
Citation: Harsányi, E.; Bashir, B.;

Alsilibe, F.; Moazzam, M.F.U.;

Ratonyi, T.; Alsalman, A.; Széles, A.;

Nyeki, A.; Takács, I.; Mohammed, S.

Predicting Modified Fournier Index

by Using Artificial Neural Network

in Central Europe. Int. J. Environ. Res.

Public Health 2022, 19, 10653. https://

doi.org/10.3390/ijerph191710653

Academic Editor: Zhuodong Zhang

Received: 23 July 2022

Accepted: 20 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Predicting Modified Fournier Index by Using Artificial Neural
Network in Central Europe
Endre Harsányi 1,2, Bashar Bashir 3 , Firas Alsilibe 4, Muhammad Farhan Ul Moazzam 5 , Tamás Ratonyi 1,
Abdullah Alsalman 3, Adrienn Széles 1 , Aniko Nyeki 6 , István Takács 7 and Safwan Mohammed 1,2,*

1 Institute of Land Use, Technical and Precision Technology, Faculty of Agricultural and Food Sciences and
Environmental Management, University of Debrecen, 4032 Debrecen, Hungary

2 Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi 138,
4032 Debrecen, Hungary

3 Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia

4 Department of Transport Infrastructure and Water Resources Engineering, Széchenyi István University,
Egyetem tér 1, 9026 Gyor, Hungary

5 Department of Civil Engineering, College of Ocean Science, Jeju National University, 102 Jejudaehakro,
Jeju 63243, Korea

6 Department of Biosystems and Food Engineering, Faculty of Agricultural and Food Sciences, Széchenyi
István University, Vár Square 2, 9200 Mosonmagyarovar, Hungary

7 Doctoral School of Humanities, University of Debrecen, Egyetem Tér 1, 4032 Debrecen, Hungary
* Correspondence: safwan@agr.unideb.hu

Abstract: The Modified Fournier Index (MFI) is one of the indices that can assess the erosivity of
rainfall. However, the implementation of the artificial neural network (ANN) for the prediction of
the MFI is still rare. In this research, climate data (monthly and yearly precipitation (pi, Ptotal) (mm),
daily maximum precipitation (Pd-max) (mm), monthly mean temperature (Tavg) (◦C), daily maximum
mean temperature (Td-max) (◦C), and daily minimum mean temperature (Td-min) (◦C)) were collected
from three stations in Hungary (Budapest, Debrecen, and Pécs) between 1901 and 2020. The MFI
was calculated, and then, the performance of two ANNs (multilayer perceptron (MLP) and radial
basis function (RBF)) in predicting the MFI was evaluated under four scenarios. The average MFI
values were between 66.30 ± 15.40 (low erosivity) in Debrecen and 75.39 ± 15.39 (low erosivity) in
Pecs. The prediction of the MFI by using MLP was good (NSEBudapest(SC3) = 0.71, NSEPécs(SC2) = 0.69).
Additionally, the performance of RBF was accurate (NSEDebrecen(SC4) = 0.68, NSEPécs(SC3) = 0.73).
However, the correlation coefficient between the observed MFI and the predicted one ranged between
0.83 (Budapest (SC2-MLP)) and 0.86 (Pécs (SC3-RBF)). Interestingly, the statistical analyses promoted
SC2 (Pd-max + pi + Ptotal) and SC4 (Ptotal + Tavg + Td-max + Td-min) as the best scenarios for predicting MFI
by using the ANN–MLP and ANN–RBF, respectively. However, the sensitivity analysis highlighted
that Ptotal, pi, and Td-min had the highest relative importance in the prediction process. The output of
this research promoted the ANN (MLP and RBF) as an effective tool for predicting rainfall erosivity
in Central Europe.

Keywords: land degradation; machine learning; climate change; Hungary

1. Introduction

In many regions across the world, the most predominant type of land degradation is
soil erosion, which has adverse environmental and socioeconomic consequences [1–3]. Soil
erosion is the process of moving soil particles by external forces, such as mass movement,
wind, and water [4,5]. In Europe, where a humid climate dominates, water-induced soil
erosion is the main form of erosion, which poses a serious environmental concern in many
European countries [6]. Furthermore, soil erosion by wind and dust storms is one of the
challenges in European countries [7–9].
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Soil erosion by water has numerous environmental impacts. For instance, detaching
soil particles from the upper layer of the soil causes a deterioration in agriculture productiv-
ity through the loss of organic matter, nutrients, and soil depth [10]. Moreover, moving soil
particles over vast distances affects the ecosystem service quality in downstream rivers by
increasing the sedimentation and the contamination of aquatic life [11,12]. Since measuring
soil erosion at a large scale is difficult, expensive, and time consuming, several models have
been developed in recent decades to estimate soil erosion [13–15].

