Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data Collection
2.2. Quantitative Risk Analysis: Annual Loss Expectancy of Fracking
2.3. Regression Model
2.3.1. Multicollinearity
2.3.2. Spatial Autocorrelation
2.3.3. Geographical and Temporal Weighted Regression (GTWR)
3. Results
3.1. Model Comparison
3.2. Spatiotemporal Features of Fracking ALE Coefficients
3.2.1. Temporal Features of Fracking ALE Coefficients
3.2.2. Spatial Features of Fracking ALE Coefficients
3.3. Comparative Analysis on the Effect of Fracking on Gender-Based Stroke Mortality
4. Discussion
4.1. Does Fracking Cause a Higher Risk of Stroke?
4.2. Spatiotemporal Differences in the Effect of Fracking on Age/Gender-Based Stroke Mortality
4.3. Air Pollutant Emissions from Fracking
4.4. What Is the Implication of This Study on Health Policy-Making?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Fracking States | Non-Fracking States | ||||
---|---|---|---|---|---|---|
Coef. | p-Value | VIF | Coef. | p-Value | VIF | |
Related-disease risk factors | ||||||
Diabetes | 0.126 | 0.043 | 3.550 | 0.242 | 0.002 | 1.847 |
Cardiovascular | 0.351 | 0.000 | 5.168 | 0.377 | 0.000 | 1.847 |
Overdose | 0.531 | 0.000 | 6.309 | 0.239 | 0.012 | 3.698 |
Behavior risk factors | ||||||
Tobacco use | −0.079 | 0.255 | 5.193 | 0.076 | 0.478 | 2.959 |
High cholesterol | −0.179 | 0.002 | 3.284 | −0.257 | 0.000 | 2.210 |
PAI | −0.032 | 0.572 | 3.698 | −0.109 | 0.132 | 1.853 |
Socioeconomic risk factors | ||||||
Mean income | 0.290 | 0.002 | 5.236 | −0.191 | 0.009 | 2.961 |
Marital rate | −0.918 | 0.000 | 2.880 | −0.204 | 0.042 | 2.078 |
Employment rate | −0.076 | 0.232 | 2.072 | −0.309 | 0.000 | 1.598 |
Fracking risk factors | ||||||
Fracking ALE | 0.113 | 0.000 | 1.511 |
Variables | Fracking States | Non-Fracking States | ||||
---|---|---|---|---|---|---|
Coef. | p-Value | VIF | Coef. | p-Value | VIF | |
Related-disease risk factors | ||||||
Diabetes | 0.304 | 0.000 | 3.550 | 0.2220 | 0.000 | 1.847 |
Cardiovascular | 0.637 | 0.000 | 5.168 | 0.7286 | 0.000 | 1.847 |
Overdose | 0.048 | 0.435 | 6.309 | 0.0376 | 0.513 | 3.698 |
Behavior risk factors | ||||||
Tobacco use | −0.016 | 0.784 | 5.193 | 0.1970 | 0.003 | 2.959 |
High cholesterol | −0.027 | 0.568 | 3.284 | −0.0377 | 0.364 | 2.210 |
PAI | 0.0626 | 0.187 | 3.698 | 0.1752 | 0.000 | 1.853 |
Socioeconomic risk factors | ||||||
Mean income | −0.040 | 0.612 | 5.236 | −0.0682 | 0.121 | 2.961 |
Marital rate | 0.093 | 0.360 | 2.880 | 0.3925 | 0.000 | 2.078 |
Employment rate | −0.236 | 0.000 | 2.072 | −0.1005 | 0.037 | 1.598 |
Fracking risk factors | ||||||
Fracking ALE | 0.0337 | 0.128 | 1.511 |
Variables | Fracking States | Non-Fracking States | ||||
---|---|---|---|---|---|---|
Moran’s I | Z-Score | p-Value | Moran’s I | Z-Score | p-Value | |
Related-disease risk factors | ||||||
Diabetes | 0.799 | 24.055 | 0.000 | 0.659 | 20.274 | 0.000 |
Cardiovascular | 0.955 | 28.695 | 0.000 | 0.924 | 28.348 | 0.000 |
Overdose | 0.725 | 21.836 | 0.000 | 0.666 | 20.501 | 0.000 |
Behavior risk factors | ||||||
Tobacco use | 0.854 | 25.731 | 0.000 | 0.589 | 18.140 | 0.000 |
High cholesterol | 0.553 | 16.679 | 0.000 | 0.321 | 9.944 | 0.000 |
PAI | 0.925 | 27.811 | 0.000 | 0.759 | 23.426 | 0.000 |
Socioeconomic risk factors | ||||||
Mean income | 0.734 | 22.111 | 0.000 | 0.778 | 23.928 | 0.000 |
Marital rate | 0.221 | 6.761 | 0.000 | 0.356 | 11.219 | 0.000 |
Employment rate | 0.944 | 28.664 | 0.000 | 0.918 | 28.173 | 0.000 |
Fracking risk factor | ||||||
Fracking ALE | 0.271 | 8.955 | 0.000 |
References
- Gandossi, L.; Von Estorff, U. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production. Eur. Comm. Jt. Res. Cent. Tech. Rep. 2013, 26347. [Google Scholar]
- Montgomery, C.T.; Smith, M.B. Hydraulic fracturing: History of an enduring technology. J. Pet. Technol. 2010, 62, 26–40. [Google Scholar] [CrossRef]
- Kuuskraa, V.; Stevens, S.H.; Moodhe, K.D. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States; U.S. Energy Information Administration, U.S. Department of Energy: Washington, DC, USA, 2013.
