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Abstract: Current research has generally concentrated on the motivations of environmental policies
on local green innovation while ignoring the effect they may have on green innovation in neighboring
places. To obtain a thorough understanding and explanation of the influencing mechanism of
environmental regulation (ER) on green innovation efficiency (GIE), the super-slack based measure-
data envelopment analysis (Super-SBM-DEA) method was applied to evaluate Chinese provinces’
GIE, a spatial Durbin model was developed to evaluate the effect of ER on GIE from the perspective
of the “local neighborhood” effect, and a mediating effect model was built to analyze the transmission
mechanism of the neighborhood effect of ER on GIE. The study indicated that China’s regional GIE
is high in the east and low in the west, with large spatial variability and significant positive spatial
clustering characteristics. The effect of ER on local GIE is “U” shaped, while the influence on green
innovation efficiency in neighboring areas is an inverted “U” shape. The influence of environmental
regulation on GIE in neighboring areas is mainly achieved through the transfer of local polluting
industries to neighboring areas. Based on the results, policy recommendations from the perspectives
of choosing environmental regulation tools and transferring polluting industries are made to promote
and realize the coordinated development of ER and green innovation.

Keywords: environmental regulation; green innovation efficiency; “local neighborhood” effect;
transfer of polluting industries

1. Introduction

China’s economy has experienced leapfrog growth over the past several decades;
however, environmental problems have become increasingly prominent [1]. According
to the 2020 Global Environmental Performance Index (EPI) Report, jointly published by Yale
University and other research institutions, China ranked 120th out of 180 participating
countries and regions worldwide, with a score of 37.3, reflecting China’s poor environmen-
tal performance on the global assessment scale. In particular, China is at the bottom in terms
of air quality, biodiversity and climate change. An indisputable problem is that resource
constraints, environmental degradation and increased haze have constrained China’s sus-
tainable per capita gross domestic product (PGDP) while also increasing uncertainty about
global development and governance [2,3]. In response to severe environmental problems
and challenges, the Chinese government has proposed the strategic deployment of “Pro-
moting green development and accelerating the establishment of ecological civilization” in
the report of the 19th National Congress, and the 14th Five-Year Plan further clarifies that it
is compulsory to support green technology innovation and promote cleaner production.
Strengthening environmental governance and promoting green and sustainable develop-
ment have become a consensus in society [4,5]. In the same manner, the government of
China has promulgated and implemented several environmental management policies
and initiatives and has gradually strengthened environmental regulations with a view to
enhancing environmental performance and achieving green development. However, strict
environmental regulation measures in the short term may, for one thing, increase the cost
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of pollution treatment for companies, crowd out research and development (R&D) funds
and adversely affect technological innovation [6,7]. In addition, it also tends to stimulate
the short-sighted behavior of local governments, resulting in a game of economic growth
and environmental protection between local and neighboring areas, which, in turn, leads
to problems such as the transfer of polluting enterprises [8,9]. Over the long term, solv-
ing environmental pollution problems will inevitably rely on technological progress [10],
particularly green technology-oriented innovation [11]. Green technology innovation is
an important support for promoting high-quality economic development and achieving
energy-saving and emission reduction targets. In 2019, China’s National Development
and Reform Commission, together with the Ministry of Science and Technology, issued
guidelines for building green technology innovation. The document points out that green
technology innovation is increasingly becoming an important driving force for green de-
velopment and an important support for fighting the battle against pollution, advancing
ecological civilization and promoting high-quality development. Only by vigorously pro-
moting green innovation and enhancing enterprises’ green innovation performance can we
achieve the win-win goal of advancing the economy and the environment.

Scholars have conducted a wide range of research on the connection between ER
and green innovation, resulting in the following four main views. First, on account of
the classical Porter hypothesis, several scholars debate that reasonable ER can generate
an “innovation compensation effect”, meaning that the costs of environmental regulation
can be offset by the compensation effect of innovation [12]; thus, environmental regulation
has been strengthened to be instrumental in green technological innovation [13]. Borghesi
et al. [14] showed through micro evidence from the Italian manufacturing sector that
environmental regulation is an essential driver of technological innovation, especially
the development of clean technology. Based on provincial panel data in China, Song
et al. [15] found that both formal and informal environmental regulations can promote
technological innovation. Chen et al. [16] tested the existence of Porter’s hypothesis at the
prefectural city level in China and found that a 1% increase in the intensity of environmental
regulations will increase green technological innovation by 0.173%, and this finding still
holds when replacing different indicators. Rubashkina et al. [17] verified the presence of
the weak Porter hypothesis in European manufacturing firms mainly using an instrumental
variable method, but found no evidence for the strong Porter hypothesis. Second, from
the perspective of neoclassical economics, some academics contend that environmental
regulations raise businesses’ costs, so regulation will always inhibit the green technology
innovation activities of enterprises [18]. This view is simply summarized as the “compliance
cost argument”. Chintrakam and Weber [19] found by investigating the manufacturing
statistics of 48 states in the United States that the strengthening of environmental regulation
will make the manufacturing industry inefficient, which may be due to a lack of sufficient
funds for the development of environmental protection patents due to environmental
regulation [20]. Kneller and Manderson [6] examine environmental regulation and creative
activities in the UK manufacturing sector from 2000 to 2006 and show that ER can crowd out
firms’ investment in innovation, particularly in industries with high environmental costs.

A third view is that ER has a nonlinear influence on technological innovation. Several
scholars have found a “U”-shaped relationship between ER and green technology innova-
tion [21]; in addition, an inverted “U”-shaped relationship has also been confirmed [22,23].
The fourth is the belief that the relationship between the two is uncertain [24]. The study by
Amores-Salvadó et al. [25] points out that the influence of ER on technological innovation
varies in the long and short term. Specifically, in the short run, ER can crowd out green
technology R&D investments [26], but in the long term, the compensatory effects of innova-
tion can produce extra profits to facilitate technological advances [27]. Some literature also
explored the spatial role and spillover effects of ER on green innovation [28]. Fan et al. [29]
found a significant positive correlation in green innovation efficiency among Chinese cities
through a spatial autocorrelation test, and a remarkable spatial spillover effect of ER on
green innovation. Zhou et al. [30] found not only a significant positive spatial spillover
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effect of ER on urban innovation based on panel data of 41 cities in the Yangtze River Delta
of China, but also a negative spatial spillover effect of urban sprawl on innovation capacity
of neighboring cities.

