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Abstract: From the epidemic center in Wuhan to the entirety of China, with the growing infected
population, people are seeking and processing health-related information both online and from
traditional media outlets such as newspapers. Online misinformation regarding COVID-19 has been
influencing a wide range of readers demonstrating general citizens’ virus-related concerns, while
press media have been actively participating in health communication in an attempt to build up
a robust, harmonious, and healthy environment. Via a comparison between the news data with
the misinformation data during the early stage of the COVID-19 pandemic, from 1 January 2020 to
20 February 2020, we conducted an LDA topic-modeling analysis and a sentiment analysis. This study
sheds light on the nature of people’s methods of health communication with online and press media
sources during the early period of the pandemic crisis and provides possible readable explanations
for the driving force of misinformation and the emotional changes experienced by the public.
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1. Introduction

Misinformation during crises form and develop on viral platforms for many reasons.
Some scholars have studied misinformation and rumors in crises during wartime [1], oth-
ers have focused on the pandemic, natural disasters [2], or terrorist attacks [3]. Scholars
found that online sites and mainstream newspapers circulated several pieces of misleading
information during the 9–11 crisis [3]. Social media also serves as an arena for the spreading
of rumors, such as twitter [4–6], where social media accelerates the communication process
of crisis responses and becomes a part of it [4]. It has also been documented that the dis-
semination of rumors on twitter platforms are different from news in the same community;
for example, people questioned misinformation more on social media compared to news
outlets [5].

The development and spread of misinformation on the internet places public interests
at risk and diminishes institutional authority. A lack of detailed information assists the
spread of misinformation and causes a great deal of trouble with respect to public health
communication. According to scholars, web-based news information in crises have a mixed
and contradictory reputation, where some online news sources lack details of the crisis,
whereas others lack relevant information in various formats, besides textual information,
such as visual, audio, and video [2]. A lack of detailed information assists the spreading
of uncertain information, rumors, and misinformation. Lies spread at a faster speed than
truth [7].

2. Related Works

For decades, researchers have been looking for features of the spread of misinformation
online, so that the best practices could be adopted to fight both viruses and misinformation.
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Some scholars have analyzed social media messages for their rumor-affirming or rumor-
correcting speeds to establish a spreading model of fake news online [7]. Others have
discovered that the factors causing social media-based misinformation are information
without a clear source, stories with a great deal of personal involvement, and anxiety [8].
The reason for this comparison of the traditional news with the misinformation online is
that due to the structural differences between the two (e.g., readership, ownership, etc.),
traditional news media can only cover certain issues related to the epidemic but not others
(e.g., the lab-leaking theory) while online misinformation tends to be more diverse in
its topics.

The procedures to prevent misinformation lie in disaster planning and management [9],
a well-established law and regulation system [10], and a proper outlet with sufficient and
necessary information. According to scholars, such as Quarantelli, E. L. [11], disaster plan-
ning is essential for crisis management, and information flow for communication purposes
plays an important role, where “information flow from organizations to the general public”
about disasters is usually processed poorly. A lack of organizational consensus among
communities and organizations has caused a lot of problems. A consensus must be formed
for co-ordination to cope with emergency situations. During an emergency, the need for
information grows with public concerns; therefore, sufficient information provided by a
proper outlet would greatly ease uncertainty. Moreover, utilizing the information citizens
provide would even help in the discovery of important strategies for mitigating the crisis [4].
Similarly, establishing proper information processing mechanisms during crises could help
gather community intelligence for problem solving [8].

As an elusive concept, misinformation is generally considered as false information
that lacks clear evidence [12]. Although some scholars [13] have argued for further distin-
guishing disinformation, i.e., false information intentionally fabricated for deception, from
misinformation, i.e., unwittingly disseminated false information, the term “misinformation”
has been commonly used to represent any false information deliberately or accidentally
shared [14], unless the intention to mislead (e.g., meddling with elections) is the focal
research point. Under this big umbrella of “misinformation” are many forms of false
information with varying degrees of falsehood: gossip, rumor, fake news, hoaxes, legends,
myths, and so on [15]. Misinformation is also nuanced in terms of its implied consequences:
dread misinformation contains undesirable outcomes such as death, economic collapse,
or disasters, whereas wishful misinformation, such as finding a cure for cancer, promises
positive results [15–17].