In Europe, the Universal Soil Loss Equation (USLE) [15], and its modified version, the
Revisited Universal Soil Loss Equation (RUSLE) [14], is the most widely used in quantifying
soil erosion at multiple scales across Europe. At large spatial scales, RUSLE is typically
the most frequently used model to estimate soil erosion [16]. In the RUSLE model, the
average annual soil erosion is calculated by multiplying six factors, including the rainfall
erosivity factor (R factor). These factors are slope length (L-factor), soil erodibility (K-factor),
slope steepness (S-factor), supporting conservation practices (P-factor), and crop type and
management (C-factor). In this sense, rainfall erosivity is considered the most important,
as rainfall has a direct impact on detaching and moving the soil particles [15].

Rainfall erosivity is the potential force of raindrops to detach and erode soil par-
ticles [17]. As it is one of the main causes of floods and landslides, researchers have
highlighted rainfall erosivity as an important indicator to be investigated [18]. The rainfall
erosivity factor is calculated using rainfall records with 1–5 min precipitation intervals [19];
however, these records are rarely accessible for long enough in most of the world. As
a result, the kinetic energy concept has been widely employed to estimate the rainfall
erosivity factor from half-hourly or hourly datasets [20].

To accurately estimate the R factor using the kinetic energy concept, it is necessary
to measure both the intensity and the kinetic energy of the rain, but it is highly challeng-
ing to achieve this directly since the equipment needed is expensive and measuring the
distribution of the rainstorm’s drop sizes is a tedious process [21]. To overcome this, re-
searchers have developed numerous empirical equations that describe the relationship
between rainfall intensity and its kinetic energy [22]. To provide a comprehensive review
of these equations, Dash et al. [21] compared six of the most universal equations in more
detail and provided a deep evaluation of their applicability in calculating the R factor.
Alternative methods for calculating the R factor include index techniques, such as the Mod-
ified Fournier Index (MFI), especially when high-resolution rainfall records (half-hourly
or hourly) are not available. The MFI is one of the methods suggested by Arnoldus [23]
for calculating the R factor based on the monthly rainfall data. However, some adjustment
is required for calculating the R factor based on the MFI result [24]. The MFI was used to
estimate catastrophic erosion by evaluating rainfall erosivity and its association with other
meteorological factors [25]. Previously, the MFI was implemented in many parts of the
world, as can be seen in Table 1.

Table 1. Some examples of implementation of MFI in different parts of the world.

Country Period Comment Reference

NE Spain 1997–2006 MFI has poor performance against observed
R-value

Angulo-Martínez and
Beguería [24]

India 1981–2019 (CHIRPS-2.0
Global_daily) High correlation between MFI and R Raj et al. [26]

Uruguay 1931–2000 MFI increased in the 1980s and 1990s Munka et al. [27]

Iran 1970–1992 Roose’s index more efficient than MFI Sadeghi [28]

Pannonian basin
(Central Europe) 1961–2014 Low erosive class of MFI was recorded Lukić et al. [11]

Recently, the artificial neural network (ANN) and machine learning algorithms have
been widely used to predict environmental processes (erosion, contamination, and drought)
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in many parts of the world [29]. For instance, the multilayer perceptron neural network
(MLPNN) model is one of the most widely used models for predicting hydrological
data [30]. Mishra and Desai [31] used the ANN, RBF, and adaptive neural network-based
fuzzy inference system (ANFIS) to forecast drought (SPI) at various timescales and found
that ANN has better performance than RBF and ANFIS. In Iran, MLP, ANFIS, and multiple
linear regression models were used for forecasting precipitation; the output showed that
MLP produced better results [32]. Jalalkamali et al. [33] compared stochastic models with
the ANN to forecast SPI-9 in Iran, and their results revealed that stochastic models per-
formed better. The different model results depend on the drought index and its scale [34].
More examples of the implementation of the ANN for predicting certain environmental
variables are presented in Table 2.

Table 2. Implementation of ANN for predicting some environmental variables in many parts of
the world.

