Surveillance of WHO Priority Gram-Negative Pathogenic Bacteria in Effluents from Two Seafood Processing Facilities in Tema, Ghana, 2021 and 2022: A Descriptive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.2.1. General Setting
2.2.2. Specific Setting
2.3. Effluent Sample Collection and Laboratory Analysis
2.4. Laboratory Quality Assurance Procedures
2.5. Data Collection, Source of Data and Validation
2.6. Statistical Analysis
3. Results
3.1. Bacterial Load in the Effluents
3.2. Bacterial Species and Their Antimicrobial Resistance Pattern
3.3. Presence of WHO Priority Pathogens and Multi-Drug Resistance in the Effluents of Seafood Processing Facilities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling Antimicrobial Resistance in Low-Income and Middle-Income Countries. BMJ Glob. Health 2019, 4, 4–6. [Google Scholar] [CrossRef] [PubMed]
- One Health GLOBAL. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 13 July 2022).
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 13 July 2022).
- Center for Disease Control and Prevention. Saving Lives by Taking a One Health Approach; Center for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2020; p. 4. [Google Scholar]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World Health Organization Releases Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. JMS J. Med. Soc. 2018, 32, 76–77. [Google Scholar] [CrossRef]
- Divyashree, M.; Vijaya Kumar, D.; Ballamoole, K.K.; Shetty, A.V.; Chakraborty, A.; Karunasagar, I. Occurrence of Antibiotic Resistance among Gram Negative Bacteria Isolated from Effluents of Fish Processing Plants in and around Mangalore. Int. J. Environ. Health Res. 2020, 30, 653–660. [Google Scholar] [CrossRef]
- Target 6.3—Water Quality and Wastewater—Sdg6monitoring. Available online: https://www.sdg6monitoring.org/indicators/target-63/ (accessed on 13 July 2022).
- Islam, M.S.; Khan, S.; Tanaka, M. Waste Loading in Shrimp and Fish Processing Effluents: Potential Source of Hazards to the Coastal and Nearshore Environments. Mar. Pollut. Bull. 2004, 49, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Bonsdorff, E.; Blomqvist, E.M.; Mattila, J.; Norkko, A. Long-Term Changes and Coastal Eutrophication. Examples from the Aland Islands and the Archipelago Sea, Northern Baltic Sea. Oceanol. Acta 1997, 20, 319–329. [Google Scholar]
- Sivaraman, G.K.; Visnuvinayagam, S.; Jha, A.K.; Renuka, V.; Remya, S.; Vanik, D. Assessment of Microbial Quality of Fish Processing Industrial Effluent in Bar-Month at Bhidia Landing Site, Veraval, Gujarat, India. J. Environ. Biol. 2016, 37, 537–541. [Google Scholar] [PubMed]
- Republic of Ghana Environmental Protection Agency Act, 1994 (Act 490); Environmental Protection Agency: Accra, Ghana, 1994; pp. 387–388.
- GSS Today, 22. Popul. Hous. Census Provisional Results, 2021l pp. 1–7. Available online: https://www.statsghana.gov.gh (accessed on 13 July 2022).
- Carranzo, I.V. Standard Methods for Examination of Water and Wastewater. In Anales De Hidrología Médica; Universidad Complutense de Madrid: Madrid, Spain, 2012; Volume 5, pp. 185–186. [Google Scholar]
- APHA, AWWA, WEF. 9221 A-C Multiple-Tube Fermentation Technique for Members of the Coliform Group, 9221D Presence-Absence Coliform Test & 9221E Fecal Coliform Procedure. In Standard Methods Exammination Water Wastewater; American Public Health Association: Wahington, DC, USA, 1998; pp. 9–47. [Google Scholar]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am. Soc. Microbiol. 2012, 15, 55–63. [Google Scholar]
- Dolinsky, A.L.; Ohiro, R.K.; Fan, W.; Xiao, C.; Wu, F. National Committee for Clinical Laboratory Standards. 2000. Performance Standard for Antimicrobial Susceptibility Testing. Document M100–S10. J. Int. Med. Res. 2019, 46, 18. [Google Scholar]
- 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 13 July 2022).