- U.S. Energy Information Administration. Hydraulic Fracturing Accounts for About Half of Current U.S. Crude Oil Production; U.S. Energy Information Administration: Washington, DC, USA, 2016.
- Finkel, M.L.; Hays, J. The implications of unconventional drilling for natural gas: A global public health concern. Public Health 2013, 127, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q. Characterizing and modeling environmental emergency of unconventional oil and gas spills in the USA: Life-year versus spill factors. J. Clean. Prod. 2019, 237, 117794. [Google Scholar] [CrossRef]
- Kovats, S.; Depledge, M.; Haines, A.; Fleming, L.E.; Wilkinson, P.; Shonkoff, S.B.; Scovronick, N. The health implications of fracking. Lancet 2014, 383, 757. [Google Scholar] [CrossRef]
- Black, K.J.; Boslett, A.J.; Hill, E.L.; Ma, L.; McCoy, S.J. Economic, Environmental, and Health Impacts of the Fracking Boom. Annu. Rev. Resour. Econ. 2021, 13, 311–334. [Google Scholar] [CrossRef]
- Soyer, M.; Kaminski, K.; Ziyanak, S. Socio-Psychological Impacts of Hydraulic Fracturing on Community Health and Well-Being. Int. J. Environ. Res. Public Health 2020, 17, 1186. [Google Scholar] [CrossRef]
- Caron-Beaudoin, É.; Whyte, K.P.; Bouchard, M.F.; Chevrier, J.; Haddad, S.; Copes, R.; Frohlich, K.L.; Dokkie, D.; Juul, S.; Bouchard, M.; et al. Volatile organic compounds (VOCs) in indoor air and tap water samples in residences of pregnant women living in an area of unconventional natural gas operations: Findings from the EXPERIVA study. Sci. Total. Environ. 2022, 805, 150242. [Google Scholar] [CrossRef]
- Ma, L.; Hurtado, A.; Eguilior, S.; Borrajo, J.F.L. Exposure risk assessment to organic compounds based on their concentrations in return water from shale gas developments. Sci. Total. Environ. 2022, 822, 153586. [Google Scholar] [CrossRef]
- Meng, Q. The impacts of fracking on the environment: A total environmental study paradigm. Sci. Total. Environ. 2017, 580, 953–957. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total. Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef]
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef]
- Deziel, N.C.; Brokovich, E.; Grotto, I.; Clark, C.J.; Barnett-Itzhaki, Z.; Broday, D.; Agay-Shay, K. Unconventional oil and gas development and health outcomes: A scoping review of the epidemiological research. Environ. Res. 2020, 182, 109124. [Google Scholar] [CrossRef]
- Tao, Z.; Liu, C.; He, Q.; Chang, H.; Ma, J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. Sci. Total. Environ. 2022, 824, 153887. [Google Scholar] [CrossRef]
- Meng, Q. Rethink potential risks of toxic emissions from natural gas and oil mining. Environ. Pollut. 2018, 240, 848–857. [Google Scholar] [CrossRef]
- Casey, J.A.; Savitz, D.A.; Rasmussen, S.G.; Ogburn, E.L.; Pollak, J.; Mercer, D.G.; Schwartz, B.S. Unconventional natural gas development and birth outcomes in Pennsylvania, USA. Epidemiology 2016, 27, 163. [Google Scholar] [CrossRef]
- Rasmussen, S.G.; Ogburn, E.L.; McCormack, M.; Casey, J.A.; Bandeen-Roche, K.; Mercer, D.G.; Schwartz, B.S. Association between unconventional natural gas development in the Marcellus Shale and asthma exacerbations. JAMA Intern. Med. 2016, 176, 1334–1343. [Google Scholar] [CrossRef]