Country Environmental
Phenomenon Method Comment Reference

Two watersheds in
Australia and France

Rainfall-runoff
modeling EANN and FFNN EANN is better than FFNN Nourani [35]

Kasilian watershed
(Iran) Soil erosion ANN and GIS ANN with GIS perfectly

predicts soil erosion Gholami et al. [36]

Langat River basin
(Malaysia) Meteorological drought ANN-ARIMA

Engagement of Wavelet-
based ARIMA–ANN
was recommended

Khan et al. [37]

Bojnourd (Iran) Drought forecasting ANN, ANFIS, support
vector machine (SVM)

SVM was the most
accurate one Mokhtarzad et al. [38]

South Korea Groundwater level ANN and SVM SVM was better than ANN Yoon et al. [39]

Based on the literature, few studies used the ANN to predict rainfall erosivity. How-
ever, limited information is available on MFI changes in Central Europe. Thus, the main
goals of this research were to: (1) assess the Modified Fournier Index (MFI) as a representa-
tive for the erosivity index in three stations in Hungary between 1901 and 2020; (2) evaluate
the ability of ANNs (multilayer perceptron (MLP) and the radial basis function (RBF)) to
predict the MFI; and (3) rate the importance of input variables in predicting the MFI based
on sensitivity analysis (∂). Overall, the implementation of ANN to predict MFI is still less
common, which give this work novelty in its field, where the output will serve researchers,
planners, and decision makers.

2. Materials and Methods
2.1. Data Collection

Data were collected from the Hungarian Metrological Center (https://www.met.hu/
en/eghajlat/magyarorszag_eghajlata/eghajlati_adatsorok/Pecs/adatok/havi_adatok/,
accessed on 1 June 2022). The data included the monthly rainfall (mm), daily maximum
precipitation in the month (mm), monthly mean temperature (◦C), daily maximum mean
temperature in the month (◦C), and daily minimum mean temperature in the month (◦C)
and were collected from three meteorological stations: Budapest (47◦30′40′ ′ N, 19◦01′41′ ′ E),
Debrecen (47◦29′44′ ′ N; 21◦37′48′ ′ E), and Pécs (46◦04’37′ ′ N, 18◦13’29′ ′ E). Interestingly,
the data cover 120 years from 1 January 1901 to 1 December 2020.

2.2. Modified Fournier Index (MFI)

Rainfall erosivity (R) represents the ability of rain drops to initiate erosion. To calculate
the R factor, the measurement of rainfall intensity and rainfall duration is required [40].
As such data are not available in many places in the world, many indices were developed
to determine the R factor. The Modified Fournier Index (MFI), which was proposed by

https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/eghajlati_adatsorok/Pecs/adatok/havi_adatok/
https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/eghajlati_adatsorok/Pecs/adatok/havi_adatok/
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Arnoldus [23], is a widely used index for estimating the R factor. The MFI is based on
monthly precipitation (pi) and total yearly precipitation (Ptotal):

MFI =
i=12

∑
i=1

p2
i

Ptotal
(1)

The output of Equation (1) can be categorized as presented in Table 3. Based on that,
the MFI will have high values where the rainfall values are high. In this sense, regions
with high amounts of total annual rainfall and rainfall precipitation concentration will
have a high MFI value [41]. However, a strong correlation between MFI and R-factor
was recorded in the literature [41,42]. Overall, the calculation of the MFI could provide a
realistic estimation of the potential rainfall erosivity factor [43].

Table 3. Description of the MFI erosivity range [42].

MFI Value Category

<60 Very low
60–90 Low
90–120 Moderate
120–160 High
>160 Very high

2.3. Predicting Rainfall Erosivity Based on Artificial Neural Network (ANN)
2.3.1. Thermotical Background of ANN Algorithms (MLP and RBF)

The artificial neural network consists of various interconnected neurons, nodes, or
perceptrons that are called artificial neurons. Each node transmits a signal to another node;
therefore, it can keep the information between various connections and distinguish the
patterns [44]. The interconnected node obtains signals, processes them, and transforms
them further. The transferring signal between nodes is a real number, and its output can
be estimated using a nonlinear function by summing up all the inputs. The output of any
network architecture works as an input for the preceding neuron [45,46].

There are several neural networks, but the multilayer perceptron (MLP) is widely
used in environmental studies. The MLP connects nodes in a feedforward ANN. The
MLP connections between nodes cannot form a cycle. The MLP is sometimes used as any
feedforward ANN, and sometimes it refers to a network with various layers [47].

The MLP is a supervised learning technique used in backpropagation for training the
dataset and has the ability to split the data that are not linearly separable. These attributes
differentiate it from the linear MLP [48]. Ali et al. [49] used the MLP and found that
it has the potential to predict drought as one of the ecosystem components in different
performance measures. Therefore, in this study, we also used the MLP model. To estimate
the y using a three-layer network with n number of neurons in the hidden layers and m
number of inputs, we can use Equation (2):

y = f

[
n

∑
k=0

wj.g (∑m
i=1 Wji xi+wj0)+w0

]
(2)

Here, weight wj, joined with the jth neuron in the hidden layer and the output layer wji
weight make a connection between the ith input variable and the jth neuron in the hidden
layer, where xi is the ith independent variable, wj0 is the bias of the jth neuron, g is the
activation function for the neuron of the hidden layer, and f is the activation function for
the output layer [50].

