 0.271 (0.445) 0.284 (0.451) 0.277 (0.448) 0.301 (0.459) 0.236 (0.424)

Traffic characteristics
AADT: Average annual daily traffic volume 51700.6 (11314) 50816.7 (11165) 50983.9 (11426) 52443.2 (10985) 51476.5 (11512) 52332.3 (10690)
Crash characteristics
EMS (Emergency Medical Service: 1 if arrive time is
<20 min, 0 otherwise) 0.048 (0.213) 0.064 (0.244) 0.041 (0.199) 0.038 (0.190) 0.038 (0.190) 0.004 (0.060)

EMS (1 if arrive time is 20–60 min, 0 otherwise) 0.566 (0.496) 0.559 (0.497) 0.596 (0.491) 0.550 (0.498) 0.529 (0.499) 0.045 (0.208)
EMS (1 if arrive time is >60 min, 0 otherwise) 0.386 (0.487) 0.378 (0.497) 0.363 (0.481) 0.412 (0.492) 0.434 (0.496) 0.951 (0.216)

Table 2. Descriptive statistics of variables in two-vehicle and multi-vehicle freeway rear-end crashes in Beijing-Shanghai Freeway (G25) (Std. Dev. in parentheses).

Variable Description 2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

No Injury/Minor Injury/Severe Injury 0.643/0.227/0.130 0.620/0.250/0.130 0.619/0.248/0.134 0.589/0.277/0.134 0.575/0.298/0.127 0.549/0.315/0.136
Driver characteristics
Safety (1 if speeding, 0 otherwise) 0.315 (0.465) 0.407 (0.491) 0.166 (0.372) 0.578 (0.493) 0.403 (0.402) 0.573 (0.495)
Safety (1 if improper action, 0 otherwise) 0.622 (0.485) 0.549 (0.498) 0.723 (0.448) 0.417 (0.493) 0.527 (0.446) 0.423 (0.494)
Vehicle characteristics
Vehicle type (1 if passenger car, 0 otherwise) 0.218 (0.413) 0.845 (0.361) 0.297 (0.417) 0.760 (0.427) 0.465 (0.499) 0.218 (0.413)



Int. J. Environ. Res. Public Health 2022, 19, 10282 17 of 30

Table 2. Cont.

Variable Description 2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Vehicle type (1 if minibus, 0 otherwise) 0.059 (0.236) 0.055 (0.229) 0.008 (0.089) 0.036 (0.186) 0.024 (0.153) 0.059 (0.236)
Vehicle type (1 if bus, 0 otherwise) 0.016 (0.125) 0.043 (0.204) 0.004 (0.063) 0.032 (0.176) 0.133 (0.366) 0.016 (0.125)
Vehicle type (1 if van, 0 otherwise) 0.212 (0.409) 0.047 (0.212) 0.343 (0.475) 0.012 (0.108) 0.037 (0.189) 0.212 (0.409)
Vehicle type (1 if truck, 0 otherwise) 0.231 (0.415) 0.206 (0.404) 0.186 (0.389) 0.184 (0.387) 0.201 (0.401) 0.231 (0.415)
Vehicle type (1 if heavy truck, 0 otherwise) 0.264 (0.429) 0.213 (0.410) 0.162 (0.368) 0.064 (0.244) 0.140 (0.347) 0.264 (0.429)
Roadway characteristics
R f ront: Radius of the plane curve of front section (103 m) 368.867 (481.4) 350.781 (357.2) 518.916 (498.8) 371.343 (481.2) 350.864 (475.8) 373.050 (482.3)
Rpresent: Radius of the horizontal curve (103 m) 380.175 (483.6) 347.131 (353.2) 346.3 (473.6) 465.208 (496.0) 432.974 (492.8) 464.845 (496.7)
Rback : Radius of the plane curve of back section (103 m) 390.358 (452.2) 363.0 (368.3) 444.0 (495.8) 327.936 (467.0) 398.9 (488.2) 330.004 (468.5)
L f ront: Length of the plane curve of front section (103 m) 1.029 (0.794) 1.024 (0.521) 1.057 (0.632) 1.051 (0.629) 1.097 (0.729) 1.025 (0.701)
Lpresent: Length of the horizontal curve (103 m) 1.268 (0.687) 1.543 (0.718) 1.175 (0.714) 1.134 (0.693) 1.419 (0.622) 1.212 (0.629)
Lback : Length of the plane curve of back section (103 m) 1.027 (0.716) 1.023 (0.697) 0.989 (0.494) 1.112 (0.624) 1.015 (0.617) 1.054 (0.627)
imin: Minimum longitudinal grade of current section (%) 0.061 (0.428) 0.022 (0.414) 0.033 (0.515) 0.028 (0.995) −0.045 (0.540) 0.026 (0.552)
Lsmin: Length of the longitudinal slope corresponding to
the minimum grade (m) 662.286 (394.9) 534.471 (428.3) 712.380 (309.1) 769.987 (306.8) 753.042 (314.2) 771.994 (306.8)

imax : Maximum longitudinal grade of current section (%) 0.039 (1.194) 0.122 (1.082) −0.021 (1.478) −0.072 (2.238) −0.048 (1.215) −0.041 (1.235)
Lsmax : Length of the longitudinal slope corresponding to
the maximum grade (m) 616.312 (340.8) 525.743 (370.9) 560.618 (237.3) 577.305 (270.1) 754.493 (341.5) 784.358 (277.5)