- Tustin, A.W.; Hirsch, A.G.; Rasmussen, S.G.; Casey, J.A.; Bandeen-Roche, K.; Schwartz, B.S. Associations between unconventional natural gas development and nasal and sinus, migraine headache, and fatigue symptoms in Pennsylvania. Environ. Health Perspect. 2017, 125, 189–197. [Google Scholar] [CrossRef]
- Casey, J.A.; Wilcox, H.C.; Hirsch, A.G.; Pollak, J.; Schwartz, B.S. Associations of unconventional natural gas development with depression symptoms and disordered sleep in Pennsylvania. Sci. Rep. 2018, 8, 11375. [Google Scholar] [CrossRef]
- Marlin-Tackie, F.A.; Smith, J.M. Key characteristics influencing risk perceptions of unconventional energy development. J. Clean. Prod. 2020, 251, 119644. [Google Scholar] [CrossRef]
- McDermott-Levy, R.; Kaktins, N.; Sattler, B. Fracking, the environment, and health. AJN Am. J. Nurs. 2013, 113, 45–51. [Google Scholar] [CrossRef]
- Wong, C.M.; Vichit-Vadakan, N.; Kan, H.; Qian, Z. Public Health and Air Pollution in Asia (PAPA): A multicity study of short-term effects of air pollution on mortality. Environ. Health Perspect. 2008, 116, 1195–1202. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef]
- Hu, C.B.; Zhang, F.; Gong, F.Y.; Ratti, C.; Li, X. Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Build. Environ. 2020, 167, 106424. [Google Scholar] [CrossRef]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A., III; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef]
- Jackson, R.B.; Vengosh, A.; Carey, J.W.; Davies, R.J.; Darrah, T.H.; O’sullivan, F.; Pétron, G. The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 2014, 39, 327–362. [Google Scholar] [CrossRef]
- Stacy, S.L. A review of the human health impacts of unconventional natural gas development. Curr. Epidemiol. Rep. 2017, 4, 38–45. [Google Scholar] [CrossRef]
- Towfighi, A.; Saver, J.L. Stroke declines from third to fourth leading cause of death in the United States: Historical perspective and challenges ahead. Stroke 2011, 42, 2351–2355. [Google Scholar] [CrossRef] [PubMed]
- Lanska, D.J.; Kuller, L.H. The geography of stroke mortality in the United States and the concept of a stroke belt. Stroke 1995, 26, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Greenlund, K.J.; Croft, J.B.; Keenan, N.L.; Giles, W.H. Factors explaining excess stroke prevalence in the US Stroke Belt. Stroke 2009, 40, 3336–3341. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Roth, G.A.; Naghavi, M.; Parmar, P.; Krishnamurthi, R.; Chugh, S.; Mensah, G.A.; Norrving, B.; Shiue, I.; Ng, M.; et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016, 15, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.; Howard, V.J. Twenty years of progress toward understanding the stroke belt. Stroke 2020, 51, 742–750. [Google Scholar] [CrossRef]
- Srebotnjak, T.; Rotkin-Ellman, M. Fracking fumes: Air pollution from hydraulic fracturing threatens public health and communities. Nat. Resour. Def. Counc. 2014. Available online: https://legacy-assets.eenews.net/open_files/assets/2014/12/16/document_cw_01.pdf (accessed on 25 August 2022).