The radial basis function (RBF) is another form of ANN, which was used in this
research. The RBF was first proposed in 1988 by Broomhead and Lowe to solve the ill-
conditioned problems in interpolation [51]. The RBF is a base of radial networks comprising
neural network groups, i.e., a statistical neural network. Euclidean distance is the net input
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for the activation function of a neuron between its weight (w) and vector (i) multiplied by the
bias b. The equation below (Equation (3)) presents the radial basis function network [50,52]:

a = (
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Despite the differences between these two algorithms (i.e., MLP and RBF), both were
used for predicting the MFI values in Central Europe.

2.3.2. Modeling Framework
Input Variable

Based on Equation (1), the only necessary data for calculating the MFI is rainfall data
(pi and Ptotal). However, for the modeling approach, we engaged other climatic factors,
including the daily maximum precipitation (mm) (Pd-max), monthly mean temperature
(◦C) (Tavg), daily maximum mean temperature (◦C) (Td-max), and daily minimum mean
temperature (◦C) (Td-min). An overview of the input variable for each station is presented
in Figures 1 and 2 and Table 4.
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Figure 1. Evolution of monthly mean temperature (Tavg) (A–C), daily maximum mean temperature
(Td-max) (D–F), and daily minimum mean temperature (Td-min) (G–I) in Central Europe (Budapest,
Debrecen, Pécs) between 1901 and 2020.

For the modeling approach, five scenarios were adopted, as can be seen in Table 5.
The main purpose of adopting different scenarios is to assess the function of the ANN
(MLP and RBF) in predicting the MFI based on different input variables. For instance, the
first scenario includes all input variables (rainfall (daily + monthly + total) + temperature
(monthly)), while the last scenario includes only two rainfall parameters.
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Figure 2. Evolution of monthly rainfall (pi) (A–C) and daily maximum precipitation (Pd-max) (D–F) in
Central Europe (Budapest, Debrecen, Pécs) between 1901 and 2020.

Table 4. Descriptive statistical analysis of input variables in three locations, Budapest, Debrecen, and
Pécs, between 1901 and 2020.

Location Statistic n * Min. Max. Range Median X SD SK KU

Budapest

Pd-max 1440 0.0 115.4 115.4 14.2 16.6 11.5 1.8 7.2
pi 1440 0.0 263.1 263.1 42.8 48.5 33.4 1.3 2.9
Tavg 1440 −8.7 26.6 35.3 11.5 11.3 8.0 −0.1 −1.2
Td-max 1440 −2.9 33.1 36.0 18.1 17.4 7.7 −0.2 −1.2
Td-min 1440 −20.6 21.7 42.3 5.5 5.1 8.5 −0.2 −1.0

Debrecen

Pd-max 1440 0.0 80.3 80.3 13.0 15.4 10.7 1.7 4.2
pi 1440 0.0 232.3 232.3 40.3 47.2 32.0 1.2 1.8
Tavg 1440 −10.2 24.9 35.1 10.4 10.0 8.3 −0.2 −1.2
Td-max 1440 −1.6 30.7 32.3 17.4 16.4 7.8 −0.2 −1.1
Td-min 1440 −23.9 20.8 44.7 3.9 3.5 9.3 −0.3 −0.9

Pécs

Pd-max 1440 0.0 97.4 97.4 15.4 18.0 11.8 1.7 4.6
pi 1440 0.0 227.0 227.0 47.7 55.0 35.5 1.1 1.3
Tavg 1440 −8.6 25.9 34.5 11.5 10.9 8.0 −0.2 −1.2
Td-max 1440 −2.3 32.8 35.1 17.9 17.3 7.4 −0.2 −1.1
Td-min 1440 −21.8 21.7 43.5 4.9 4.4 8.6 −0.3 −0.9

* n: number of observations; Min.: minimum; Max.: maximum; X: mean; SD: standard deviation (n); SK: skewness
(Pearson); KU: kurtosis (Pearson).

Table 5. Developed scenarios for MFI prediction based on ANN (MLP and RBF) in Central Europe.

Number Scenarios Input Climate Element

1 SC1 Pd-max + pi + Ptotal + Tavg + Td-max + Td-min Rainfall (daily + monthly + total) + temperature (monthly)
2 SC2 Pd-max + pi + Ptotal Rainfall (daily + monthly + total)
3 SC3 Ptotal + Tavg + Td-max + Td-min Rainfall (total) + temperature (monthly)
4 SC4 pi + Ptotal Rainfall (monthly + total)

Training, Testing, and Sensitivity Analysis for Different ANN (MLP and RBF) Algorithms

For the five implemented scenarios and ANN (MLP and RBF) algorithms, data were
divided randomly into 70% for training and 30% for testing. As this work was conducted in
an SPSS environment, the initial conduction for each algorithm was adopted. For instance,
the number of layers of hidden units was from 1 to 50, and the training type was Batch
(initial Lambda = 0.000005) for the MLP algorithm, while the architecture of the RBF
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algorithm was based on automatically finding the number of units in the hidden layer with
the normalized RBF as an activation function.