Environmental characteristics
Weather (1 if fine, 0 otherwise) 0.103 (0.304) 0.059 (0.236) 0.308 (0.462) 0.226 (0.418) 0.127 (0.334) 0.124 (0.329)
Weather (1 if cloudy, 0 otherwise) 0.410 (0.492) 0.455 (0.498) 0.406 (0.462) 0.563 (0.496) 0.467 (0.499) 0.548 (0.499)
Weather (1 if rainy, 0 otherwise) 0.487 (0.500) 0.486 (0.500) 0.172 (0.378) 0.212 (0.323) 0.405 (0.491) 0.327 (0.469)
Weather (1 if foggy, 0 otherwise) 0 0 0.114 (0.316) 0 0 0
Weather (1 if snowy, 0 otherwise) 0 0 0 0 0 0
Road surface condition (1 if icy, 0 otherwise) 0.013 (0.150) 0 0 0 0 0
Road surface condition (1 if wet, 0 otherwise) 0.348 (0.464) 0.314 (0.411) 0.484 (0.500) 0.517 (0.512) 0.595 (0.491) 0.672 (0.469)
Temporal characteristics
Time of week (1 if Monday, 0 otherwise) 0.095 (0.293) 0.134 (0.341) 0.111 (0.314) 0.179 (0.384) 0.111 (0.314) 0.142 (0.349)
Time of week (1 if Tuesday, 0 otherwise) 0.154 (0.361) 0.158 (0.365) 0.139 (0.346) 0.135 (0.342) 0.138 (0.345) 0.150 (0.357)
Time of week (1 if Wednesday, 0 otherwise) 0.130 (0.337) 0.126 (0.333) 0.116 (0.319) 0.131 (0.338) 0.115 (0.319) 0.130 (0.336)
Time of week (1 if Thursday, 0 otherwise) 0.123 (0.328) 0.142 (0.349) 0.136 (0.342) 0.135 (0.342) 0.134 (0.341) 0.116 (0.320)
Time of week (1 if Friday, 0 otherwise) 0.158 (0.365) 0.162 (0.368) 0.156 (0.362) 0.166 (0.372) 0.158 (0.365) 0.156 (0.363)
Time of week (1 if Saturday, 0 otherwise) 0.189 (0.392) 0.158 (0.365) 0.143 (0.349) 0.148 (0.356) 0.142 (0.350) 0.150 (0.357)
Time of week (1 if Sunday, 0 otherwise) 0.150 (0.358) 0.1119 (0.323) 0.199 (0.399) 0.105 (0.306) 0.202 (0.401) 0.156 (0.363)
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Table 2. Cont.

Variable Description 2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Time of day (1 if early morning (24:00–05:59), 0 otherwise) 0.158 (0.365) 0.221 (0.415) 0.188 (0.390) 0.238 (0.426) 0.186 (0.389) 0.148 (0.355)
Time of day (1 if morning (06:00–11:59), 0 otherwise) 0.328 (0.469) 0.268 (0.443) 0.270 (0.443) 0.262 (0.440) 0.269 (0.444) 0.272 (0.445)
Time of day (1 if afternoon (12:00–17:59), 0 otherwise) 0.296 (0.456) 0.344 (0.475) 0.363 (0.481) 0.321 (0.467) 0.360 (0.480) 0.358 (0.480)
Time of day (1 if evening (18:00–23:59), 0 otherwise) 0.217 (0.413) 0.166 (0.372) 0.179 (0.383) 0.179 (0.384) 0.186 (0.389) 0.216 (0.412)
Season of year (1 if spring, 0 otherwise) 0.154 (0.361) 0.217 (0.413) 0.311 (0.462) 0.188 (0.391) 0.316 (0.465) 0.170 (0.376)
Season of year (1 if summer, 0 otherwise) 0.178 (0.383) 0.252 (0.434) 0.239 (0.426) 0.308 (0.462) 0.237 (0.426) 0.166 (0.372)
Season of year (1 if autumn, 0 otherwise) 0.351 (0.478) 0.292 (0.455) 0.246 (0.430) 0.336 (0.473) 0.245 (0.430) 0.400 (0.490)
Season of year (1 if winter, 0 otherwise) 0.316 (0.465) 0.237 (0.426) 0.204 (0.402) 0.168 (0.374) 0.202 (0.401) 0.264 (0.441)
Spatial characteristics
Location type (1 if crash occurred in the interchange,
0 otherwise) 0.391 (0.488) 0.328 (0.469) 0.323 (0.467) 0.297 (0.457)) 0.320 (0.467) 0.234 (0.424)

Location type (1 if crash occurred on the bridge,
0 otherwise) 0.051 (0.221) 0.071 (0.257) 0.088 (0.283) 0.153 (0.360) 0.087 (0.282) 0.060 (0.238)