- Law, A.; Duff, D.; Saunders, P.; Middleton, J.; McCoy, D. Medical organisations must divest from fossil fuels. BMJ 2018, 363, k5163. [Google Scholar] [CrossRef]
- Krajnak, K.; Kan, H.; Russ, K.A.; McKinney, W.; Waugh, S.; Zheng, W.; Kashon, M.L.; Johnson, C.; Cumpston, J.; Fedan, J.S. Biological effects of inhaled hydraulic fracturing sand dust. VI. Cardiovascular effects. Toxicol. Appl. Pharmacol. 2020, 406, 115242. [Google Scholar] [CrossRef]
- Oikonomou, P.D.; Kallenberger, J.A.; Waskom, R.M.; Boone, K.K.; Plombon, E.N.; Ryan, J.N. Water acquisition and use during unconventional oil and gas development and the existing data challenges: Weld and Garfield counties, CO. J. Environ. Manag. 2016, 181, 36–47. [Google Scholar] [CrossRef]
- Purvis, R.M.; Lewis, A.C.; Hopkins, J.R.; Wilde, S.E.; Dunmore, R.E.; Allen, G.; Pitt, J.; Ward, R.S. Effects of ‘pre-fracking’operations on ambient air quality at a shale gas exploration site in rural North Yorkshire, England. Sci. Total. Environ. 2019, 673, 445–454. [Google Scholar] [CrossRef]
- Currie, J.; Greenstone, M.; Meckel, K. Hydraulic fracturing and infant health: New evidence from Pennsylvania. Sci. Adv. 2017, 3, e1603021. [Google Scholar] [CrossRef]
- Meng, Q. Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA. Sci. Total. Environ. 2015, 515, 198–206. [Google Scholar] [CrossRef]
- Meng, Q.; Ashby, S. Distance: A critical aspect for environmental impact assessment of hydraulic fracking. Extr. Ind. Soc. 2014, 1, 124–126. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–255. [Google Scholar] [CrossRef]
- Patterson, L.A.; Konschnik, K.E.; Wiseman, H.; Fargione, J.; Maloney, K.O.; Kiesecker, J.; Nicot, J.P.; Baruch-Mordo, S.; Entrekin, S.; Trainor, A.; et al. Unconventional oil and gas spills: Risks, mitigation priorities, and state reporting requirements. Environ. Sci. Technol. 2017, 51, 2563–2573. [Google Scholar]
- Korfmacher, K.S.; Jones, W.A.; Malone, S.L.; Vinci, L.F. Public health and high volume hydraulic fracturing. New Solut. J. Environ. Occup. Health Policy 2013, 23, 13–31. [Google Scholar]
- Colborn, T.; Kwiatkowski, C.; Schultz, K.; Bachran, M. Natural gas operations from a public health perspective. Hum. Ecol. Risk Assess. Int. J. 2011, 17, 1039–1056. [Google Scholar]
- Bamberger, M.; Oswald, R.E. Impacts of gas drilling on human and animal health. New Solut. J. Environ. Occup. Health Policy 2012, 22, 51–77. [Google Scholar] [CrossRef]
- Bistarelli, S.; Fioravanti, F.; Peretti, P. Defense trees for economic evaluation of security investments. In Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06), Vienna, Austria, 20–22 April 2006; p. 8. [Google Scholar]
- Karabacak, B.; Sogukpinar, I. ISRAM: Information security risk analysis method. Comput. Secur. 2005, 24, 147–159. [Google Scholar]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 2015, 5, 754. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Wasserman, W. Applied Linear Regression Models; McGraw-Hill/Irwin: New York, NY, USA, 2004; Volume 4. [Google Scholar]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Shekhar, S.; Jiang, Z.; Ali, R.Y.; Eftelioglu, E.; Tang, X.; Gunturi, V.M.; Zhou, X. Spatiotemporal data mining: A computational perspective. ISPRS Int. J. Geo Inf. 2015, 4, 2306–2338. [Google Scholar] [CrossRef]
- Wang, W.; Hu, C.; Chen, N.; Xiao, C.; Wang, C.; Chen, Z. Spatio-temporal enabled urban decision-making process modeling and visualization under the cyber-physical environment. Sci. China Inf. Sci. 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, N.; Gong, J.; Wang, W.; Hu, C.; Chen, Z. Event-driven distributed information resource-focusing service for emergency response in smart city with cyber-physical infrastructures. ISPRS Int. J. Geo Inf. 2017, 6, 251. [Google Scholar]