As millions of years of evolution have hardwired our nature to be risk aversive, the
imminent threats users perceive from dread misinformation will invoke negative emotions
and motivate avoidance behaviors to prevent the dire consequences [18], which will in
turn impact how users evaluate and react to misinformation from social media outlets [19].
In contrast, the positive emotions induced by wishful misinformation will likely elicit
motivation that encourages users to pursue the desired outcomes promised in wishful
misinformation [20], including evaluating the wishful misinformation favorably and taking
actions to share it.

To generate comprehensible explanations, common methods used for the analysis
of text-based data are sentiment analysis and LDA (Latent Dirichlet Allocation) topic
modeling, which previous studies on COVID-19 have also applied [21–24]. For example,
some scholars work on sentiment analysis for news during epidemics [22]. Some scholars
have analyzed the social media platform Twitter using a sentiment analysis [23,24]. In terms
of topic modeling approaches, LDA and STM are widely used in text-based data analysis.
Furthermore, there are researchers using LDA to identify major topics on the Twitter
platform about COVID-19, others also focus on users’ feedback on online forums, and LDA
is used with manual annotation and sentiment analysis to further extract meaningful topic
dynamics and sentiment trends [25,26].

With the above previous studies’ analyses, we try to answer the following two research
questions in this paper:
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RQ1. Comparing major themes and topics of content between online misinformation
and newspaper, what are the differences and similarities during the early period of the
COVID-19 outbreak?

RQ2. What emotions are revealed from the misinformation on the epidemic outbreak?

3. Methods
3.1. Subsection Data Collections

News reports. We used the Huike (Wisers) database to collect COVID-19-related
reports from news outlets in China, which is one of the largest professional news data
service providers for major Chinese news agencies, such as People’s Daily, with an up-to-
date collection of more than 1500 different press archives (http://wisenews.wisers.net.cn/,
(accessed on 21 February 2020)). Using the search keyword “coronavirus” in title and first
paragraph of news content, we gathered a total number of 7791 different newspaper articles
from major Chinese news agencies between 1 January 2020 to 20 February 2020.

Social media misinformation data. We also collected 372 pieces of misinformation that
emerged from 1 January 2020 to 20 February 2020 from two online platforms: news.qq.com,
(accessed on 21 February 2020) and www.dxy.cn, (accessed on 21 February 2020). This is
mainly because the former is operated by the most popular social media company in China,
Tencent, which closely monitored and reported online misinformation about coronavirus
at its early stage, and the latter is a professional health information portal that actively
aggregated the latest coronavirus-related misinformation on a daily basis since it broke out
in China.

3.2. Data Pre-Processing and Preparation

To prepare the data collected for LDA, we applied a few techniques to pre-process
the datasets [27–29]. As shown in Figure 1, we first conducted word extraction and
segmentation with Jieba in Pyhton, Jieba was widely used in many Chinese text mining
and sentiment analysis studies. In the second step, we cleaned null content such as missing
data from the datasets. In the third step, we removed common stop words such as “is”,
“are”, and “them”, from Chinese vocabulary, which have no specific meanings. Lastly, we
conducted TF-IDF (term frequency inverse document frequency) transformation to give
more weight to those words appearing with high frequencies only in our datasets. TF-IDF
is a commonly used pre-processing technique for text mining [30].

Figure 1. Data Processing Workflow.

http://wisenews.wisers.net.cn/
news.qq.com
www.dxy.cn
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3.3. Data Analyses

To answer RQ1 and generate human-readable explanations regarding the common
themes of the news reports and misinformation about coronavirus in the early stage of the
COVID-19 pandemic, we applied the LDA (Latent Dirichlet allocation) topic-modelling
analysis to both the news-reports and misinformation datasets.

LDA is a widely used technique in text mining for analyzing data [26,31,32]. One
critical question in LDA is to decide the optimal number of topics emerging from a given
dataset. While scholars in the past have relied on various creative approaches to this
question [33], one commonly adopted method to determine the optimal topical number
is to obtain the coherence score, as recommend by Stevens and his colleagues (2012) [34],
through calculating the most representative words’ semantic similarities in a topic. The
arithmetic mean of these similarities is then calculated to represent the level of consistency
for each topic [35].