Traffic characteristics
AADT: Average annual daily traffic volume 50267.1 (11217) 49486.2 (11928) 51592.7 (11247) 51497.4 (10947) 48908.6 (11671) 53621.1 (10514)
Crash characteristics
EMS (Emergency Medical Service: 1 if arrive time is
<20 min, 0 otherwise) 0.040 (0.167) 0.213 (0.410) 0.104 (0.304) 0.105 (0.306) 0.103 (0.304) 0.172 (0.378)

EMS (1 if arrive time is 20–60 min, 0 otherwise) 0.391 (0.413) 0.336 (0.472) 0.575 (0.446) 0.434 (0.496) 0.227 (0.448) 0.324 (0.457)
EMS (1 if arrive time is >60 min, 0 otherwise) 0.569 (0.517) 0.451 (0.497) 0.621 (0.485) 0.461 (0.499) 0.621 (0.486) 0.504 (0.497)

Table 3. Comparison of estimated results.

Model Estimation Results
MNL RPL RPLM RPLMV

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

G2 2014–2015
Number of parameters (K) 7 7 10 9 11 9 12 9
Number of samples (n) 703 695 703 695 703 695 703 695
Log-likelihood at zero (LL(0) ) −587.810 −565.757 −587.810 −565.757 −587.810 −565.757 −587.810 −565.757
Log-likelihood at convergence (LL(β) ) −188.954 −182.628 −182.471 −171.658 −179.547 −167.984 −174.842 −164.797
ρ2 = 1− LL(β)/LL(0) 0.679 0.677 0.690 0.697 0.695 0.703 0.703 0.709
Akaike information criterion (AIC) 391.908 379.256 384.942 361.316 381.094 353.968 373.684 347.594
Bayesian information criterion (BIC) 423.795 411.063 430.496 402.211 431.203 394.863 428.348 388.489

χ2 test MNL vs. RPLMV
28.224(5) [>99.99%]

RPL vs. RPLMV
15.258(2) [>99.99%]

RPLM vs. RPLMV
9.41(1) [99.98%]

MNL vs. RPLMV
35.662(2) [>99.99%]

RPL vs. RPLMV
- 1

RPLM vs. RPLMV
-

G2 2016–2017
Number of parameters (K) 11 11 13 13 14 14 15 14
Number of samples (n) 739 768 739 768 739 768 739 768
Log-likelihood at zero (LL(0) ) −637.195 −649.617 −637.195 −649.617 −637.195 −649.617 −637.195 −649.617
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Table 3. Cont.

Model Estimation Results
MNL RPL RPLM RPLMV

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Log-likelihood at convergence (LL(β) ) −243.704 −241.628 −236.584 −234.957 −223.628 −226.947 −219.704 −222.689
ρ2 = 1− LL(β)/LL(0) 0.618 0.628 0.629 0.638 0.649 0.651 0.655 0.657
Akaike information criterion (AIC) 509.408 505.256 499.168 495.914 475.256 481.894 469.408 473.378
Bayesian information criterion (BIC) 560.066 556.338 559.037 556.283 539.730 546.907 538.487 538.391

χ2 test MNL vs. RPLMV
48.000(4) [>99.99%]

RPL vs. RPLMV
33.754(2) [>99.99%]

RPLM vs. RPLMV
7.848(1) [99.67%]

MNL vs. RPLMV
37.878(3) [>99.99%]

RPL vs. RPLMV
24.536(1) [>99.99%]

RPLM vs. RPLMV
-

G2 2018–2019
Number of parameters (K) 9 6 10 7 10 7 10 7
Number of samples (n) 822 829 822 829 822 829 822 829
Log-likelihood at zero (LL(0) ) −736.823 −745.853 −736.823 −745.853 −736.823 −745.853 −736.823 −745.853
Log-likelihood at convergence (LL(β) ) −267.627 −235.574 −254.157 −221.628 −252.628 −218.957 −249.874 −215.903
ρ2 = 1− LL(β)/LL(0) 0.637 0.684 0.655 0.703 0.657 0.706 0.661 0.711
Akaike information criterion (AIC) 553.254 483.148 528.314 457.256 525.256 451.914 519.748 445.806
Bayesian information criterion (BIC) 595.660 511.469 575.431 490.298 572.373 484.956 566.865 478.848

χ2 test MNL vs. RPLMV
35.506(1) [>99.99%]

RPL vs. RPLMV
-

RPLM vs. RPLMV
-

MNL vs. RPLMV
39.342(1) [>99.99%]

RPL vs. RPLMV
-

RPLM vs. RPLMV
-

G25 2014–2015
Number of parameters (K) 9 7 11 9 12 10 13 10
Number of samples (n) 515 589 515 589 515 589 515 589
Log-likelihood at zero (LL(0) ) −514.189 −601.854 −514.189 −601.854 −514.189 −601.854 −514.189 −601.854
Log-likelihood at
convergence ((β) ) −188.628 −203.628 −189.257 −198.547 −184.628 −191.584 −178.076 −187.494