- Chuanbo, H.; Lan, Y.; Hui, L. A Process-oriented Risk Monitoring and Assessment Modeling Approach in Urban Public Safety. Acta Geod. Cartogr. Sin. 2018, 47, 1062. [Google Scholar]
- Wang, W.; Hu, C.; Chen, N.; Xiao, C.; Jia, S. Spatio-Temporal Risk Assessment Process Modeling for Urban Hazard Events in Sensor Web Environment. ISPRS Int. J. Geo Inf. 2016, 5, 203. [Google Scholar] [CrossRef]
- Cavanaugh, J.E. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 1997, 33, 201–208. [Google Scholar] [CrossRef]
- Dismuke, C.; Lindrooth, R. Ordinary least squares. Methods Des. Outcomes Res. 2006, 93, 93–104. [Google Scholar]
- Arboix, A. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke. World J. Clin. Cases WJCC 2015, 3, 418. [Google Scholar]
- Avan, A.; Digaleh, H.; Di Napoli, M.; Stranges, S.; Behrouz, R.; Shojaeianbabaei, G.; Amiri, A.; Tabrizi, R.; Mokhber, N.; Spence, J.D.; et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019, 17, 191. [Google Scholar] [CrossRef]
- Addo, J.; Ayerbe, L.; Mohan, K.M.; Crichton, S.; Sheldenkar, A.; Chen, R.; Wolfe, C.D.; McKevitt, C. Socioeconomic status and stroke: An updated review. Stroke 2012, 43, 1186–1191. [Google Scholar]
- Center, E.A.R.P. Fracking by the Numbers the Damage to Our Water, Land and Climate from a Decade of Dirty Drilling; Environment America Research and Policy Center: Washington, DC, USA, 2016. [Google Scholar]
- Clark, C.J.; Xiong, B.; Soriano, M.A., Jr.; Gutchess, K.; Siegel, H.G.; Ryan, E.C.; Johnson, N.P.; Cassell, K.; Elliott, E.G.; Li, Y.; et al. Assessing unconventional oil and gas exposure in the Appalachian basin: Comparison of exposure surrogates and residential drinking water measurements. Environ. Sci. Technol. 2022, 56, 1091–1103. [Google Scholar] [CrossRef]
- Windham, G.C.; Zhang, L.; Gunier, R.; Croen, L.A.; Grether, J.K. Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ. Health Perspect. 2006, 114, 1438–1444. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Abplanalp, W.; DeJarnett, N.; Riggs, D.W.; Conklin, D.J.; McCracken, J.P.; Srivastava, S.; Xie, Z.; Rai, S.; Bhatnagar, A.; O’Toole, T.E. Benzene exposure is associated with cardiovascular disease risk. PLoS ONE 2017, 12, e0183602. [Google Scholar] [CrossRef]
- Alshareef, A.; Ibrahim, M. Neurological and Biological Toxicity of Subchronic Exposure to Inhaled Benzene in Male Rats. J. Biochem. Technol. 2020, 11, 52–59. [Google Scholar]
- Tirschwell, D.; Smith, N.; Heckbert, S.; Lemaitre, R.; Longstreth, W.; Psaty, B. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology 2004, 63, 1868–1875. [Google Scholar] [CrossRef]
- Bowman, T.S.; Sesso, H.D.; Ma, J.; Kurth, T.; Kase, C.S.; Stampfer, M.J.; Gaziano, J.M. Cholesterol and the risk of ischemic stroke. Stroke 2003, 34, 2930–2934. [Google Scholar] [CrossRef] [Green Version]
Type | Variables | Description | Source |
---|---|---|---|
Fracking | Fracking activity | The location of Fracking wells | FF |
Stroke mortality | 65+ stroke mortality | Stroke deaths rate over 65 per 100,000 | CDC |
Male stroke mortality | Male Stroke deaths rate per 100,000 | CDC | |
Female stroke mortality | Female Stroke deaths rate per 100,000 | CDC | |
Disease | Diabetes | Proportion of diagnosed diabetes | CDC |
Cardiovascular | Cardiovascular deaths rate over 65 per 100,000 | CDC | |
Overdose | Drug overdose death rates | CDC | |
Hypertension | High blood pressure deaths over 65 per 100,000 | CDC | |
Obesity | Adults with a BMI > 30 | CDC | |
Behavior | Tobacco use | Current cigarette use by adults | CDC |
High cholesterol | High total cholesterol among adults | CDC | |
Physical activity index | Physical Inactivity Prevalence | CDC | |
Heavy Drink | 8 or more drinks per week (female) or 15 or more drinks per week (male) | CDC | |