Finally, sensitivity analysis (∂) was used to highlight the relationship between the
input variable for each scenario and the predicted MFI, as shown in Figure 3.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 19 
 

 

Table 5. Developed scenarios for MFI prediction based on ANN (MLP and RBF) in Central Europe. 

Number Scenarios Input Climate Element 
1 SC1 Pd-max + pi + Ptotal + Tavg + Td-max + Td-min Rainfall (daily + monthly + total) + temperature (monthly) 
2 SC2 Pd-max + pi + Ptotal Rainfall (daily + monthly + total) 
3 SC3 Ptotal + Tavg + Td-max + Td-min Rainfall (total) + temperature (monthly) 
4 SC4 pi + Ptotal Rainfall (monthly + total) 

Training, Testing, and Sensitivity Analysis for Different ANN (MLP and RBF)  
Algorithms 

For the five implemented scenarios and ANN (MLP and RBF) algorithms, data were 
divided randomly into 70% for training and 30% for testing. As this work was conducted 
in an SPSS environment, the initial conduction for each algorithm was adopted. For in-
stance, the number of layers of hidden units was from 1 to 50, and the training type was 
Batch (initial Lambda = 0.000005) for the MLP algorithm, while the architecture of the RBF 
algorithm was based on automatically finding the number of units in the hidden layer 
with the normalized RBF as an activation function.  

Finally, sensitivity analysis (∂) was used to highlight the relationship between the 
input variable for each scenario and the predicted MFI, as shown in Figure 3. 

 
Figure 3. A flowchart depicting the steps adopted in this research: (1) MFI calculation, (2) Scenarios, 
(3) ANN modeling, (4) ANN performance, (5) sensitivity analysis. 

Assessing the ANN Performance 
To assess the performance of the ANN algorithms (MLP and RBF) in predicting the 

MFI, four indices were used. The indices are model efficiency (NSE) [53], index of agree-
ment correlation (d) [54], root mean square error (RMSE) [55], and Pearson correlation 
coefficient (r) [56], as shown in Table 6. 

 

Budapest 

Debrecen 

Pecs 

pi 

Ptotal 

MFI 

SC1

SC4 

SC3 

SC2 

Pd-max 

pi 

Ptotal 

Td-min 

Td-max 

Tavg 

MFI 

hidden layer 

ANN  

MLP 

RBF 

Input Scenario

sensitivity analysis 

ANN performance 

hidden layer 

MFI 

MFI 

Figure 3. A flowchart depicting the steps adopted in this research: (1) MFI calculation, (2) Scenarios,
(3) ANN modeling, (4) ANN performance, (5) sensitivity analysis.

Assessing the ANN Performance

To assess the performance of the ANN algorithms (MLP and RBF) in predicting
the MFI, four indices were used. The indices are model efficiency (NSE) [53], index of
agreement correlation (d) [54], root mean square error (RMSE) [55], and Pearson correlation
coefficient (r) [56], as shown in Table 6.

Table 6. Indices for evaluation of ANN performance for predicting MFI erosivity.

Index Equation * Range Note

NSE NSE = 1− ∑n
i=1(MFIPrd−MFICal)

2

∑n
t=1(MFICal−MFICal)

2
−∞ and 1 When the NSE reaches 1, it is a perfect match

between MFICal and MFIPrd

d d = 1− ∑n
i=1(MFICal−MFIPrd)

2

∑n
i=1(|MFIPrd−MFICal |+|MFICal−MFICal |)2

0 to 1 When d approaches +1, this indi-cates an ideal
agreement between MFICal and MFIPrd

RMSE RMSE =

√
∑n

i=1(MFICal−MFIPrd)
2

n
0 to +∞ A lower RMSE value denotes a perfect match

between MFICal and MFIPrd

r
r =[

∑n
i=1{(MFICal−MFICal)(MFIPrd−MFIPrd) }√

∑n
i=1(MFICal−MFICal)

2
√

∑n
i=1(MFIPrd−MFIPrd)

2

]
−1 to +1 When r = +1, this shows an ideal positive linear

relationship between MFICal and MFIPrd

*MFICal : calculated MFI value based on Equation (1); MFIPrd: predicted value based on the ANN algorithms
(MLP and RBF); MFICal : average of calculated values; MFIPrd: average of predicted values.
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Additionally, the Taylor diagram [57] was used to plot the MFICal against MFIPrd.
In this sense, the Taylor diagram provides a full overview of the best model/scenarios
(Table 5) based on the correlation and standard deviation.