In summary, domestic and international scholars have conducted fruitful research on
this issue, which provides a reference for the writing of this paper, but there are still the
following areas to be expanded: first, most of the literature uses indicators, such as R&D ex-
penditure or the number of green technology patents, to represent green innovation [31,32]
and then examines whether ER is conducive to stimulating green innovation. Considering
the definition of green innovation proposed by Kemp and Pontoglio [18], green innovation
includes both knowledge technology and product innovation, and the employment of a
single indicator is not sufficient to evaluate the real situation of green innovation. Second,
most of the available literature treats the study area as a closed system, ignoring the spatial
spillover effects of ER on the impact of green innovation [33,34]. Nevertheless, ER affects lo-
cal green innovation and has spillover effects on green innovation in neighboring areas [35].
To more accurately describe the influence of environmental regulation on green innovation,
it is necessary to further consider spatial factors.

The possible contributions and innovation of this paper are as follows. First, the
paper fully considers the environmental constraints in the process of PGDP and constructs
the Super-SBM-DEA model to evaluate each province’s GIE in China. Second, this study
innovatively takes the perspective of “local-neighborhood” technological progress of en-
vironmental regulation and applies the spatial Durbin model to test it empirically. Third,
based on the characteristic facts of regional industrial transfer, a mediating effect model
is used to explore the mechanisms and influence channels of ER on GIE. This research
not only effectively expands the theoretical connotation of the Porter hypothesis, but also
helps to promote and realize the coordinated process of green technology innovation and
interregional environmental regulations.

2. Mechanism Analysis and Hypothesis
2.1. Local Effect of ER on Green Innovation

The effect of ER on regional green innovation activities has two facets, namely, the
positive “innovation compensation effect” and the negative “compliance cost effect”. Cur-
rently, the main means of government environmental regulation is to set standards for
pollution emissions of enterprises or to purchase emission permits [36], both of which
obviously increase the cost of treatment for enterprises [37]. In the short term, the cost
of tackling pollution can crowd out investment in research and innovation, so ER is not
instrumental in green technology innovation, thus creating a “compliance cost” effect [38].
In the long term, enterprises often choose to increase investment in green technology devel-
opment and research, realize energy saving and emission reduction business models and
improve production efficiency through technological innovation, resulting in an “innova-
tion compensation” effect [39]. Environmental regulation acts as a disincentive when the
“compliance cost” effect dominates and as a facilitator when the “innovation compensation”
effect dominates.

Therefore, the relative size of the two effects determines the direction and size of the
final effect. Further, in a static framework where the intensity of ER is low, the introduction
of ER only increases the cost burden of enterprises, compresses their profit margins, and
does not motivate them to undertake technological R&D to cover the current costs of pollu-
tion control in the short term [37], at which point the “compliance cost” effect dominates
and has a negative impact on local green innovation. In contrast, as ER increases, firms in
a dynamic economic framework will change the situation accordingly, and ER will make
them tend to increase their technological R&D investments. This leads to an increase in
productivity [40], which in turn offsets the negative impact of “compliance cost” effect. In
this case, the “innovation compensation” effect is dominate and has a positive impact on
local green innovation. Accordingly, Hypothesis 1 is proposed.
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Hypothesis 1. The effect of ER on local green innovation is “U”-shaped: ER first inhibits and then
promotes green innovation.

2.2. Neighborhood Effects of ER on Green Innovation

There are also two sides to the influence of ER on neighboring green innovation
activities. In the short term, when the intensity of local ER is high, local polluting industries
may shift to neighboring regions. At this time, neighboring regions achieve higher income
levels due to increased output [41], which, in turn, will increase the investment in green
technology R&D, thus promoting green innovation in neighboring regions. However, in
the long run, this situation will change. If the intensity of local ER increases and the ER of
neighboring areas do not change in tandem with it, the neighboring areas tend to become
the continuation of polluting industries [42]. Since most of the industries to be taken over
are highly polluting, the industrial structure of the neighboring areas tends to develop in
a non-clean direction, resulting in a “pollution haven effect” similar to that common in
international investment [43], which ultimately inhibits green technology innovation in the
neighboring areas. Based on this, Hypothesis 2 is proposed.

Hypothesis 2. The impact of ER on green innovation in neighboring areas is an inverted “U”-shape:
ER promotes and then inhibits green innovation.

3. Methods and Data
3.1. Model Construction
3.1.1. Efficiency Measurement Model

Assume that the system has n decision-making units, each with input X, desired output
Yg and nondesired output Yb vectors with elements X ∈ Rm, Yg ∈ Rs1 and Yb ∈ Rs2 . The
matrices X, Yg and Yb are defined as follows: X = [x1, . . . , x2] ∈ Rm×n, Yg =

[
yg

1 , . . . , yg
n

]
∈

Rs1×n, Yb =
[
yb

1, . . . , yb
n

]
∈ Rs2×n, where, xi > 0, yg

i > 0 and yb
i > 0(i = 1, 2, . . . n).

Therefore, the Super-SBM-DEA model can be expressed as:

ρ = min
1
m ∑m

i=1
xi
xi0

1
s1+s2

(∑s1
r=1

yg
r

yg
r0
+ ∑s2

l=1
yb

l
yb

l0
)

s.t



x ≥
n
∑

j=1, 6=0
λjxj

yg ≤
n
∑

j=1, 6=0
λjy

g
j

yb ≤
n
∑

j=1, 6=0
λjyb

j

x ≥ x0, yg ≤ yg
0 , yb ≥ yb

0, yg ≥ 0, λ ≥ 0

(1)

In Equation (1), ρ represents the superefficiency value, with larger values indicating
higher efficiency. λ is the weight vector, and x, yg and yb are the slacks for inputs, desired
outputs and undesired outputs, respectively.