Socioeconomic | Mean income | Family income by number of workers | USCB |
Marital rate | Proportion of married population | USCB | |
Employment rate | Proportion of employed population | USCB | |
Education | Bachelor’s degree or higher | USCB | |
HAPs | Butadiene | Concentration monitoring data for Butadiene | EPA |
Benzene | Concentration monitoring data for Benzene | EPA | |
Formaldehyde | Concentration monitoring data for Formaldehyde | EPA | |
Acetaldehyde | Concentration monitoring data for Acetaldehyde | EPA |
Fracking States | Non-Fracking States | |||||
---|---|---|---|---|---|---|
OLS [61] | −401.129 | 0.757 | 0.745 | −293.313 | 0.601 | 0.584 |
TWR [44] | −399.780 | 0.768 | 0.757 | −318.285 | 0.691 | 0.678 |
GWR [43] | −534.502 | 0.933 | 0.929 | −481.016 | 0.897 | 0.892 |
GTWR [44] | −564.090 | 0.970 | 0.968 | −487.886 | 0.931 | 0.928 |
Variables | MIN | LQ | MED | UQ | MAX | AVG |
---|---|---|---|---|---|---|
Related-disease risk factors | ||||||
Diabetes | −0.661 | −0.316 | −0.001 | 0.218 | 0.632 | −0.018 |
Cardiovascular | −1.506 | −0.070 | 0.269 | 0.524 | 1.141 | 0.232 |
Overdose | −0.861 | −0.030 | 0.389 | 0.693 | 1.148 | 0.347 |
Behavior risk factors | ||||||
Tobacco use | −0.973 | −0.342 | −0.157 | −0.035 | 0.351 | −0.197 |
High cholesterol | −1.346 | −0.325 | −0.149 | 0.090 | 0.415 | −0.139 |
PAI | −0.585 | −0.161 | −0.080 | 0.020 | 0.521 | −0.056 |
Socioeconomic risk factors | ||||||
Mean income | −1.442 | −0.215 | 0.147 | 0.367 | 0.623 | 0.039 |
Marital rate | −1.459 | −0.984 | −0.677 | −0.409 | 0.720 | −0.663 |
Employment rate | −2.106 | −0.604 | −0.014 | 0.128 | 0.627 | −0.223 |
Fracking risk factor | ||||||
Fracking ALE | −0.327 | 0.041 | 0.116 | 0.154 | 0.394 | 0.094 |
Intercept | −0.009 | 0.487 | 0.669 | 0.792 | 3.747 | 0.715 |
Variables | MIN | LQ | MED | UQ | MAX | AVG |
---|---|---|---|---|---|---|
Related-disease risk factors | ||||||
Diabetes | −0.603 | −0.085 | 0.227 | 0.314 | 0.467 | 0.109 |
Cardiovascular | −0.354 | 0.272 | 0.357 | 0.427 | 0.896 | 0.305 |
Overdose | −1.341 | −0.189 | 0.166 | 0.286 | 0.805 | 0.037 |
Behavior risk factors | ||||||
Tobacco use | −0.577 | −0.036 | 0.102 | 0.222 | 0.71 | 0.08 |
High cholesterol | −0.841 | −0.539 | −0.296 | −0.165 | 0.175 | −0.333 |
PAI | −0.493 | −0.101 | 0.043 | 0.233 | 0.451 | 0.063 |
Socioeconomic risk factors | ||||||
Mean income | −2.403 | −0.684 | −0.412 | −0.222 | 0.476 | −0.479 |
Marital rate | −1.448 | −0.651 | −0.078 | 0.265 | 0.354 | −0.221 |
Employment rate | −1.657 | −1.07 | −0.615 | −0.144 | 1.122 | −0.507 |
Air Pollutants | Pearson r | p-Value |
---|---|---|
Butadiene | 0.119 | 0.083 |
Formaldehyde | 0.093 | 0.175 |
Acetaldehyde | 0.049 | 0.474 |
Benzene | 0.245 | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Liu, B.; Wang, S.; Zhu, Z.; Adcock, A.; Simpkins, J.; Li, X. Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States. Int. J. Environ. Res. Public Health 2022, 19, 10817. https://doi.org/10.3390/ijerph191710817
Hu C, Liu B, Wang S, Zhu Z, Adcock A, Simpkins J, Li X. Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States. International Journal of Environmental Research and Public Health. 2022; 19(17):10817. https://doi.org/10.3390/ijerph191710817
Chicago/Turabian StyleHu, Chuanbo, Bin Liu, Shuo Wang, Zhenduo Zhu, Amelia Adcock, James Simpkins, and Xin Li. 2022. "Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States" International Journal of Environmental Research and Public Health 19, no. 17: 10817. https://doi.org/10.3390/ijerph191710817
APA StyleHu, C., Liu, B., Wang, S., Zhu, Z., Adcock, A., Simpkins, J., & Li, X. (2022). Spatiotemporal Correlation Analysis of Hydraulic Fracturing and Stroke in the United States. International Journal of Environmental Research and Public Health, 19(17), 10817. https://doi.org/10.3390/ijerph191710817