Finally, it is important to mention that all input and output along with the modeling
approach was conducted in IBM SPSS Statistics (V. 24). The SPSS was chosen as it provides
a user-friendly platform along with a variety of options that could optimize the output and
ANN algorithm. However, we used the initial recommended sets (i.e., batch is the type
of training, initial Lambda is 0.0000005, initial Sigma is 0.00005) by SPSS for conducting
the modeling.

3. Results
3.1. MFI Variability in Hungary

In the three studied stations, the MFI follows a normal distribution (Figure 4). The av-
erage MFI values were between 66.30± 15.40 (low erosivity) in Debrecen and 75.39 ± 15.39
(low erosivity) in Pecs (Table 7). In Budapest (central Hungary), the highest MFI (129.17,
high) value was recorded in 1955, which corresponds to 898.8 mm of rainfall, while the
lowest MFI value (37.21) was recorded in 1997. In Debrecen (eastern Hungary), the highest
MFI value was 126.23 (high) in 1977. However, the maximum MFI value in Pecs (southern
Hungary) was 121.09 (high) in 1972. Interestingly, the highest frequency of the MFI values
was 31 in Budapest, 29 in Debrecen, and 24 in Pecs for the values (65.04, 74.32), (54.28,
63.37), and (81.41, 89.53), respectively (Figure 4).
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Figure 4. Normal distribution of MFI values for studied stations between 1901 and 2020.

Table 7. An overview of MFI values in the three studied stations (1901–2020).

Station n * Min Max Range MD Mean SD SK K

Budapest 120 37.21 129.17 91.97 68.66 68.72 16.24 0.90 1.43
Debrecen 120 36.10 126.23 90.13 64.91 66.30 15.40 0.59 0.76
Pecs 120 40.83 121.09 80.25 76.48 75.39 15.39 0.14 0.09

* n: number of observations; Min: minimum; Max: maximum; MD: median; SD: standard deviation (n); SK:
skewness (Pearson); K: kurtosis (Pearson).

3.2. MFI Prediction by ANN–MLP and ANN–RBF

In the three stations, a combination of different climate variables (four scenarios) was
used by ANN–MLP and ANN–RBF for predicting the MFI values. The predicted MFI
values are presented in Figures 5 and 6.
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Figure 5. Observed and predicted MFI values when using the ANN–MLP algorithm in the studied
station under four scenarios (SC1, SC2, SC3, and SC4): (A) evolution of observed and predicted MFIs
in Budapest (1901–2020); (B) scatter plot of MFIobserved vs. MFIpredicted in Budapest; (E) evolution of
observed and predicted MFIs in Debrecen (1901–2020); (F) scatter plot of MFIobserved vs. MFIpredicted

in Debrecen; (I) evolution of observed and predicted MFI in Pecs (1901–2020); (J) scatter plot of
MFIobserved vs. MFIpredicted in Pecs.

For the ANN–MLP, each scenario exhibited a different performance in predicting
MFI values (Figure 5). In Budapest, the Pearson correlation coefficient (r) ranged between
0.82 (SC1-MLP) and rMFI vs. MFI prd = 0.83 for the rest of the scenarios. The d index ranged
between 0.88 (SC1-MLP) and 0.9 (SC3-MLP). The efficiency of the ANN–MLP was assessed
using the NSE. However, the NSE value was above 0.6, which indicates a good model per-
formance for all scenarios. However, the highest value was NSE = 0.7 in SC3. Interestingly,
the highest NSE value and lowest RMSE were recorded in SC3. Based on the statistical
indicator, the efficiency of the scenarios in predicting the MFI can be highlighted as follows:
SC3 > SC2 > SC4 > SC1. For Debrecen, the ANN–MLP exhibited a good performance
(Figure 7). The r values and those of other statistical indicators were lower than those
recorded in Budapest. For instance, the r ranged between 0.79 and 0.81, and the NSE
between 0.62 and 0.66, while the RMSE was higher than Budapest. Based on the four
suggested scenarios, the ANN–MLP performance could be ranked as follows: SC1 > SC2 >
SC4 > SC3. Similar to Budapest, the ANN–MLP performance in Pecs was better than that
in Debrecen (Figure 7). The d index was higher than 0.88, and the NSE was good (NSE >
0.66). Based on this, we can draw the following rank: SC2 > SC3 > SC1 > SC4.
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Figure 6. The output of ANN–RBF algorithm (predicted MFI) and observed one in the studied
station under four scenarios (SC1, SC2, SC3, and SC4): (C) evolution of observed and predicted MFI
in Budapest (1901–2020); (D) scatter plot MFIobserved vs. MFIpredicted in Budapest; (G) evolution of
observed and predicted MFI in Debrecen (1901–2020); (H) scatter plot MFIcalculated vs. MFIpredicted

in Debrecen; (K) evolution of observed and predicted MFI in Pecs (1901–2020); (L) scatter plot
MFIcalculated vs. MFIpredicted in Pecs.