ρ2 = 1− LL(β)/LL(0) 0.633 0.662 0.632 0.670 0.641 0.682 0.654 0.688
Akaike information criterion (AIC) 395.256 421.256 400.514 415.094 393.256 403.168 382.152 394.988
Bayesian information criterion (BIC) 433.454 451.905 447.200 454.500 444.186 446.952 437.326 438.772

χ2 test MNL vs. RPLMV
21.104(4) [>99.99%]

RPL vs. RPLMV
22.362(2) [>99.99%]

RPLM vs. RPLMV
13.104(1) [99.98%]

MNL vs. RPLMV
32.268(3) [>99.99%]

RPL vs. RPLMV
8.180(1) [99.78%]

RPLM vs. RPLMV
-

G25 2016–2017
Number of parameters (K) 8 7 9 9 10 9 10 9
Number of samples (n) 561 632 561 632 561 632 561 632
Log-likelihood at zero (LL(0) ) −549.624 −621.594 −549.624 −621.594 −549.624 −621.594 −549.624 −621.594
Log-likelihood at convergence ((β) ) −219.517 −229.541 −215.261 −218.629 −206.817 −211.561 −197.603 −206.393
ρ2 = 1− LL(β)/LL(0) 0.601 0.631 0.608 0.648 0.624 0.660 0.640 0.668
Akaike information criterion (AIC) 455.034 473.082 448.522 455.258 433.634 441.122 415.216 430.786
Bayesian information criterion (BIC) 489.672 504.224 487.489 495.298 476.931 481.162 458.513 470.826

χ2 test MNL vs. RPLMV
43.828(2) [>99.99%]

RPL vs. RPLMV
35.316(1) [>99.99%]

RPLM vs. RPLMV
-

MNL vs. RPLMV
46.296(2) [>99.99%]

RPL vs. RPLMV
-

RPLM vs. RPLMV
-

G25 2018–2019
Number of parameters (K) 10 11 12 14 12 15 12 16
Number of samples (n) 621 712 621 712 621 712 621 712
Log-likelihood at zero (LL(0) ) −613.978 −664.739 −613.978 −664.739 −613.978 −664.739 −613.978 −664.739
Log-likelihood at convergence ((β) ) −234.847 −261.254 −228.517 −252.629 −221.594 −248.957 −214.273 −243.155
ρ2 = 1− LL(β)/LL(0) 0.617 0.607 0.628 0.620 0.639 0.625 0.651 0.634
Akaike information criterion (AIC) 489.694 544.508 481.034 533.258 467.188 527.914 452.546 518.31
Bayesian information criterion (BIC) 534.007 594.757 534.210 597.211 520.364 596.435 505.722 591.399

χ2 test MNL vs. RPLMV
41.148 (2) [>99.99%]

RPL vs. RPLMV
-

RPLM vs. RPLMV
-

MNL vs. RPLMV
36.198 (5) [>99.99%]

RPL vs. RPLMV
18.948 (2) [>99.99%]

RPLM vs. RPLMV
11.604 (1) [>99.99%]

Note: 1 The χ2 test results cannot be obtained because there is no difference in the number of estimated parameters among the two models.
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Table 4. Model results of crash severity in two-vehicle and multi-vehicle rear-end crashes in Beijing-Shanghai Freeway (G2) (t-stat. in parentheses).

Variable
2014–2015 G2 2016–2017 G2 2018–2019 G2

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Random parameter (normally distributed)
[NI] Constant −0.582 (−2.87) 3.017 (3.40) 2.105 (3.58) −3.057 (−6.54)
Standard deviation 0.228 (2.19) 0.221 (2.33) 1.067 (2.07) 2.657 (2.58)
[MI] Constant 1.067 (2.19) −1.262 (−2.32)
Standard deviation 1.049 (2.08) 1.931 (2.90)
[SI] Constant −1.672 (−2.52) −3.818 (−3.31)
Standard deviation 1.179 (2.28) 2.092 (2.83)
[NI] Time of week (1 if Tuesday, 0 otherwise) 1.298 (2.20)
Standard deviation −1.128 (−2.17)
[SI] Season of year (1 if spring, 0 otherwise) −3.506 (−2.87)
Standard deviation 1.911 (2.62)
[SI] AADT: Average annual daily traffic volume −0.000130 (−2.83)
Standard deviation 0.000504 (2.58)
Heterogeneity in the means of random parameter
[NI] Time of week (1 if Tuesday, 0 otherwise): Safety (1 if
speeding, 0 otherwise) 1.136 (2.18)

[SI] Season of year (1 if spring, 0 otherwise): Time of day (1 if
evening (18:00–23:59), 0 otherwise) 2.136 (2.89)

Heterogeneity in the variances of random parameter
[NI] Time of week (1 if Tuesday, 0 otherwise): Time of day (1 if
early morning (24:00–05:59), 0 otherwise) −1.304 (−2.97)

[SI] Season of year (1 if spring, 0 otherwise): Weather (1 if rainy,
0 otherwise) −1.628 (−2.18)