The use of the DEA window analysis method first requires the determination of the
window width d. In this paper, we refer to the common practice in the literature and
determine that d = 3. The cumulative time of the study is T. Then, T − d + 1 windows
will be built while each decision-making unit will be evaluated d times at the kth window
using Equation (1), accumulatively (T − d + 1)d times per decision-making unit, and the
arithmetic mean of each time point will be regarded as the efficiency rating for that decision-
making unit for each year.
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3.1.2. Spatial Econometric Model

The use of spatial econometric models first requires testing whether the main variables
are correlated spatially, and existing studies have typically used Moran’s index (Moran’s I)
for testing [44], which is calculated as:

Moran′s I =
∑ n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 ∑ n

i=1 ∑n
j=1 Wij

(2)

In Equation (2), xi denotes the observed value of region i, and x and s2 are its mean and
variance, respectively. Wij is the spatial weight matrix. The value of Moran’s I ranges from
[−1,1]. The greater the index value trends to 1, the stronger the spatial positive correlation;
the greater the index value trends to −1, the stronger the spatial negative correlation; the
more the index value trends to 0, the more the data are randomly distributed in space and
have no spatial correlation.

This paper centers on the “local neighborhood” effect of ER on green innovation, which
requires consideration of the influence of local ER on green innovation in neighborhoods.
This relationship can be measured by the spatial Durbin model [45,46], which is therefore
chosen to explore the “local-neighborhood” effect of ER on GIE.

The baseline regression model is:

GIEit = α + β1ERit + β2ER2
it + λXit + εit (3)

The SDM is:

GIEit = ρWij IEit + β1ERit + β2ER2
it + λXit + θ1WijERit + θ2WijER2

jt + γWijXit + εit (4)

In Equations (3) and (4), GIEit represents the GIE of each province, while ERit repre-
sents environmental regulation, and ρ is the spatial autoregressive coefficient. Xit is the
control variable, α is the intercept term and εit is the random disturbance term. Wij is
the element of the spatial weight matrix. In this paper, we mainly use two spatial weight
matrices. W1 is the geographic adjacency matrix and W2 is the geographic distance matrix,
the expressions of which are as follows.

Wij =

{
1, region i and j are adjacent
0, region i and j are not adjacent

(5)

Wij =

{
1/dij, i 6= j

0, i = j
(6)

In the above equation, i and j represent different regions, respectively, and d is the
geographic distance between region i and region j.

3.1.3. Mediating Effects Model

The impact of environmental regulations on local GIE has been shown to have a “U”-
shaped relationship, and the influence on green innovation efficiency in neighboring areas
has been shown to have an inverted “U”-shaped relationship. One possible reason is the
transfer of polluting industries caused by ER [47], which, in turn, affects green innovation
efficiency in neighboring places. This transmission channel was, therefore, further analyzed
by constructing a mediating effects model, which was constructed as shown below:

GIEit = ρWijGIEit + c1ERit + c2ER2
it + λXit + c3WijERit + c4WijER2

jt + γWijXit + εit (7)

POLit = ρWijPOLit + α1ERit + α2WijERit + βXit + εit (8)

GIEit = ρWijGIEit + c′1ERit + c′2ER2
it + bPOLit + λXit + θ1WijERit + θ2WijER2

jt + θ3WijPOLit + γWijXit + εit (9)
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In Equations (8) and (9), POLit is the proportion of polluting industries, measured
using the proportion of total assets of polluting industries to total assets of industrial
enterprises above the scale. Coefficients c1, c2, c3 and c4 measure the impact of ER on GIE,
and coefficients α1 and α2 measure the environmental regulations’ impact on the proportion
of polluting industries. Coefficient b and coefficients c′1 and c′2 measure the effect of the
proportion of polluting industries and environmental regulations on GIE, respectively,
while other variables have the same meaning as those in Equation (4).

According to the test for mediating effects, if coefficients c∗, α∗, b and c′∗ are significant,
then a partial mediating effect exists. If coefficients c∗, α∗ and b are significant and coefficient
c
′
∗ is insignificant, then a full mediation effect exists. If coefficient c∗ is significant and at

least one of the coefficients α∗ and b is insignificant, a Sobel test is required to determine
whether there is a mediating effect [48].

3.2. Variable Description

Explained variable: Green innovation efficiency (GIE). We measured Chinese provinces’
GIE using the nonradial, nonangular Super-SBM-DEA model. The R&D capital stock and
full-time equivalent of R&D personnel were selected as green innovation inputs [49]. The
number of domestic invention patent applications received and new product sales rev-
enue were selected as the expected output of green innovation. Wastewater emissions,
emissions and solid waste generation were selected as the non-desired outputs of green
innovation [50].

Core explanatory variable: Environmental regulation (ER). There is a lack of uniformity
in the measurement of environmental regulation. First, existing studies have chosen input
indicators, such as pollution control costs, pollution tax revenues, and energy consumption,
to measure environmental regulation [51,52]. Second, from the output perspective, envi-
ronmental regulation is measured by using pollutant emissions or synthesizing them into a
composite index [53,54]. Third, the GDP/Energy indicator proposed by Ben Kheder and
Zugravu-Soilita [55] is used to measure environmental regulation, and they argue that the
advantage of using this indicator is that it measures the real impact effect of environmental
laws and conditions imposed by the government. Thus, some provinces only implement
“theoretical” environmental regulation policies without any constraints on enterprises,
while some provinces have adopted real environmental regulation policies for production
enterprises. Therefore, this indicator is a good measure of the real effect of government
environmental regulation.

Specifically, under the condition of constant GDP, the less energy consumption, the
corresponding reduction in pollution emissions, the greater the value. This shows that
the more obvious the effect of energy saving and emission reduction, it also indicates
that the intensity of environmental regulation will be stronger. This shows that a more
obvious effect of energy saving and emission reduction also indicates that the intensity
of environmental regulation will be stronger. In view of the superiority of this indicator,
this paper chooses GDP/Energy to measure the intensity of environmental regulation
in 30 Chinese provinces. As this ratio increases, the degree of environmental regulation
becomes more stringent. In addition, to test the robustness of the findings in this study,
we also construct a composite index of pollutant emissions to characterize environmental
regulations.