Similar to ANN–MLP, the ANN–RBF showed a good ability to predict the MFI under
different scenarios (Figure 6). In Budapest and Debrecen, SC4 had the highest correlation
rMFI vs. MFI prd (0.85, 0.82), with the highest and lowest NSE, respectively, which indicates
that SC4 (ANN–RBF) (pi + Ptotal) is the best scenario for Budapest and Debrecen. In this
sense, the scenarios can be ranked for both stations as follows: SC4 > SC2 > SC3 > SC1
(Figure 7). In Pecs, SC3 (ANN–RBF) (Ptotal + Tavg + Td-max + Td-min) outperformed the rest
of the scenarios (rMFI vs. MFI prd = 0.86, d = 0.92, NSE = 0.73, RMSE = 7.8). However, the
performance of the four scenarios can be ranked as SC3 > SC4 > SC2 > SC1.
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Figure 7. Performance analysis of ANN (MLP and RBF) algorithms in predicting MFI values under
four scenarios (SC1, SC2, SC3, and SC4) at three stations in Budapest (BUD), Debrecen (DB), and
Pecs (PE): (A) Pearson correlation coefficient (r), (B) index of agreement correlation (d), (C) model
efficiency (NSE), and (D) root mean square error (RMSE).

The Taylor diagram (Figure 8) reveals that SC2 and SC3 for Budapest and SC1 and SC2
for Debrecen and Pecs are the best scenarios in terms of the ANN–MLP (Figure 8). However,
for the ANN–RBF, SC4 was the most appropriate scenario for Budapest and Debrecen,
while SC3 was the best one for Pecs. Overall, these analyses promoted SC2 (Pd-max + pi +
Ptotal) and SC4 (Ptotal + Tavg + Td-max + Td-min) as the best scenarios for predicting MFI using
the ANN–MLP and ANN–RBF, respectively.
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3.3. Comparing between ANN–MLP and ANN–RBF in MFI Prediction

To compare the outputs of each algorithm in each station, the outputs were plotted in
a Taylor diagram (Figure 9). The main point of this step is to test all the scenarios for both
algorithms against the calculated MF. For Budapest and Debrecen stations, the RBF-SC4
followed by the MLP-SC2 was the best predictor. In Pecs, the RBF-SC3 followed by the
MLP-SC1 was superior compared to the others. Notably, in the three stations, the RBF-SC1
had the worst performance (Figure 9). Interestingly, the RBF outperformed the MLP.
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3.4. Independent Variable Importance and Sensitivity Analysis

The main goal of sensitivity analysis is to highlight the importance of the input
variables in the prediction process. For the MLP in the Budapest station, the Ptotal had
the highest importance in all the suggested scenarios (∂SC1 = 0.46; ∂SC2 = 0.86; ∂SC3 = 0.79;
∂SC4 = 0.95), followed by Tavg in SC1, and Td-min in SC3 (Figure 10). For the RBF in the
same station, the Ptotal also had the highest importance (∂SC1 = 0.45; ∂SC2 = 0.64; ∂SC3 = 0.44;
∂SC4 = 0.88). However, other independent variables exhibited a good level of importance.
For example, in SC1 Td-min, Td-max and pi showed ∂SC1 importance ranging between 0.13
and 0.11, while in SC2, the pi importance reached ∂SC2 = 0.2 (Figure 10).
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For the second station (Debrecen), both algorithms showed that Ptotal has an important
role in MFI prediction. In the MLP, the importance value reached ∂SC4 = 0.73, while it was
∂SC4 = 0.82 in the RBF. Notably, the next important variable was the pi, with ∂SC2-MLP = 0.24
and ∂SC2-MLP = 0.22. At the Pecs station, the importance of the Ptotal was more pronounced
for both the MLP (∂SC4 = 0.97) and RBF(∂SC4 = 0.83) (Figure 10).

Based on the four scenarios and both ANN (MLP and RBF) algorithms, the sensitiv-
ity analysis showed that Ptotal, pi, and Td-min had the highest relative importance in the
prediction process.