[NI] Constant 6.977 (5.13)
[MI] Constant −1.354 (−2.78)
[SI] Constant −0.583 (−2.37) −4.079 (−5.56)
Driver characteristics
[NI] Safety (1 if speeding, 0 otherwise) −0.529 (−2.21)
Vehicle characteristics
[NI] Vehicle type (1 if truck, 0 otherwise) −1.947 (−3.46)
[SI] Vehicle type (1 if truck, 0 otherwise) 2.092 (2.61)
[MI] Vehicle type (1 if heavy truck, 0 otherwise) 6.689 (2.69)
Roadway characteristics
[SI] L f ront: Length of the plane curve of front section (103 m) 1.061 (2.70)
[SI] Rpresent: Radius of the horizontal curve (103 m) −0.172 (−3.28) −0.246 (−2.08)
[NI] Lpresent: Length of the horizontal curve (103 m) −0.421 (−2.33)
[MI] Lpresent: Length of the horizontal curve (103 m) 0.444 (2.71)
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Table 4. Cont.

Variable
2014–2015 G2 2016–2017 G2 2018–2019 G2

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

[SI] Lpresent: Length of the horizontal curve (103 m) 0.654 (2.25)
[NI] Lsmax : Length of the longitudinal slope corresponding to
the maximum grade (m) 0.00223 (2.52)

[MI] Lsmin: Length of the longitudinal slope corresponding to
the minimum grade (m) 0.00401 (3.55)

Environmental characteristics
[NI] Weather (1 if fine, 0 otherwise) 1.006 (2.32)
[MI] Weather (1 if fine, 0 otherwise) −1.874 (−2.45)
[MI] Weather (1 if cloudy, 0 otherwise) 1.179 (2.52)
Temporal characteristics
[SI] Time of week (1 if Monday, 0 otherwise) 2.489 (2.63)
[NI] Time of week (1 if Tuesday, 0 otherwise) −1.042 (−2.79)
[SI] Time of week (1 if Tuesday, 0 otherwise) 2.589 (2.39)
[NI] Time of week (1 if Saturday, 0 otherwise) −2.252 (−2.76)
[SI] Time of week (1 if Saturday, 0 otherwise) 2.336 (2.62)
[NI] Time of day (1 if early morning (24:00–05:59), 0 otherwise) −0.904 (−2.47) −0.639 (−1.99) −0.628 (−3.67)
[MI] Time of day (1 if early morning (24:00–05:59), 0 otherwise) 0.691 (2.79)
[SI] Time of day (1 if afternoon (12:00–17:59), 0 otherwise) −1.978 (−2.51)
[NI] Time of day (1 if evening (18:00–23:59), 0 otherwise) −2.013 (−2.57)
[SI] Time of day (1 if evening (18:00–23:59), 0 otherwise) 2.770 (4.06)
[SI] Season of year (1 if spring, 0 otherwise) −2.591 (−2.02)
[MI] Season of year (1 if winter, 0 otherwise) 0.713 (2.61)
Spatial characteristics
[MI] Location type (1 if crash occurred on the bridge,
0 otherwise) −7.261 (−2.51)

[SI] Location type (1 if crash occurred on the bridge,
0 otherwise) 1.006 (2.17)

Traffic characteristics
[NI] AADT: Average annual daily traffic volume 0.000589 (4.02) 0.000141 (2.95)
[SI] AADT: Average annual daily traffic volume −0.000131 (−2.83) −0.000321 (−2.82)
Crash characteristics
[SI] Emergency Medical Service (1 if arrive time is 20–60 min,
0 otherwise) −1.737 (−2.11)

Number of parameters (K) 12 9 15 14 10 7
Number of samples (n) 703 695 739 768 822 829
Log-likelihood at zero (LL(0) ) −587.810 −565.757 −637.195 −649.617 −736.823 −745.853
Log-likelihood at convergence (LL(β) ) −174.842 −164.797 −219.704 −222.689 −249.874 −215.903
ρ2 = 1− LL(β)/LL(0) 0.703 0.709 0.655 0.657 0.661 0.711
Akaike information criterion (AIC) 373.684 347.594 469.408 473.378 519.748 445.806
Bayesian information criterion (BIC) 428.348 388.489 538.487 538.391 566.865 478.848
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Table 5. Model results of crash severity in two-vehicle and multi-vehicle rear-end crashes in Changchun-Shenzhen Freeway (G25) (t-stat. in parentheses).

Variable
2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Random parameter (normally distributed)
[NI] Constant 1.734 (5.60) 0.720 (3.08) 0.245 (2.51)
Standard deviation 0.558 (2.66) 0.283 (2.17) 0.687 (2.35)
[MI] Constant −0.431 (−2.70) −0.794 (−2.43)
Standard deviation 2.227 (2.59) 0.730 (2.38)
[SI] Constant −3.685 (−4.88) −6.294 (−2.50) −4.080 (−3.92) −3.679 (−4.02)
Standard deviation 2.355 (3.31) 2.227 (2.09) 2.607 (2.40) 2.156 (2.15)
[NI] Weather (1 if rainy, 0 otherwise) 0.736 (2.18)
Standard deviation 0.836 (2.62)
[MI] Time of day (1 if evening (18:00–23:59), 0 otherwise) −0.666 (−2.96)
Standard deviation 3.33 (2.03)
[NI] Lsmin: Length of the longitudinal slope
corresponding to the minimum grade (m) −0.476 (−2.13)