Control variables: Drawing on the research of Hao et al. [53] and Hong et al. [56], the
control variables selected were foreign direct investment (FDI), financial support (FIN), in-
dustrial structure (IND), government R&D funding (GOV), economic development (PGDP)
and human capital (HC), where foreign direct investment is evaluated by the amount of
FDI as a proportion of regional GDP; financial support is evaluated by the proportion of
internal expenditure on R&D funding that is loaned by financial institutions; government
R&D funding is evaluated by the proportion of government funding within R&D expen-
diture; the industrial structure was measured using the secondary sector as a proportion
of regional GDP; the level of PGDP was measured using GDP per capita, using the GDP
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per capita index, which was deflated using 2004 as the base period; and human capital is
evaluated using the average number of years of schooling of the population.

3.3. Descriptive Statistics

Provincial-level panel statistics of China’s 30 provinces for the period 2004–2017
were used as the study sample (data limitations, excluding Tibet, Hong Kong, Macau and
Taiwan), which are from the China Statistical Yearbook, China Environmental Statistical Yearbook,
China Statistical Yearbook on Science and Technology, China Population Statistics Yearbook and
provincial statistical yearbooks. The results of the descriptive statistics for the variables are
shown in Table 1.

Table 1. Statistical description of variables.

Variable Symbols Obs Mean Std.Dev. Min Max

Green innovation efficiency GIE 420 0.4794 0.2948 0.0299 1.2711
Environmental regulation ER 420 0.5455 0.2352 0.1342 1.2480
Foreign direct investment FDI 420 0.4000 0.5076 0.0473 5.7054

Financial support FIN 420 0.0414 0.0270 0.0046 0.2331
Government R&D funding GOV 420 0.2388 0.1263 0.0687 0.6081

Industrial structure IND 420 0.4630 0.0798 0.1897 0.5905
Economic development PGDP 420 0.4124 0.5084 −0.8400 1.8085

Human capital HC 420 8.6811 1.0019 6.3778 12.6651

4. Empirical Results
4.1. Measurement and Analysis of GIE

Based on the selected input-output indicators, the Super-SBM-DEA method was
applied to evaluate the GIE of 30 provinces in China from 2004 to 2017. Then, the average
GIE of the whole country and the eastern, central and western regions was obtained. The
results are shown in Table 2. During the inspection period, the national average value
of green innovation efficiency was 0.4794, with 0.6762, 0.3928 and 0.3454 for the eastern,
central and western regions, respectively. It is widely acknowledged that there is a large
spatial variability in the GIE in different regions of China, with the highest efficiency
values in the eastern region, and the difference in efficiency values between the eastern
and central regions is markedly greater than that between the midwest. This indicates that
the innovation mechanism in the eastern region is working well and green innovation is
more dynamic [57]. In contrast, the innovation mechanism in the mid-west needs to be
improved, and green innovation has failed to contribute to economic development as much
as it should.

Table 2. GIE measurements in China, 2004–2017.

Year National Eastern Central Western

2004 0.4002 0.6516 0.2191 0.2807
2005 0.3889 0.6475 0.2657 0.2198
2006 0.4435 0.7440 0.2832 0.2596
2007 0.4306 0.7377 0.2690 0.2410
2008 0.3910 0.6634 0.2431 0.2261
2009 0.3496 0.5173 0.3282 0.1974
2010 0.4243 0.6391 0.3337 0.2753
2011 0.4935 0.7138 0.3847 0.3522
2012 0.5202 0.6669 0.4795 0.4031
2013 0.5465 0.7184 0.4560 0.4405
2014 0.5337 0.6569 0.4634 0.4617
2015 0.5310 0.6084 0.4989 0.4769
2016 0.6142 0.7409 0.6321 0.4744
2017 0.6439 0.7609 0.6431 0.5275

Mean 0.4794 0.6762 0.3928 0.3454
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The possible reason for this is that the eastern region has a much higher level of
economic development than the central region and has a relatively larger scale of green
innovation investment [58], which implies a higher green innovation efficiency. The relative
backwardness of economic development in the central region not only implies insufficient
investment in innovation capital, but also further leads to technology brain drain [59].
Therefore, the central region lacks the intrinsic drivers of green innovation. In addition,
a higher proportion of heavy industrial enterprises leads to more serious environmental
pollution in the central region, which becomes one of the reasons for the lower GIE in
the central region [60]. Compared to the central region, the western region not only has
worse innovation conditions, such as insufficient innovation investment, brain drain and
environmental pollution [61], but also has a bias to value economic growth at the expense
of environmental protection. This may lead to short-sighted behaviors, such as sacrificing
the environment to develop the economy in the western region for a long time [62]. As a
result, the western region has the lowest green innovation efficiency.

4.2. Spatial Correlation Test and Model Selection

Stata software was applied to estimate the Moran’s I of environmental regulation
and GIE for the period of 2004–2017 (see Table 3). The Moran’s I of ER was significantly
positive in all years of the period under consideration. The Moran’s I of GIE was also
significantly positive in all years except 2004. This indicates that the two variables are not
spatially randomly distributed but show a clear positive spatial correlation. Test results
of model selection is shown in Table 4, and a spatial panel Durbin model considering
time-space fixed effects was chosen for estimation, meanwhile, time-fixed effects model
was also estimated for comparison.

Table 3. The test results of Moran’s I.

Year
Environmental Regulation Green Innovation Efficiency

Moran’s I Z Value Moran’s I Z Value

2004 0.6110 *** 5.2230 0.1530 1.5360
2005 0.5950 *** 5.0960 0.3410 *** 3.1140
2006 0.5710 *** 4.9120 0.3870 *** 3.4750
2007 0.5500 *** 4.7590 0.4020 *** 3.6150
2008 0.5490 *** 4.7640 0.4570 *** 4.0620
2009 0.5430 *** 4.7390 0.2420 ** 2.3680
2010 0.5160 *** 4.5330 0.4120 *** 3.6370
2011 0.4780 *** 4.2610 0.3840 *** 3.4050
2012 0.4660 *** 4.1770 0.4010 *** 3.5620
2013 0.4000 *** 3.7080 0.4580 *** 4.0290
2014 0.3900 *** 3.6300 0.3560 *** 3.1880
2015 0.3670 *** 3.4720 0.3010 *** 2.7450
2016 0.3580 *** 3.4210 0.3570 *** 3.1560
2017 0.3640 *** 3.4610 0.1750 * 1.7020

Note: *, ** and *** denote significance levels of 10%, 5% and 1%, respectively.