- Titilawo, Y.; Sibanda, T.; Obi, L.; Okoh, A. Multiple Antibiotic Resistance Indexing of Escherichia Coli to Identify High-Risk Sources of Faecal Contamination of Water. Environ. Sci. Pollut. Res. 2015, 22, 10969–10980. [Google Scholar] [CrossRef] [PubMed]
- WHO. Critically Important Antimicrobials for Human Medicine: 5th Revision; World Health Organization (WHO): Geneva, Switzerland, 2017; ISBN 9789241512220. [Google Scholar]
- Bagge-Ravn, D.; Ng, Y.; Hjelm, M.; Christiansen, J.N.; Johansen, C.; Gram, L. The Microbial Ecology of Processing Equipment in Different Fish Industries—Analysis of the Microflora during Processing and Following Cleaning and Disinfection. Int. J. Food Microbiol. 2003, 87, 239–250. [Google Scholar] [CrossRef]
- The Effects of Fish Processing Bio-Waste on the Ocean’s Organisms and Nutrients—ScienceBuzz. Available online: https://www.sciencebuzz.com/the-effects-of-fish-processing-bio-waste-on-the-oceans-organisms-and-nutrients/ (accessed on 24 July 2022).
- Monteiro, A.; Cardoso, J.; Guerra, N.; Ribeiro, E.; Viegas, C.; Verde, S.C.; Sousa-Uva, A. Exposure and Health Effects of Bacteria in Healthcare Units: An Overview. Appl. Sci. 2022, 12, 1958. [Google Scholar] [CrossRef]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of Seafood-Associated Infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbashir, S.; Parveen, S.; Schwarz, J.; Rippen, T.; Jahncke, M.; DePaola, A. Seafood Pathogens and Information on Antimicrobial Resistance: A Review. Food Microbiol. 2018, 70, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Committee on Evaluation of the Safety of Fishery Products. Seafood Safety; National Academy Press: Washington, DC, USA, 1992; Volume 67, ISBN 0309537223. [Google Scholar]
- Osundiya, O.; Oladele, R.; Oduyebo, O. Multiple Antibiotic Resistance (MAR) Indices of Pseudomonas and Klebsiella Species Isolates in Lagos University Teaching Hospital. Afr. J. Clin. Exp. Microbiol. 2013, 14, 164–168. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-Examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
Time Period | Number of Weekly Effluent Samples Collected | |
---|---|---|
SPF-1 | SPF-2 | |
May–July 2021 | 13 | 12 |
March–May 2022 | 6 | 7 |
Total | 19 | 19 |
Bacterial Species Isolated | Number of Effluent Samples from Which the Bacterial Species Were Isolated | |
---|---|---|
SPF-1 (N = 19) | SPF-2 (N = 19) | |
n (%) | n (%) | |
Escherichia coli | 16 (84) | 15 (79) |
Klebsiella pneumoniae | 5 (26) | 10 (53) |
Morganella morganii | 5 (26) | 3 (16) |
Proteus mirabillis | 6 (32) | 0 |
Pseudomonas citronellolis | 6 (32) | 0 |
Citrobacter freudii | 4 (21) | 2 (11) |
Pseudomonas putida | 1 (5) | 3 (16) |
Enterobacter cloacae | 2 (11) | 2 (11) |
Klebsiella oxytoca | 3 (16) | 0 |
Acinetobacter baumannii | 0 | 2 (11) |
Pseudomonas aeruginosa | 2 (11) | 0 |
Pseudomonas mendocina | 0 | 2 (11) |
Aeromonas jandaei | 0 | 2 (11) |
Klebsiella ozanae | 0 | 1 (5) |
Klebsiella aerogenes | 1 (5) | 0 |
Klebsiella variicola | 1 (5) | 0 |
Cronobacter spp. | 0 | 1 (5) |
Antibiotics | Isolates Resistant to Antibiotics | ||||||
---|---|---|---|---|---|---|---|
E. coli | K. pneumoniae | P. mirabillis | P. aeruginosa | A. baumannii | |||
SPF 1 | SPF 2 | SPF 1 | SPF 2 | SPF 1 | SPF1 | SPF2 | |
(N = 16) | (N = 15) | (N = 5) | (N = 10) | (N = 6) | (N = 2) | (N = 2) | |
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
Access | |||||||
Tetracycline (TET) | 13 (81) | 10 (67) | 0 (0) | 9 (60) * | 3 (50) | 0 (0) | 0 (0) |