To answer RQ2, we implemented sentiment analysis to answer RQ2 about the possible
emotions that drove the transmission of the misinformation on social media, as emotion
has been identified as a notable predictor of the spread of misinformation. The sentiments
that emerged from the misinformation data could provide a gateway to understanding
the public emotional states expressed in the spread of misinformation on the coronavirus
during the early stage of the COVID-19 outbreak in China. Researchers have conducted
studies on different emotions expressed in misinformation with a popular lexicon provided
by National Research Council Canada (NRC) [27]. This lexicon has been widely used
for analyzing emotions expressed in tweets [27], news [28], and customer reviews [29].
We adopted this leading lexicon to analyze eight emotions based on Plutchik’s emotion
classification (2001)—anger, fear, anticipation, trust, surprise, sadness, joy, and disgust [30]—
to process the misinformation data. The lexicon can process text in different languages
including Chinese for the eight types of emotions.

4. Results

With the genism package in python, we calculated the coherence value of different
topic number [32,33]. When there were eight topics, we found that the coherence value was
0.5109 (see Figure 1); increasing number of topics will result in a growing coherence value,
but it increases more slowly after reaching eight as the topic number.

Taking only machine learning into account, the possible results could be without
interpretations [33]. By choosing an optimal topic number with both machine learning and
interpretability into account [33–35], we decided to choose eight as the topic number for
our study. After the LDA topic modeling on misinformation and news data, we generated
eight topics for each source and further classified them into fewer themes and categories to
analyze manually.

For the news data LDA analysis, we found eight topics and grouped them into four
categories of themes (see Figure 2 and Table 1). The major theme, accounting for up
to 39.40%, is “Prevention and control work, economic influences and society support”,
followed by “Prevention and control, government work and notice” (28.80%) as the second
biggest theme. The third largest theme was “Prevention and control work, instructions and
call for determination” (18.30%) and the fourth was “Cases and development” with a total
of 13.50% (see Table 1).
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Figure 2. Coherence score for number of topics for news data.

Table 1. News data LDA analysis from 1 January 2020 to 20 February 2020.

Themes Topic Names Key Words Topic
Proportion (%)

Theme
Proportion (%)

Theme 2: Prevention
and control,

government work
and notice

Topic 1: prevention,
control, and

government work
and notice

Infection, Pneumonia, Coronavirus,
Work, Prevention and Control,
Command, held meeting, Case,

confirmed, outbreak, notice, response,
leadership group, Cumulative, My
province, News, Press conference

28.80 28.80

Theme 4: Cases
and development

Topic 2: confirmed
cases and epidemic

development

Patient, Cure, my city, Confirmed,
Infection, Case, pneumonia,

coronavirus, first case, knowledge,
cumulative, control and prevention,

outbreak, first batch

13.50 13.50

Theme 1: Prevention
and control work,

economic influences,
and society support

Topic 3: company
announcement,

donation, and support

Announcement, Donation, Support,
Resistance, Outbreak, Coronavirus,

New type, Pneumonia, Limited,
Group shares, Prevention and control,

Detection, Response, nucleic acid,
technology shares

12.90 39.40

Topic 4: epidemic
control and

development,
economic influences

Public, Coronavirus, Infection, control,
plan, Protection, Pneumonia,

Outbreak, Notification, enterprise,
return to work, My province, Illegal

crimes, Diagnosis, and treatment

9.90

Topic 5: company
influences and

donation and support

Shared company, operation,
announcement, affect, coronavirus,
outbreak, production, prevention,

pneumonia, infection, control, drug,
treatment, control

9.50

Topic 8: government
announcement,

prevention, and control

Municipal Committee, Coronavirus,
Infection, Outbreak, Announcement,

Supervision, Pneumonia, central
government, risk, control, return

journey, Li Keqiang, China, response,
guideline, Joint Control, Joint Defense,

close contact, Jiangxi

7.10
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Table 1. Cont.