4.3. Results of the “Local Neighborhood” Effect

Given that there is a significant positive spatial correlation between ER and GIE,
ordinary panel regression models may lead to biased results by ignoring this spatial
correlation. Therefore, first, a general panel regression model was applied to analyze the
effect of ER on GIE without considering spatial factors (Table 5), and second, a spatial
Durbin model was applied to analyze the “local neighborhood” effect (Table 6). To avoid
possible endogeneity problems between ER and GIE, the first-order lagged term L.ER of
ER is used as its instrumental variable. The previous year’s environmental regulation is
correlated with the present year’s environmental regulation, but L.ER is a predetermined
variable that is not correlated with the present year’s random error term and meets the
definition of an instrumental variable.
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Table 4. Test results of model selection.

Test
W1 W2

Statistic p-Value Statistic p-Value

LM-lag 18.413 0.000 88.717 0.000
Robust LM-lag 0.019 0.890 0.965 0.326

LM-error 104.936 0.000 156.530 0.000
Robust LM-error 86.542 0.000 68.778 0.000

LR-lag 24.66 0.002 18.68 0.017
LR-error 88.07 0.000 16.48 0.036
Wald-lag 34.02 0.000 22.12 0.005

Wald-error 57.42 0.000 21.21 0.007

Table 5. Baseline regression results.

Variables Panel Fixed Effects Model Panel Tobit Model

ER −1.3446 **
(−3.0706)

−0.7261 **
(−2.4654)

(ER)2 0.9080 ***
(3.3808)

0.5859 **
(2.7175)

FDI 0.1074 ***
(4.4553)

0.1044 ***
(4.4861)

FIN −1.2371 **
(−3.2970)

−1.2870 ***
(−3.5072)

GOV −0.3538 *
(−1.7972)

−0.3524 **
(−2.2148)

IND 0.1478
(0.6073)

−0.1624
(−0.9735)

PGDP 0.1038
(0.7550)

0.1850 **
(2.9962)

HC 0.1000 **
(2.9397)

0.0882 ***
(7.4489)

cons 0.0039
(0.0100) __

Regression of the first stage

L.ER 0.9580 ***
(158.2614)

0.9580 ***
(158.2614)

F 25,046.68 *** 25,046.68 ***
N 390 390
R2 0.2965 —

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

In the non-spatial panel estimation, we mainly used the fixed effects model and
the Tobit model. Traditional mixed regressions ignore unobserved heterogeneity among
individuals that may be correlated with explanatory variables and lead to inconsistent
estimates. In contrast, fixed effects model takes individual effects into account, assuming
that individual regression equations have the same slope but can have different intercept
terms, thus capturing heterogeneity and making the regression results more accurate. In
addition, Tobin [63] pointed out that ordinary least squares (OLS) is no longer suitable
for estimating regression coefficients when the dependent variable is a restricted variable,
and then the Tobit model, which follows the concept of maximum likelihood estimate, is a
better choice. Since the explanatory variable of this paper, GIE, is a restricted variable, the
Tobit model is chosen for estimation in the non-spatial panel case.

First, the two-stage least squares method was applied to explore the impact of envi-
ronmental regulation on GIE when spatial factors were not taken into account, and the
results are shown in Table 5. As is known from Table 5, the first-stage regression coefficient
values are markedly at the 1% level, with F values well above 10, indicating that L.ER is
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appropriate as an instrumental variable. In the second-stage regression, the effect of ER on
GIE has a significant “U”-shaped relationship in both the panel fixed effects model and the
panel Tobit model. Hypothesis 1 was tested. The panel fixed effects model estimated an
inflection point value of 0.74, and the panel Tobit model estimated an inflection point value
of 0.62.

Table 6. The “local neighborhood” effect results.

Variables
Space Fixed Effects Model Time-Space Double Fixed Effects Model

Local Effects Neighborhood Effects Local Effects Neighborhood Effects

ER −1.6412 **
(−3.2189)

0.5723 **
(2.5155)

−1.3179 **
(−2.3460)

0.5016 *
(1.9365)

(ER)2 1.2993 ***
(3.8830)

−0.3593 **
(−2.5336)

1.1521 ***
(3.3387)

−0.3112 **
(−2.0850)

FDI 0.0737 **
(2.9471)

−0.0540
(−1.3071)

0.0785 **
(3.1034)

−0.0148
(−0.2889)

FIN −0.9096 **
(−2.3126)

−0.0853
(−0.3862)

−1.0621 **
(−2.6685)

−0.1737
(−0.7085)

GOV 0.3631 *
(1.6949)

−0.2140 **
(−2.0057)

0.3820
(1.6136)

−0.2650 **
(−2.1655)

IND 0.5721 **
(2.1590)

−0.1454
(−1.2391)

0.4785
(1.3629)

−0.4227 **
(−2.9306)

PGDP 0.3831 **
(2.3671)

−0.0862
(−1.2490)

0.3174
(1.4410)

0.0044
(0.0580)

HC 0.0067
(0.1646)

−0.0108
(−0.7794)

−0.0132
(−0.2576)

0.0027
(0.1515)

Spatial-ρ 0.2791 ***
(42.9799)

0.2803 ***
(41.7252)

Log-L 139.8728 147.1556
N 390 390
R2 0.1267 0.0234

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

Further incorporating spatial factors to analyze the “local-neighborhood” effect of ER
on GIE, the LR test rejects the time-fixed effects model and, therefore, uses both a space
fixed effects model and a time-space dual fixed effects model. The regression results are
shown in Table 6. It is clear that, among the local effects, the influence of ER on the local
GIE is first manifested as a disincentive and then as a facilitator, which further tested
Hypothesis 1. The space fixed effects model estimated an inflection point value of 0.63,
which is very similar to the inflection point value of 0.62 estimated by the panel Tobit model.
The estimated inflection point value of the double fixed effects model is 0.57, which is lower
than the estimated inflection point value of the panel fixed-effects model and the panel
Tobit model. It shows that after controlling time and space at the same time, the inflection
point of the “U” curve of the impact of ER on local GIE is shifted to the left, and it is easier
for enterprises to succeed in a win-win situation between green innovation performance
and ER [64]. The estimation results of the neighborhood effect show that the effect of ER on
GIE in the neighborhood shows an inverted “U”-shaped feature of promotion followed by
inhibition, and Hypothesis 2 was verified.