4. Discussion

In this research, the MFI was calculated for tracking rainfall erosivity in Central
Europe; then, two ANN (RBF and MLP) algorithms were tested to assess their ability in
the prediction of the MFI. At the three studied stations, the MFI values ranged from very
low to high (1901–2020) (Table 7). Previously, De Luis et al. [41] analyzed the erosivity
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trend in Western Europe (Iberian Peninsula) and detected a notable decrease in rainfall
erosivity based on the MFI (1951–2000). For the Netherlands, Lukić et al. [10] reported that
the MFI values ranged between 77.93 and 97.27 (1957–2016). However, changes in erosivity
class from low to moderate were reported in the same study. These changes in rainfall
erosivity in Europe can be mainly explained by climate change (i.e., extreme events: flood
and drought), which largely affects the precipitation patterns, not only in Europe but all
over the world [58–61].

The output of RBF and MLP showed that the RBF outperformed the MLP. However,
both algorithms were perfectly capable of predicting the MFI values, with some differences.
The differences between the output could be explained by the way that each algorithm
works. The necessary step for the proper functioning of the NN is to optimize the weights,
known as calibration. Different types of algorithms can be used to optimize the weight, e.g.,
back propagation [62] and Levenberg–Marquardt [63]. These algorithms can minimize the
disparity between forecasted and observed values by adjusting the network weight [46].

Generally, the ANN works on the principle of the training dataset. There are various
kinds of neural network (NN) models, but usually, two models are used in prediction
applications, i.e., recurrent network and feedforward network. The backpropagation
algorithm is used to train both models [49–64]. When the backpropagation algorithm is
used to change the weight of neurons, it works on the gradient descent method (weights
change in downward direction). The signal strength between nodes is directly dependent
on the weights of neurons [49]. Feedforward NN is a basic type, and it is capable of
estimating constant and integral functions.

The network architecture of MLP comprises neurons put together into layers. The
MLP contains three layers of nodes, i.e., input, hidden, and output layers. The MLP can
have one or more hidden layers with various numbers of neurons. In addition to the input
node, the hidden and output nodes are considered neurons [65]. When we used the MLP
to study rainfall erosivity (MFI), the input layer contained the variables (Pd-max, pi, Ptotal,
Tavg, Td-max, and Td-min), and the output layer presented the predicted MFI (Figure 3), while
the hidden layer included a nonlinear function and utilized weight for the input layer.
Neurons in the hidden layer work in a trial and error approach [34].

The MLP and RBF consist of three network layers; however, the main difference
between the RBF and MLP is that the RBF’s hidden and output layers are different, unlike
those of the MLP [66]. The hidden layer neurons are nonlinear, while the output layer
neurons are linear in the RBFs. The nonlinear hidden layer neuron plays a significant
role in the nonlinear modeling task [67]. The RBF network is simpler compared to MLP.
However, the MLP is more successfully implemented in various complex problems. The
RBF is a local approximation network, and its output can be estimated by hidden units in a
local receptive field. The MLP network works globally, and its output is determined by
all the neurons [68]. Despite the similarity between both algorithms, the differences in the
architecture process led to different output and accuracy (Figures 7–9).

Overall, the implementation of the ANN for predicting the MFI or other hydrological
and environmental variables was proven to be a useful tool for predicting and forecast-
ing [69]. However, the output of this research could be useful for local planners on a county
scale for predicting the MFI values based only on monthly and yearly rainfall.

5. Conclusions

Land degradation is a major issue all over the world due to its negative impact on
the agroecosystem and environmental components. Recently, machine learning and the
artificial neural network have been implemented in environmental research for predicting
natural hazards. In this research, ANN (MLP and RBF) algorithms were implemented to
predict the MFI as a representative of erosivity factor (soil erosion) in Central Europe. Five
scenarios with different inputs (rainfall and temperature) were suggested for exploring
the accuracy of ANN (MLP and RBF) algorithms. The output of this research can be
summarized as follows:
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1- The MFI ranged between 91.97 (Budapest) and 80.25 (Pecs), with a notable decrease in
MFI values (1901–2020).

2- The SC2 (Pd-max + pi + Ptotal) was the best scenario for predicting the MFI using the
ANN–MLP.

3- The SC4 (Ptotal + Tavg + Td-max + Td-min) was the most accurate scenario for predicting
the MFI by using the ANN–RBF.

4- The sensitivity analysis revealed that pi followed by Ptotal are the most important input
variables for predicting MFI values.

It is good to mention that this research was only focused on MFI as one of the factors
that contribute to soil erosion based on the monthly rainfall data. Some other factors such
as land use (agricultural areas), soil properties (i.e., texture, structure), vegetation cover,
and inclination angle of rainfall streams were not considered in this research.

Local planers, environmental organizations, and decision makers will be able to use
the output of this research, where the prediction of the MFI could be performed to a
satisfactory level based on the total rainfall in the target regions. In the next steps, other
machine learning methods will be implemented to test their accuracy in the prediction of
the MFI. However, the output of this research could serve as a good result for both scientific
and industrial communities.
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