Standard deviation 0.635 (2.69)
[MI] Location type (1 if crash occurred on the bridge,
0 otherwise) 0.892 (2.28)

Standard deviation 0.598 (2.16)
Heterogeneity in the means of random parameter
[NI] Weather (1 if rainy, 0 otherwise): Safety (1 if speeding,
0 otherwise) −1.325 (−2.98)

[MI] Time of day (1 if evening (18:00–23:59), 0 otherwise):
Time of week (1 if Sunday, 0 otherwise) −0.591 (−2.47)

[NI] Lsmin: Length of the longitudinal slope
corresponding to the minimum grade (m): Weather (1 if
rainy, 0 otherwise)

−0.000231 (−3.97)

[MI] Location type (1 if crash occurred on the bridge,
0 otherwise): Weather (1 if rainy, 0 otherwise) 0.768 (2.01)

Heterogeneity in the variances of random parameter
[NI] Weather (1 if rainy, 0 otherwise): Vehicle type (1 if
passenger car, 0 otherwise 1.035 (2.17)

[MI] Time of day (1 if evening (18:00–23:59), 0 otherwise):
Safety (1 if speeding, 0 otherwise) 1.306 (2.01)

[MI] Constant 1.025 (2.12) 1.610 (4.28)
[SI] Constant −3.457 (−5.90)
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Table 5. Cont.

Variable
2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Vehicle characteristics
[NI] Vehicle type (1 if passenger car, 0 otherwise) 0.420 (2.14)
[MI] Vehicle type (1 if passenger car, 0 otherwise) −1.273 (−2.35)
[MI] Vehicle type (1 if truck, 0 otherwise) −0.396 (−2.26)
[SI] Vehicle type (1 if truck, 0 otherwise) 2.353 (3.01)
[SI] Vehicle type (1 if heavy truck, 0 otherwise) 1.923 (2.21) 2.655 (2.03) 0.948 (2.48)
Roadway characteristics
[SI] R f ront: Radius of the plane curve of front
section (103 m)

−0.00137 (−2.65)

[MI] Lpresent: Length of the horizontal curve (103 m) −0.119 (−2.58)
[SI] Lpresent: Length of the horizontal curve (103 m) 0.663 (2.45)
Environmental characteristics
[NI] Weather (1 if cloudy, 0 otherwise) −0.533 (−2.69)
[MI] Weather (1 if cloudy, 0 otherwise) 0.563 (2.03)
[MI] Weather (1 if rainy, 0 otherwise) 0.422 (2.39) 0.185 (2.63)
Temporal characteristics
[MI] Time of week (1 if Monday, 0 otherwise) 2.310 (2.40)
[SI] Time of week (1 if Monday, 0 otherwise) 0.651 (2.38)
[SI] Time of week (1 if Thursday, 0 otherwise) 1.987 (2.50)
[MI] Time of week (1 if Saturday, 0 otherwise) −0.892 (−2.25)
[MI] Time of week (1 if Sunday, 0 otherwise) 0.279 (2.72)
[MI] Time of day (1 if early morning (24:00–05:59),
0 otherwise) 0.501 (2.03)

[SI] Time of day (1 if early morning (24:00–05:59),
0 otherwise) 1.602 (2.71) 2.289 (2.63) 0.363 (2.59)

[NI] Season of year (1 if summer, 0 otherwise) −0.403 (−2.22)
[NI] Season of year (1 if autumn, 0 otherwise) −0.152 (−2.20)
[SI] Season of year (1 if winter, 0 otherwise) 1.721 (2.30)
Spatial characteristics
[SI] Location type (1 if crash occurred in the interchange,
0 otherwise) −2.201 (−2.74)

Traffic characteristics
[NI] AADT: Average annual daily traffic volume 0.000158 (2.68) 0.000267 (3.16) 0.000249 (2.67)
[SI] AADT: Average annual daily traffic volume −0.000368 (−2.37)
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Table 5. Cont.

Variable
2014–2015 G25 2016–2017 G25 2018–2019 G25

Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle Two-Vehicle Multi-Vehicle

Crash characteristics
[MI] Emergency Medical Service (1 if arrive time is
<20 min, 0 otherwise) 1.356 (2.96) 1.178 (2.74)

[MI] Emergency Medical Service (1 if arrive time is
20–60 min, 0 otherwise) 0.894 (3.36) 1.100 (2.37)

[SI] Emergency Medical Service (1 if arrive time is
>60 min, 0 otherwise) 1.522 (2.02)

Number of parameters (K) 13 10 10 9 12 16
Number of samples (n) 515 589 561 632 621 712
Log-likelihood at zero (LL(0) ) −514.189 −601.854 −549.624 −621.594 −613.978 −664.739
Log-likelihood at convergence (LL(β) ) −178.076 −187.494 −197.608 −206.393 −214.273 −243.155
ρ2 = 1− LL(β)/LL(0) 0.654 0.688 0.640 0.668 0.651 0.634
Akaike information criterion (AIC) 382.152 394.988 415.216 430.786 452.546 518.310
Bayesian information criterion (BIC) 437.326 438.772 458.513 470.826 505.722 591.399

Table 6. The marginal effects of determinants in two-vehicle and multi-vehicle rear-end crashes (effects of multi-vehicle model in parentheses) for Beijing-Shanghai
Freeway (G2) models.