4.4. Results of the Transmission Channels of the Neighborhood Effect

Table 6 shows the estimation consequences of the regression on Equation (7). What
can be found is that environmental regulation significantly affects GIE, i.e., the coefficient
c∗ is significant, so it is necessary to further confirm whether the coefficients α∗, b and c

′
∗

are significant. A regression of Equation (8) was performed, and the results are shown
in Table 7. It is widely acknowledged that the effect of ER on the proportion of local
polluting industries is significantly negative, while the effect on the proportion of polluting
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industries in neighboring areas is significantly positive, with a significant coefficient α∗
in both the space fixed effects model and the time-space dual fixed effects model. This
suggests that ER policies reduce the share of local polluting industries and increase the
share of polluting industries in neighboring areas, i.e., environmental regulation causes
local polluting industries to move to neighboring areas.

Table 7. Consequences of the “local neighborhood” effect of ER on polluting industries.

Variables
Space Fixed Effects Model Time-Space Double Fixed Effects Model

Local Effects Neighborhood Effects Local Effects Neighborhood Effects

ER −0.2835 ***
(−7.7175)

0.0661 ***
(3.6605)

−0.3425 ***
(−7.7671)

0.0685 ***
(3.0580)

FDI 0.0087
(1.5381)

0.0182 **
(1.9828)

0.0072
(1.2353)

0.0074
(0.6411)

FIN −0.3083 ***
(−3.4489)

0.0651
(1.3096)

−0.2855 ***
(−3.1114)

0.1160 **
(2.0612)

GOV 0.0121
(0.2506)

0.0175
(0.7341)

0.0472
(0.8667)

0.0225
(0.7990)

IND 0.0108
(0.1851)

0.0052
(0.2092)

−0.0131
(−0.1668)

0.0622 *
(1.9485)

PGDP −0.0708 *
(−1.9322)

0.0303 **
(2.1527)

−0.0089
(−0.1769)

0.0066
(0.4088)

HC −0.0407 ***
(−4.4351)

0.0123 ***
(3.9251)

−0.0305 **
(−2.5700)

0.0140 ***
(3.3769)

Spatial-ρ 0.2799 ***
(42.8420)

0.2807 ***
(41.9825)

Log-L 717.2349 718.8258
N 390 390
R2 0.3074 0.2021

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

We further introduce the proportion of polluting industries to Equation (9) to research
the influence of the proportion of polluting industries and ER on the regional GIE. The
regression results are shown in Table 8. The effect of the proportion of polluting industries
on local GIE is significantly negative in both the space fixed effects model and the time-
space dual fixed effects model, and the effect of ER on the local GIE is significant in a “U”
shape. That is, coefficients b and c′∗ are significant, and there is a partial mediation effect.
This shows that ER has a significant influence on GIE in neighboring places through the
transfer of polluting industries, in addition to its direct effect on local GIE.

4.5. Robustness Tests

To ensure the credibility of the research results, three robustness tests were performed:
(1) The spatial weight matrix was replaced. The geographical adjacency matrix (W1)
assumes that there is no connection between regions if they are not adjacent. This setting
does not correspond to reality, so the geographic distance matrix W2 is constructed to re-
estimate the model [21]. (2) A new environmental regulation index for regression from an
output perspective was constructed. Zhou et al. [65] believed that a comprehensive index
constructed from pollutant emissions can reflect the intensity of environmental regulation.
Drawing on their ideas, a new environmental regulation indicator ER1 was constructed
using sulfur dioxide emissions, solid waste generation and wastewater emissions, and
regression analysis was performed. In the evaluation system of environmental regulation
indicators, GDP/Energy is measured in terms of the regulatory effect, while the pollutant
emissions are considered in terms of pollution output. Scholars generally point out that
in the short term, the higher the intensity of major pollutant emissions, the stricter the
governmental regulation measures [66,67]. In the long run, the government has adopted
strict environmental regulation policies so that high-polluting enterprises have to bear
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high environmental costs and try to reduce pollutant emissions [68]. In China, in both
the short and long term, there is no doubt that the degree of environmental regulation
by local governments is strongly correlated with local pollution emissions. In general,
relatively good environmental quality and low pollutant emissions are associated with
relatively low levels of environmental regulation. The pollutant emission data can reflect
the government’s efforts on pollution control, and it can truly reflect the enforcement of
environmental regulation. Therefore, the pollutant composite index can be used to evaluate
environmental regulation. (3) The measurement method was changed. A threshold model
was used to research the influence of ER on GIE.

Table 8. The mechanism results of the neighborhood effect.

Variables
Space Fixed Effects Model Time-Space Double Fixed Effects Model

Local Effects Local Effects

ER −2.0078 ***
(−3.7093)

−1.7644 ***
(−2.8167)

(ER)2 1.4613 ***
(4.2554)

1.3417 ***
(3.6853)

POL −0.4689 *
(−1.8914)

−0.4652 *
(−1.8015)

FDI 0.0766 ***
(3.0774)

0.0817 ***
(3.2449)

FIN −1.0613 ***
(−2.6753)

−1.1915 ***
(−2.9727)

GOV 0.3670 *
(1.7199)

0.4149 *
(1.6874)

IND 0.5573 **
(2.0900)

0.4290
(1.2255)

PGDP 0.3475 **
(2.1424)

0.3277
(1.4671)

HC −0.0178
(−0.4231)

−0.0269
(−0.5177)

Spatial-ρ 0.2791 ***
(43.0051)

0.2800 ***
(41.9149)

Log-L 142.3532 149.1165
N 390 390
R2 0.1449 0.0361

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

The regression consequences of the first and second robustness tests are detailed in
Table 9. After using different spatial weighting matrices and environmental regulation
indicators, the obtained coefficients are inconsistent, but the results all support that the local
effect of ER on GIE is “U”-shaped, and the neighborhood effect is an inverted “U”-shape,
which indicates that the conclusion is robust and credible.

The results of the robustness tests for the third term are detailed in Tables 10 and 11,
and Table 10 shows that there is a single threshold effect for ER, which is significant at the
5% level. The threshold value is 0.6145, which is basically consistent with the inflection
point of the “U” curve obtained by the panel Tobit model.
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Table 9. Robustness test results.