Themes Topic Names Key Words Topic
Proportion (%)

Theme
Proportion (%)

Theme 3: Prevention
and control work,

instructions, and call
for determination

Topic 6: prevention and
control work,

announcement,
and community

prevention and control, outbreak,
decision, work, do well, coronavirus,

pneumonia, Infection, detection,
Home, Community, Notification,
Hebei Province, Video, Research,

Report, Consultation

9.40 18.30

Topic 7: guideline,
prevention and control
work, determination to

win the battle

Guideline, Prevention and Control,
work, Outbreak, Coronavirus,

Infection, according to law,
pneumonia, development, manual,
medical institution, proposal letter,

determination, Resolutely,
confront, battle

8.90

To compare the news data with the misinformation data, we also conducted an LDA
analysis to illuminate the major topics and themes. There are eight topics of misinformation
that we generated, and we categorized them into three different themes (see Figure 3 and
Table 2). The theme with the largest proportion in relation to the COVID-19 outbreak from
news media is “Theme 1: virus spread, prevention and control” consisting of 37.7% of all
news, “Theme 2: Medical supplies, prevention and control measures” (37.3%) is the second
biggest theme, which is followed by the third one “Theme 3: Medical cure, medicine and
prevention” (24.9%) (see Table 2).

Figure 3. News data LDA analysis topic result.
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Table 2. Misinformation data LDA analysis from 1 January 2020 to 20 February 2020.

Theme Topic Names Key Words Topic
Proportion (%)

Theme
Proportion (%)

Theme 1: virus spread,
prevention and control

Topic 1: pneumonia
prevention treatment

Pneumonia, coronavirus, treatment,
infectious, boiling water, resistance,

pet, Standard, Public, Smoking,
Reservation, Harvard, Rent-free,

Fish pond

12.7 37.7

Topic 5: virus spread,
control and prevention,

treatment

Prevention, Coronavirus, Doctor,
Nanjing, Death, ID card, Bus line,

Fuzhou, medical Material, Main road,
Seafood, Alcohol, White wine,
Infection, High temperature,
Humidifier, Shuang Huang

Lian, Immunity

12.5

Topic 4: virus spread,
treatment and

prevention

New type Coronavirus, Aerosol,
Prevention and control, Academician,
Large area, Xiwei, Died, Feng you jing,

Body temperature, Airplane, Bee
venom, Atomization, Sweater, Playing

with snow, Carambola

12.5

Theme 2: Medical
supplies, prevention
and control measures

Topic 8: mask and
other medical supplies,

prevention control
measures in city

Mask, Go out, High Way, School,
epidemic prevention, closed, public
toilet, plague, whole city, Supplier,

Nanjing, Home, Huaxi, Block,
Guangzhou, Leave, Exposure,

Decision, Zhong Nanshan

12.4 37.3

Topic 2: virus spread
and prevention, road

control measures

Wuhan, Spread, Patient, Shanghai,
Confirmed, seal the city, Hubei,

Isolation, Patient, Kill, Protection,
Shenzhen, Diaper, Seafood, Detection,

Soap, Transportation, High Way,
Delay, restrictions

12.5

Topic 7: medical
supplies, road control,
prevention and control

measures

Disinfection, Alcohol, Beijing, Spray,
Medication, Garlic, Red Cross, United
States, Japan, Closed road, Flu, Risk,

Supermarket, Antivirus, Vaccine,
Guideline, Sanitary napkin, Cold, Li

Wenliang, enterprise

12.4

Theme 3: Medical
cures, medicine,
and prevention

Topic 3: medical cure
and prevention

Outbreak, Hospital, Cure, Virus
infection, Libawei, Chlorine dioxide,
Antivirus, Zhong Nanshan, China,

SARS, Air conditioner, Express parcel,
Assistance, Hangzhou, Video,

Professor, Shandong, People, Home,
Cash, Blood

12.5 24.9

Topic 6: Specific
medicine, prevention

Specific medicine, Virus Infection,
Chengdu, Zhong Nanshan, Case, Bus
Discontinued, News, Thailand, Mask,

Outbreak, Fireworks, Sick, Napkin

12.4

After the data-cleaning process, we calculated the number of counts of different
emotions, the sum number of different emotions, and used matplotlib package (https:
//matplotlib.org/, accessed on 20 March 2020) in python to visualize the result shown in
Figures 4–6 for further analysis.

https://matplotlib.org/
https://matplotlib.org/
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Figure 4. News data LDA analysis theme result.

Figure 5. Misinformation data LDA analysis topic result.
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Figure 6. Misinformation data LDA analysis theme result.

5. Discussion

To answer RQ1 and generate a humanly comprehensible explanation, we compared
the news data with misinformation data and analyzed citizens’ reception of and search
for information during COVID-19’s early period, among which the following caught
our attention.