Variable
2014–2015 G2 2016–2017 G2 2018–2019 G2

NI MI SI NI MI SI NI MI SI

Driver characteristics

Safety (1 if speeding, 0 otherwise) –
(–)

–
(–)

–
(–)

–0.0282 *
(–)

0.0203
(–)

0.0079
(–)

–
(–)

–
(–)

–
(–)

Vehicle characteristics

Vehicle type (1 if truck, 0 otherwise) –
(−0.0183)

–
(0.0129)

–
(0.0054)

–
(–)

–
(–)

–
(–)

–
(−0.0648)

–
(−0.0017)

–
(0.0665)

Vehicle type (1 if heavy truck, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–0.0468
(–)

0.0491
(–)

–0.0023
(–)

Roadway characteristics

L f ront
–

(–)
–

(–)
–

(–)
–

(−0.0300)
–

(−0.0029)
–

(0.0329)
–

(–)
–

(–)
–

(–)

Rpresent
–

(–)
–

(–)
–

(–)
0.0259

(0.0188)
0.0029

(0.0069)
–0.0288

(−0.0257)
–

(–)
–

(–)
–

(–)

Lpresent
–0.0667

(–)
–0.0099

(–)
0.0766

(–)
–0.0554

(−0.0547)
0.0406

(0.0561)
0.0149

(−0.0013)
–

(–)
–

(–)
–

(–)
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Table 6. Cont.

Variable
2014–2015 G2 2016–2017 G2 2018–2019 G2

NI MI SI NI MI SI NI MI SI

Lsmax
–

(–)
–

(–)
–

(–)
0.0877

(–)
–0.0544

(–)
–0.0332

(–)
–

(–)
–

(–)
–

(–)

Lsmin
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
–0.0668

(–)
0.0821

(–)
–0.0153

(–)
Environmental characteristics

Weather (1 if fine, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(0.0060)

–
(−0.0062)

–
(0.0002)

–
(–)

–
(–)

–
(–)

Weather (1 if cloudy, 0 otherwise) –
(−0.0187)

–
(0.0210)

–
(−0.0024)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Temporal characteristics

Time of week (1 if Monday, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–0.0185
(–)

–0.0005
(–)

0.0190
(–)

Time of week (1 if Tuesday, 0 otherwise) –
(–)

–
(–)

–
(–)

−0.0156
(−0.0108)

−0.0022
(0.0075)

0.0178
(0.0033)

–
(−0.0065)

–
(0.0052)

–
(0.0013)

Time of week (1 if Thursday, 0 otherwise) –
(–)

–
(–)

–
(–)

–0.0163
(−0.0127)

0.0123
(−0.0010)

0.0040
(0.0137)

–
(–)

–
(–)

–
(–)

Time of week (1 if Saturday, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–0.0227
(−0.0095)

–0.0007
(0.0071)

0.0234
(0.0024)

Time of day (1 if early morning (24:00–05:59)) –
(−0.0520)

–
(0.0301)

–
(0.0219)

–0.0151
(−0.0547)

0.0109
(0.0561)

0.0042
(−0.0014)

–
(−0.0175)

–
(0.0142)

–
(0.0033)

Time of day (1 if afternoon (12:00–17:59), 0 otherwise) –
(–)

–
(–)

–
(–)

0.0058
(–)

0.0008
(–)

–0.0066
(–)

–
(–)

–
(–)

–
(–)

Time of day (1 if evening (18:00–23:59), 0 otherwise) –0.0214
(–)

–0.0024
(–)

0.0238
(–)

–
(–)

–
(–)

–
(–)

–
(−0.0085)

–
(0.0062)

–
(0.0023)

Season of year (1 if spring, 0 otherwise) 0.0277
(–)

−0.0198
(–)

−0.0079
(–)

–
(0.0049)

–
(0.0007)

–
(−0.0056)

0.0120
(–)

0.0007
(–)

−0.0127
(–)

Season of year (1 if winter, 0 otherwise) –
(−0.0119)

–
(0.0129)

–
(−0.0010)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Spatial characteristics
Location type (1 if crash occurred in the bridge, 0
otherwise)

–0.0197
(–)

–0.0027
(–)

0.0224
(–)

–
(–)

–
(–)

–
(–)

0.0151
(–)

–0.0155
(–)

0.0004
(–)

Traffic characteristics

AADT: Average annual daily traffic volume 0.0720
(0.0624)

–0.0468
(−0.0379)

–0.0152
(−0.0245)

–
(0.0612)

–
(0.0052)

–
(−0.0664)

0.0717
(–)

0.0251
(–)

–0.0968
(–)

Crash characteristics

EMS (1 if arrive time is >60 min, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(0.0096)

–
(0.0002)

–
(−0.0098)

Note: * Bold value indicates the direct marginal effect.
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Table 7. The marginal effects of contributing factors in two-vehicle and multi-vehicle rear-end crashes (effects of multi-vehicle model in parentheses) for Changchun-
Shenzhen Freeway (G25) models.