Sulfamethoxazole/Trimethoprim (SXT) | 9 (56) | 8 (53) | 1(20) | 9 (60) | 0 (0) | 0 (0) | 0 (0) |
Gentamicin (GEN) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Ampicillin (AMP) | 10 (63) | 13 (87) | 4(80) | 10(67) | 3(50) | 0 (0) | 2 (13) |
Amikacin (AMK) | 2 (13) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Watch | |||||||
Cefuroxime (CXM) | 12 (75) | 15(100) | 4(80) | 10(67) | 2(33) | 0 (0) | 2 (13) |
Cefotaxime (CTX) | 6 (38) | 2 (13) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Ciprofloxacin (CIP) | 3 (19) | 2 (13) | 0 (0) | 1 (7) | 0 (0) | 0 (0) | 0 (0) |
Levofloxacin (LEV) | 5 (31) | 5 (33) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Ceftazidime (CAZ) | 0 (0) | 1 (7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Piperacillin/Tazobactam (TZP) | 5 (31) | 5 (33) | 0 (0) | 9 (60) * | 0 (0) | 2 (13) | 0 (0) |
Cefepime (FEP) | 3 (19) | 2 (13) | 1(20) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Meropenem (MEM) | 1 (6) * | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Ceftriaxone (CRO) | 0 (0) | 0 (0) | 1(20) | 0 (0) | 0 (0) | 0 (0) | 2 (13) |
Reserve | |||||||
Colistin (CL) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Bacteria Isolates | Source | MAR Index |
---|---|---|
E. coli | SPF-1 | 0.7 |
SPF-2 | 0.7 | |
K. pneumoniae | SPF-1 | 0.3 |
SPF-2 | 0.4 | |
Proteus spp. | SPF-1 | 0.2 |
SPF-2 | No isolate | |
A. baumannii | SPF-1 | No isolate |
SPF-2 | 0.2 | |
P. aeruginosa | SPF-1 | 0.1 |
SPF-2 | No isolate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agyarkwa, M.A.-k.; Azaglo, G.S.K.; Kokofu, H.K.; Appah-Sampong, E.K.; Nerquaye-Tetteh, E.N.; Appoh, E.; Kudjawu, J.; Worlanyo, E.; Batong, M.F.; Akumwena, A.; et al. Surveillance of WHO Priority Gram-Negative Pathogenic Bacteria in Effluents from Two Seafood Processing Facilities in Tema, Ghana, 2021 and 2022: A Descriptive Study. Int. J. Environ. Res. Public Health 2022, 19, 10823. https://doi.org/10.3390/ijerph191710823
Agyarkwa MA-k, Azaglo GSK, Kokofu HK, Appah-Sampong EK, Nerquaye-Tetteh EN, Appoh E, Kudjawu J, Worlanyo E, Batong MF, Akumwena A, et al. Surveillance of WHO Priority Gram-Negative Pathogenic Bacteria in Effluents from Two Seafood Processing Facilities in Tema, Ghana, 2021 and 2022: A Descriptive Study. International Journal of Environmental Research and Public Health. 2022; 19(17):10823. https://doi.org/10.3390/ijerph191710823
Chicago/Turabian StyleAgyarkwa, Meldon Ansah-koi, Godfred Saviour Kudjo Azaglo, Henry Kwabena Kokofu, Ebenezer Kwabena Appah-Sampong, Esi Nana Nerquaye-Tetteh, Emmanuel Appoh, Jewel Kudjawu, Ebenezer Worlanyo, Mariam Fuowie Batong, Amos Akumwena, and et al. 2022. "Surveillance of WHO Priority Gram-Negative Pathogenic Bacteria in Effluents from Two Seafood Processing Facilities in Tema, Ghana, 2021 and 2022: A Descriptive Study" International Journal of Environmental Research and Public Health 19, no. 17: 10823. https://doi.org/10.3390/ijerph191710823
APA StyleAgyarkwa, M. A. -k., Azaglo, G. S. K., Kokofu, H. K., Appah-Sampong, E. K., Nerquaye-Tetteh, E. N., Appoh, E., Kudjawu, J., Worlanyo, E., Batong, M. F., Akumwena, A., Labi, A. -K., Osei, M. -M., Satyanarayana, S., Terry, R. F., Manzi, M., & Opintan, J. A. (2022). Surveillance of WHO Priority Gram-Negative Pathogenic Bacteria in Effluents from Two Seafood Processing Facilities in Tema, Ghana, 2021 and 2022: A Descriptive Study. International Journal of Environmental Research and Public Health, 19(17), 10823. https://doi.org/10.3390/ijerph191710823