Variables
W2 W1 W2

Local Effects Neighborhood
Effects Local Effects Neighborhood

Effects Local Effects Neighborhood
Effects

ER −0.6556
(−1.3631)

0.7625
(0.3829)

(ER)2 0.6628 **
(2.2513)

−0.7049
(−0.6721)

ER1 −0.2419 ***
(−4.3650)

0.0774 **
(2.4911)

−0.1674 ***
(−3.4740)

0.6633 ***
(2.9760)

(ER1)2 0.0327 ***
(3.2734)

−0.0072
(−1.1190)

0.0239 ***
(2.7043)

−0.0884 **
(−2.1287)

FDI 0.0961 ***
(4.4036)

0.0575
(0.2971)

0.0909 ***
(3.8050)

0.0012
(0.0261)

0.0925 ***
(4.4144)

−0.0455
(−0.2606)

FIN −1.5157 ***
(−4.4750)

−3.2728 ***
(−2.8063)

−1.1472 ***
(−2.9750)

0.2120
(0.9370)

−1.3271 ***
(−4.0591)

−2.6836 **
(−2.3964)

GOV −0.1107
(−0.6026)

0.1154
(0.1642)

0.2399
(1.0217)

−0.2616 **
(−2.1813)

−0.1620
(−0.8814)

0.0546
(0.0786)

IND 0.8245 ***
(2.6620)

−0.8945
(−0.7691)

0.2987
(0.8324)

−0.1275
(−0.8772)

0.6365 *
(1.9396)

1.2063
(0.9078)

PGDP −0.0120
(−0.0624)

1.4155 **
(2.5078)

0.1282
(0.6151)

0.0067
(0.0981)

0.0298
(0.1690)

1.1240 **
(2.0768)

HC −0.0394
(−0.8597)

−0.2541
(−1.6326)

−0.0218
(−0.4365)

0.0065
(0.3857)

−0.0179
(−0.3955)

−0.1755
(−1.1279)

Spatial-ρ −0.3296 ***
(−2.6797)

0.2812 ***
(41.1612)

−0.2010 *
(−1.6508)

Log-L 254.0455 157.6752 263.4351
N 390 390 390
R2 0.0900 0.0013 0.0223

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

Table 10. Threshold effect test and threshold values.

Threshold Variables Type of Threshold Threshold Value p Value F Value

Environmental
regulation

Single threshold 0.6145 0.0460 26.8200
Double Threshold 0.4797 0.5320 10.9400

Threefold threshold 0.4752 0.2000 15.8800

Further performing threshold regression analysis, Model (1) shows that environmental
regulation has an inhibiting influence on local GIE when it is less than the threshold value,
but it is not significant. After crossing the threshold value, ER has a significant promoting
influence on GIE. Given that the coefficients on industrial structure and level of economic
development are not significant, after removing these two control variables and rerunning
the threshold effect test, the threshold value remains the same, and the p value is smaller.
Model (2) shows the regression result. It is widely acknowledged that ER has a significant
inhibiting effect on local GIE when it is less than the threshold value. After crossing the
threshold value, ER has a significant promoting influence on local GIE; at the same time,
the “U”-shaped curve holds, and the conclusion is robust.
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Table 11. The consequences of the threshold model.

Model (1) Model (2)

ER(0 < ER≤0.6145) −0.1134
(−1.2700)

−0.1467 *
(−1.6900)

ER(ER > 0.614) 0.2240 *
(1.8600)

0.2022 *
(1.7300)

FDI 0.1049 ***
(4.5000)

0.1030 ***
(4.4400)

FIN −1.0655 ***
(−2.9400)

−1.1294 ***
(−3.1300)

GOV −0.3487 *
(−1.8000)

−0.3396 *
(−1.7700)

IND 0.1521
(0.6200)

PGDP 0.0456
(0.3400)

HC 0.0964 ***
(2.8700)

0.1108 ***
(4.1000)

POL −0.2744 **
(−2.5500)

−0.2818 ***
(−2.6900)

cons −0.6073 *
(−1.8800)

−0.6702 ***
(−3.4900)

R2 0.3315 0.3366

Note: Values in parentheses are t values, *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively.

5. Discussion

In the local effect, the effect of ER on the efficiency of local green innovation shows
a “U”-shaped characteristic of first inhibiting and then promoting. That is, when the
intensity of ER is low, stronger ER by the government will cause the cost of pollution
control to rise for firms, leading to reduced profits and squeezing out R&D funds, thus
inhibiting GIE [69]. When the intensity of ER is high, the pressure of excessive pollution
abatement costs forces firms to increase R&D and green innovation to improve production
technology and pollution abatement technology to form a competitive advantage [70],
thus promoting green innovation efficiency. More studies support our conclusion. Popp
et al. [71] found that because the cost increase brought by ER does indeed compress the
profit margin of enterprises, and at the same time, enterprises lack the willingness to
innovate in green technology, so ER will inhibit green innovation of enterprises in the
short term. Regarding the “innovation compensation” effect of environmental regulation,
Porter and van der Linde [72] argue that the innovation benefits of technological progress
can exceed the costs of regulation, and, therefore, reasonable environmental regulation
can effectively stimulate technological progress and innovation in the regulated firms.
Acemoglu et al. [11] further classifies production sectors into clean and non-clean types
and analyzes the impact of environmental policy incentives on technological innovation
by constructing a direction of technological progress model. Their numerical simulation
results find that some environmental regulatory measures, such as pollution taxation and
R&D subsidy policies, can promote clean technological innovation without sacrificing
economic growth.

Regarding the control variables, the effect of FDI on GIE is markedly positive, indicat-
ing that the large amount of capital, advanced technology, etc., it brings in has contributed
to local green innovation efficiency [73]. The influence of financial support on GIE is sig-
nificantly negative, indicating that banks have “adverse selection” to small, medium and
micro high-tech enterprises when they issue loans, and when monitoring the use of loan
funds, it will restrict the reinvestment of enterprises in R&D, resulting in a mismatch of
financial resources [74], inhibiting the improvement of local GIE. The effects of government
R&D funding, industry structure and level of economic development on green innovation



Int. J. Environ. Res. Public Health 2022, 19, 10389 15 of 20

efficiency are markedly positive in the space fixed effects model and positive but nonsignif-
icant in the double fixed effects model. This illustrates that government R&D funding
promotes local GIE through the provision of innovation funding and policy guidance [75].
An improved industrial structure facilitates the development of local GIE. The higher the
level of PGDP, the better the supporting innovation mechanisms usually are, and the more
conducive to GIE. The effect of HC on GIE is not significant in either model, and it is
generally assumed that the accumulation of human capital will facilitate technological
innovation [76]. Nevertheless, several scholars believe that the combination of human
capital accumulation and rational allocation of human capital can promote technological
innovation. Differences in the relative compensation structure of departments will cause a
mismatch of human capital and even make human capital in the monopoly sector inhibit
technological innovation.