Variable
2014–2015 G25 2016–2017 G25 2018–2019 G25

NI MI SI NI MI SI NI MI SI

Vehicle characteristics

Vehicle type (1 if passenger car, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(0.0714)

–
(−0.0840)

–
(0.0126)

–
(0.0253)

–
(–0.0238)

–
(−0.0015)

Vehicle type (1 if truck, 0 otherwise) −0.0096
(0.0280)

−0.0157
(−0.0337)

0.0253 *
(0.0057)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Vehicle type (1 if heavy truck, 0 otherwise) –0.0024
(–)

–0.0033
(–)

0.0057
(–)

–
(−0.0136)

–
(−0.0063)

–
(0.0199)

–
(−0.0071)

–
(−0.0063)

–
(0.0134)

Roadway characteristics

R f ront
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
–

(−0.0235)
–

(−0.0210)
–

(0.0445)

Lpresent
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
–

(–)
0.0281

(−0.0195)
–0.0287

(−0.0173)
0.0006

(0.0368)

Lsmin
–

(–)
–

(–)
–

(–)
–0.0170

(–)
0.0163

(–)
0.0007

(–)
–

(–)
–

(–)
–

(–)
Environmental characteristics

Weather (1 if cloudy, 0 otherwise) −0.0356
(–)

0.0375
(–)

–0.0019
(–)

−0.0355
(–)

0.0338
(–)

0.0017
(–)

–
(–)

–
(–)

–
(–)

Weather (1 if rainy, 0 otherwise) –
(−0.0382)

–
(0.0458)

–
(−0.0076)

–
(–)

–
(–)

–
(–)

–0.0178
(−0.0314)

0.0232
(0.0471)

–0.0054
(−0.0157)

Temporal characteristics

Time of week (1 if Monday, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(−0.0355)

–
(0.0370)

–
(−0.0015)

–0.0013
(–)

–0.0008
(–)

0.0021
(–)

Time of week (1 if Thursday, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(−0.0077)

–
(−0.0027)

–
(0.0104)

–
(–)

–
(–)

–
(–)

Time of week (1 if Saturday, 0 otherwise) –
(0.0258)

–
(−0.0314)

–
(0.0056)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Time of week (1 if Sunday, 0 otherwise) –
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–0.0098
(–)

0.0100
(–)

–0.0002
(–)

Time of day (1 if early morning (24:00–05:59)) –
(–)

–
(–)

–
(–)

–0.0058
(−0.0093)

–0.0050
(−0.0033)

0.0108
(0.0126)

–0.0123
(−0.0027)

0.0126
(−0.0024)

–0.0003
(0.0051)

Time of day (1 if evening (18:00–23:59)) 0.0220
(–)

–0.0242
(–)

0.0022
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Season of year (1 if summer, 0 otherwise) –
(–)

–
(–)

–
(–)

–0.0201
(–)

0.0192
(–)

0.0009
(–)

–
(–)

–
(–)

–
(–)

Season of year (1 if autumn, 0 otherwise) –
(−0.0543)

–
(0.0655)

–
(−0.0112)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

Season of year (1 if winter, 0 otherwise) –0.0066
(–)

–0.0125
(–)

0.0191
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)
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Table 7. Cont.

Variable
2014–2015 G25 2016–2017 G25 2018–2019 G25

NI MI SI NI MI SI NI MI SI

Spatial characteristics
Location type (1 if crash occurred in the interchange,
0 otherwise)

–
(−0.0461)

–
(0.0548)

–
(−0.0087)

–
(–)

–
(–)

–
(–)

–
(0.0032)

–
(0.0030)

–
(−0.0062)

Traffic characteristics

AADT: Average annual daily traffic volume –
(0.0369)

–
(−0.0172)

–
(−0.0197)

0.0487
(–)

−0.0298
(–)

−0.0189
(–)

0.0435
(0.0748)

0.0249
(−0.0364)

–0.0684
(−0.0384)

Crash characteristics
Emergency Medical Service (1 if arrive time is <20 min,
0 otherwise)

–0.0230
(–)

0.0266
(–)

–0.0036
(–)

–
(–)

–
(–)

–
(–)

–0.0500
(–)

0.0512
(–)

–0.0012
(–)

Emergency Medical Service (1 if arrive time is
20–60 min, 0 otherwise)

–0.0713
(–)

0.0773
(–)

–0.0060
(–)

–
(–)

–
(–)

–
(–)

–0.0821
(–)

0.0841
(–)

–0.0020
(–)

Emergency Medical Service (1 if arrive time is >60 min,
0 otherwise)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(–)

–
(−0.0047)

–
(−0.0043)

–
(0.0090)

Note: * Bold value indicates the direct marginal effect.
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