There are some similarities between the two sources of information. Both news media
and online misinformation showed concerns for the prevention and control of the virus.
For instance, the news dataset’s Theme 1, Theme 2, and Theme 3 all similarly concern the
“Prevention and control” category, while the misinformation data show a similar concern:
Theme 1 and Theme 2. This illustrates that the press media is posting information with
people’s needs and wants in a general direction, trying to build up a robust, harmonious,
and healthy environment.

Although from the major themes’ categories, news media and rumors deliver informa-
tion with greater similarity rather than differentiation, but they emphasize different details.
After carefully comparing these “prevention and control” data, we observed quite obvious
distinctions in the details.

Regarding misinformation Theme 1, it considers the spread of the virus and the
epidemic itself to form prevention and control messages, such as the origin and spread, and
many detailed uses of prevention are mentioned, such as avoiding seafood, using alcohol,
drinking white wine, Shuang Huanglian (note: one kind of common Chinese medicine
for colds), etc. Whereas for Theme 2, the major emphasis lies in medical supplies and
transportation controls, such as masks and road controls to stop the transmission of the
virus. However, very few news reports concern these personal choices of diet or medicine
for the prevention and detection of the virus infection.

The third biggest group of themes for misinformation is “Medical cure, medicine and
prevention”, which is mainly about personal choices of medicine, curing methods, and
related health information. A great deal of misinformation is about specific medicine for
curing the virus, effective prevention methods, and medical choices, some of which even
mention being verified by noted experts, such as Dr. Nanshan Zhong. However, in the
news-based information, although prevention and control suggestions are given, they are
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only provided as general instructions without specific advice, especially about personal
choices of medicine or medical treatment.

The above two major differences demonstrate a lack of information for normal citi-
zens to obtain enough detailed information towards personalized suggestions on medical
decisions during the early period of the COVID-19 outbreak, such as prevention, detection,
choice of medicine, and medical cure measures.

Comparing the news and misinformation data, when sufficient information is pro-
vided in a newspaper, the less likely it is that misinformation will spread on the same topic,
and vice versa. As the different details of the prevention and control topic shows, because
of the lack of personal guidance of medical choices in press media, a great deal of misin-
formation on these topics is spread. Some other emphases of the news articles show the
opposite pattern: in areas where newspapers generate a number of reports, misinformation
would have less of a potential to increase.

For news data, regarding Theme 2, news reports emphasize government work con-
ducted towards prevention and control. Since there is a sufficient amount of information
about this category of news, very little misinformation was spread on this topic.

Likewise, from the news data, regarding Theme 1, newspapers report prevention and
control work from a viewpoint of economic and societal influences, such as enterprise
influences, society donations, and support. With a relatively large proportion of information
for this category of news, misinformation of this kind has less room to increase.

To understand the emotions that netizens revealed when uncertain information was
provided and to discuss RQ2, we implemented a sentiment analysis to seek the distribution
of different emotions as shown in Figure 7, and to try to analyze what drove the trans-
mission of misinformation on social media. We found that fear was the most dominant
emotion, comprising 21.2% of the total misinformation-related emotions. Whereas trust
was represented 15.4% in total, which showed people’s concern towards uncertainties, and
a similar proportion of 15.2% was represented by the emotion of disgust. Thus, these are
the major driving forces for the transmission of misinformation.

Figure 7. Sentiment proportion of COVID-19 misinformation.

However, in news reports, besides actions, the media tried to build up a positive
attitude and optimistic belief. For Theme 3, the press media coverage included epidemic
prevention and control with a very optimistic standpoint, demonstrating the labor achieved
and the progresses made from the community to hospital to government organizations. This
kind of news also showed a strong belief and determination to win this battle. Compared
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to misinformation, these details seldom appear in the transmission. However, there are
also forms of misinformation hoping for the best, or fearing for the worst, appearing in
the early period of the epidemic outbreak. Through an emotion analysis, we did observe
interesting points concerning the seeking and processing of misinformation.

6. Conclusions

To understand individuals’ patterns of health communication with online and press
media sources, we collected and compared the news data with misinformation data, and
analyzed citizens’ information-seeking and -receiving behaviors during the early period
of COVID-19, from 1 January 2020 to 20 February 2020. We also conducted an LDA topic
modeling analysis and sentiment analysis and provides possible explanations for the
driving forces for misinformation and the associated emotions people experienced during
the epidemic crisis. Future studies could be conducted to focus on aspects of Media literacy,
and to analyze audiences and their responses towards information.
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