In the neighborhood effect, the influence of ER on GIE in neighborhoods shows an
inverted “U” shape of promotion followed by inhibition. When the intensity of local envi-
ronmental regulations is high, local polluting industries will probably move to neighboring
areas [77]. In the short term, the take-up of industries by neighboring regions will lead to
an increase in output value and income levels, which, in turn, will increase R&D expen-
ditures for innovation and promote green technology innovation in neighboring regions.
However, in the long run, the neighboring land will become the undertaking place of high
pollution and low technology industries. Its industrial structure will probably also change
and develop in the direction of non-cleaning, deteriorating its ecological and industrial
environment and inhibiting the green innovation efficiency of the neighboring regions.
Some scholars have also focused on the phenomenon of transboundary pollution by ER. Wu
et al. [78] found that since the promulgation of China’s Eleventh Five-Year Plan emission
reduction mandate, firms began to migrate from coastal provinces with relatively stringent
environmental regulations to the central and western regions. Li et al. [79] found that ER
increased the probability of firm migration based on micro-firm data in China, but the
paths and motivations of such migration differed significantly between pollution-intensive
firms and clean firms. Dechezleprêtre et al. [80] found that increasingly stringent climate
control policies in developed countries have contributed to a significant increase in the
number of low-carbon patent applications in China.

Relating to control variables, the coefficients on FDI, financial support, level of eco-
nomic development and human capital are all nonsignificant, indicating that their spillover
effects on neighboring areas are limited. Government R&D funding significantly inhibits
green innovation efficiency in neighboring areas in both models, indicating that govern-
ment R&D funding guides the flow of innovation resources to local areas through policy
signals and competes with neighboring areas, which is not advantageous to the improve-
ment of GIE in neighboring areas [81]. The influence of industrial structure on GIE in
neighboring areas is significantly negative in the double fixed effect model and negative
but not significant in the space fixed effect model, which may be the transfer of polluting
enterprises to neighboring areas in the adjustment of local industrial structure [82], which
inhibits the improvement of GIE in neighboring areas.

6. Conclusions

According to the provincial-level panel statistics of Mainland China for the period
2004–2017, this paper employs the Super-SBM-DEA method to evaluate the GIE of China’s
provinces and constructs a spatial Durbin model and a mediating effects model to analyze
the “local-neighborhood” effect of ER on GIE. The study indicates that (1) there are large
discrepancies in GIE between regions in China, with the eastern region having a much
higher GIE than the midwest, the difference in efficiency values between the eastern and
central regions being much higher than that between the central and western regions, and
the distribution of GIE having a significant positive spatial correlation. (2) The local effect
of ER on GIE has a “U” shape. The neighborhood effect of ER on GIE has an inverted “U”
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shape. (3) The neighborhood effect of ER on GIE is achieved through the transfer of local
polluting industries.

7. Recommendations

Based on the above conclusions, this paper makes the following policy recommenda-
tions:

(1) Focus on regional differences and adopt innovative support policies according to local
conditions. In response to the distribution pattern of GIE in China, which is “high
in the east and low in the west”, the government should adopt different innovation
support policies according to local conditions. The eastern region should focus on
independent innovation, guide banks and other financial organizations to provide
financial support to small and medium-sized high-tech companies; adjust the relative
remuneration structure of the workforce, reduce financial mismatches and mismatches
in human capital resources; and further smooth the innovation mechanism and play
a demonstration and driving role. Increase government funding for R&D in the
mid-west and use policy advantages to make up for regional disadvantages. Improve
the green innovation environment in terms of tax incentives and R&D subsidies
to attract high-quality investment and support the eastern regions in transferring
suitable green technologies and green industries to the mid-west to help develop their
green innovation capabilities.

(2) Tailor environmental regulation policies to local realities. The relationship between ER
and the local GIE has a “U”-shaped feature. According to the current state of the local
economy and natural resources, the government can reasonably adjust the intensity
of environmental regulation so that the implementation of environmental regulation
can achieve optimal results. Given that most of the regions that have not reached the
inflection point are the less economically developed central and western regions, the
government should take into account local economic development and employment
levels and flexibly use a variety of environmental regulatory tools. For example, the
government could use administrative environmental regulation tools to establish
a bottom line, market-based environmental regulation tools to promote efficient
resource allocation, and green innovation by local enterprises through government
subsidies. For regions where the level of ER has crossed the inflection point, the
government can enhance environmental regulation in conjunction with actual practice,
such as strictly restricting pollutants as factor inputs, requiring the establishment
of pollutant reduction equipment, encouraging media and public participation in
environmental regulation and supervision, etc., motivating enterprises to further
increase investment in green innovation and take the high-end development path of
innovation-driven and green transformation.

(3) Integrating regional environmental regulation policies. In response to the problem
that environmental regulation can cause polluting industries to move across regions,
the central government should comprehensively consider the actual differences and
interest appeals of various regions to form a cross-regional environmental collabo-
rative governance system led by one party and participated by multiple parties to
reduce polluters’ incentive to move across regions and to avoid local governments’
beggar-my-neighbor in environmental regulation issues. Local governments should
strengthen collaboration and reach consensus in policy implementation and regulation
to bring into play the spatial linkage of environmental regulation policies. In addition,
it is necessary to refine and diversify environmental regulation policies, formulate
specific regulatory measures for polluting and nonpolluting industries, appropriately
increase the locational transfer costs of polluting industries, raise their market entry
barriers, strictly rectify polluting enterprises with backward technologies within a
time limit, and provide certain financial and technical policy support to assist and
force them to carry out R&D investment and improve their production processes to
abate pollution at the source.
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